Principles of X-ray and Neutron Scattering

Lecture 11: Studying quantum matter for nanoscale applications

15.02.'24

Lectures by: Prof. Philip Willmott, Prof. Johan Chang and Dr. Artur Glavic

Course Outline

Monday	Tuesday	Wednesday	Thursday	Friday
Lecture 1	Lecture 4	Lecture 7	Lecture 10	Lecture 13
10-10h45	10-10h45	10-10h45	10-10h45	10-10h45
Philip	Philip	Artur	Artur	Johan
Lecture 2	Lecture 5	Lecture 8	Lecture 11	Lecture 14
11-11h45	11-11h45	11-11h45	11-11h45	11-11h45
Philip	Philip	Artur	Artur	Johan
Lunch - Mensa	Lunch - Mensa	Lunch - Mensa	Lunch - Mensa	Lunch - Mensa
Lecture 3	Lecture 6	Lecture 9	Lecture 12	Lecture 15
13h00-13h45	13h00-13h45	13h00-13h45	13h00-13h45	13h00-13h45
Philip	Philip	Artur	Artur	Johan
		Exercise Class 14h30-16		Exercise Class 14h30-16

X-ray scattering

Neutron Scattering

Resonant x-ray scattering

Neutron Lectures:

- 7: Neutrons & Scattering to Determine Structure
- 8: Inelastic Neutron Scattering to Investigate Dynamics
- 9: Magnetic Scattering
- 10: Neutron Polarization Analysis
- 11: Studying quantum matter for nanoscale applications
- 12: Neutron Instrument Development

Lecture 11: Studying quantum matter for nanoscale applications

Theoretical Background

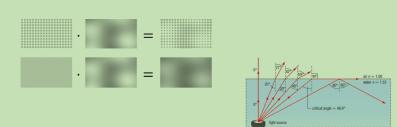
- Continuum description of matter
- Dynamic effects at grazing incidence

Practical Implementation

- Neutron guides and focusing optics
- SANS and reflectometry instruments

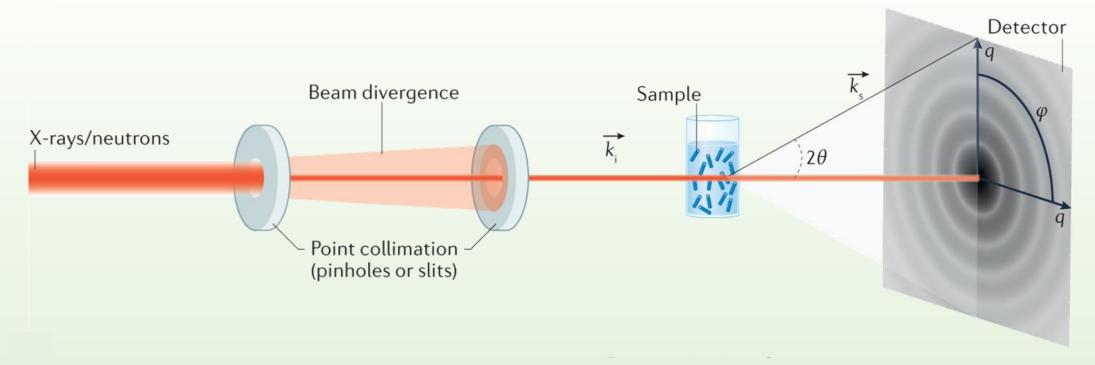
Example Application

- Surface spin canting in magnetic nanoparticles
- GISANS on frustrated artificial spins

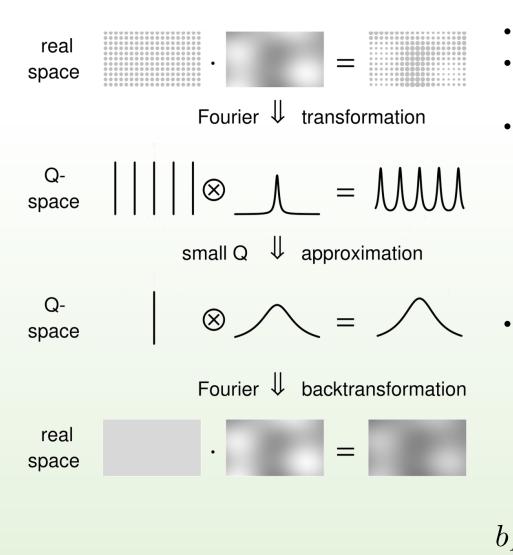


Small Angle (Neutron) Scattering – SA(N)S

- Interest in structures with sizes 1-100 nm
- Very large compared with neutron wavelength (10x-1000x)
- Due to properties of Fourier transform the relevant signal is at small Q → small scattering angle
- Instruments require very good angular resolution (long collimation and distant detector)
- Wavelength resolution is less important and can be relaxed to regain intensity



Continuum Description for SAS



- Q-rang limited to < 0.1 Å⁻¹
- Convolution theorem;

signal is given by nm-size variation in scattering potential

Material described as continuum with average material dependent scattering length density (SLD) parameter

$$\rho_n = \rho_{FU} \sum_{l=1}^{N_{FU}} b_l \cdot n_l$$

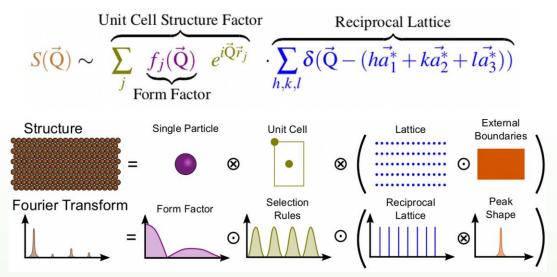
- X-ray atomic or neutron magnetic form factor decay at much larger Q-values
 - → continuum description only depends on one complex number to fully describe the scattering cross-section

$$\rho_m = b_H \cdot M$$

$$\rho_H = \frac{\gamma r_0}{2\mu_B} = 2.7 \text{ fm}$$

$$\rho_x = \rho_{FU} r_e \sum_{l=1}^{N_{FU}} f_i(E) \cdot n_l$$

Structure Factor in SAS

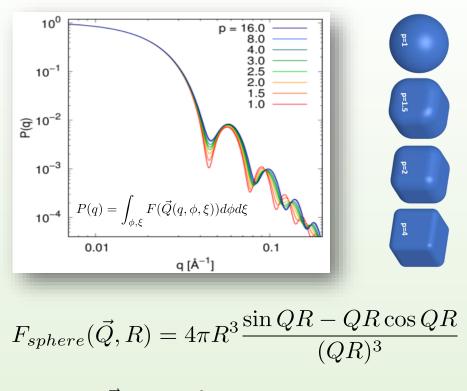


• The form factor is the Fourier transform of the particle shape scaled by the contrast between particle and surrounding medium

$$f_j(\vec{Q}) = \Delta \rho_j F_j(\vec{Q}) = \int \Delta \rho_j(\vec{r}) e^{i\vec{Q}\vec{r}} d^3r$$

- nm-size particles are not identical like atoms, size/shape distribution has to be taken into account
- Analysis programs include form factors for typical shapes

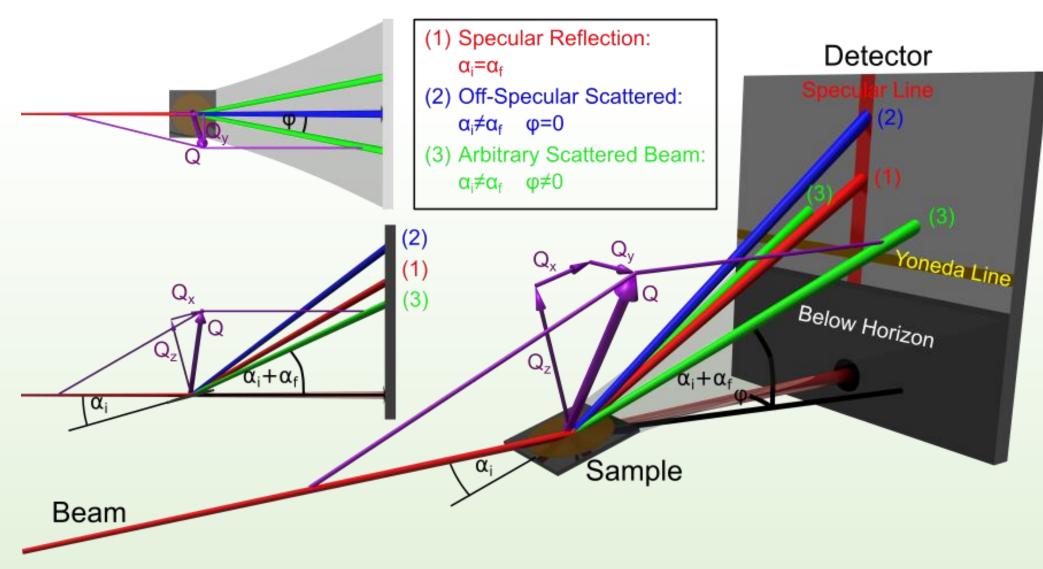
- Structure factor only applies for organized systems
- Independent particles behave as incoherent scatterers and can be described by their form factor alone



$$F_{cube}(\vec{Q}, a) = a^3 \operatorname{sinc}(q_x a) \operatorname{sinc}(q_y a) \operatorname{sinc}(q_z a)$$

Effects at grazing incidence

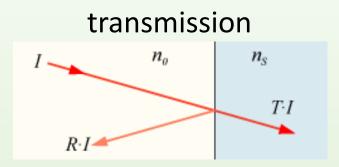
Geometry and naming conventions



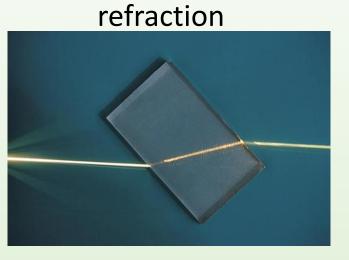
Effects at grazing incidence

At each interface:

reflection



 $\vec{k_i}$ $\vec{k_f}$ $\vec{k_f}$ $\vec{n_1}$ $\vec{k_t}$

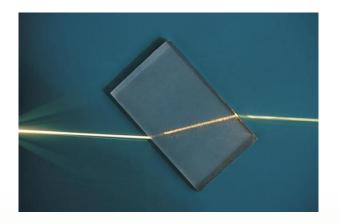


15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

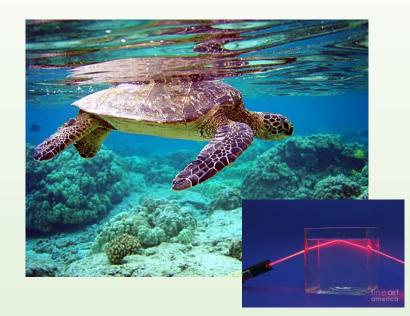
Refraction

By definition, the refractive index is:

$$n_i^2 = \frac{k_i^2}{k_0^2}$$



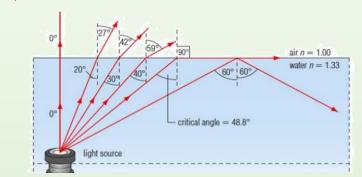
Interaction can't change the in-plane component of wave vector, leads to Snell's law:

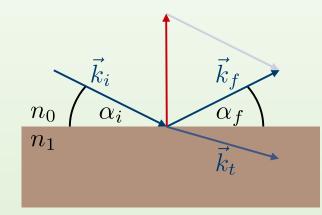


On side with larger n; critical angle of total reflection: $\cos \alpha_c = \frac{n_1}{n_0}$

Wave vector z-component in the medium:

 $k_{z,t} = k_t \sin \alpha_t = n_1 k_0 \sin \alpha_t$





15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Reflection from a single interface

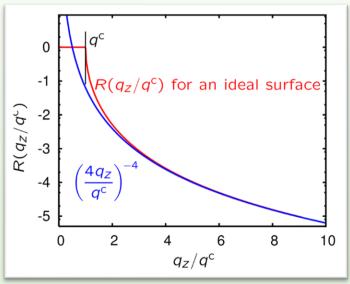
Reflectivity determined from reflectance: $R = |r_{0,1}|^2$

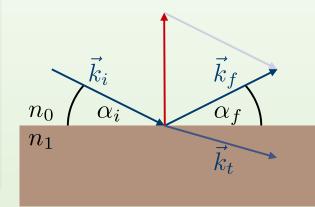
using the reciprocal space vector

$$q_z = \frac{2\pi}{\lambda} \left(\sin \alpha_i + \sin \alpha_f \right) = \frac{4\pi}{\lambda} \sin \alpha_i$$

one finds that the reflectivity is:

$$R(q_z) = \left| \frac{1 - \sqrt{1 - (q_c/q_z)^2}}{1 + \sqrt{1 - (q_c/q_z)^2}} \right|^2$$





Reflection from multiple interfaces

Interfering parts from all interfaces, but general relation for each layer:

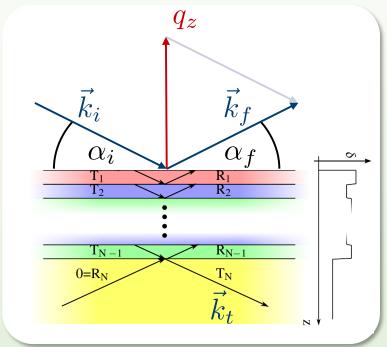
$$X_{j} = \frac{R_{j}}{T_{j}} = e^{-2ik_{z,j}z_{j}} \frac{r_{j,j+1} + X_{j+1}e^{2ik_{z,j+1}z_{j}}}{1 + r_{j,j+1}X_{j+1}e^{2ik_{z,j+1}z_{j}}}$$

Together with two boundary conditions

 $R_N = 0$ and $T_0 = 1$

can be solved analytically for any number of interfaces.

Referred to as Parratt's formalism, which yields a iterative solution for any number of layers that is "exact"



Refractive Index for Neutrons

Can be derived from Schrödinger's equation:

Nuclear:

$$V_l^{Fermi} = b_l \frac{2\pi}{m_n} \delta(\vec{r})$$

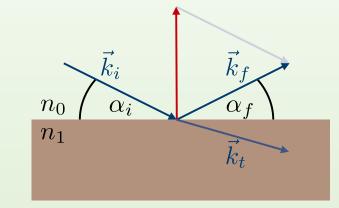
Related to scattering length density (SLD):

$$n_j = \sqrt{1 - \frac{V_j}{E}} \approx 1 - \frac{V_j}{2E} := 1 - \delta + i\beta$$

Magnetic: $V^m = \vec{\mu} \vec{B}_{\perp}$

$$n_j = 1 - \frac{\lambda^2}{2\pi} \left(\rho_n + \rho_m\right)$$

Typical values for δ are 10⁻⁵ for x-rays and 10⁻⁶ for neutrons $\rightarrow n$ is very close to 1

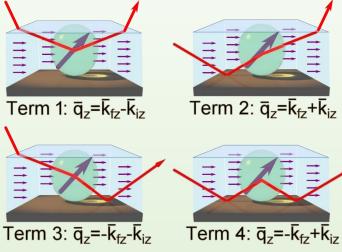


Scattering within the plane

The Distorted Wave Born Approximation (DWBA)

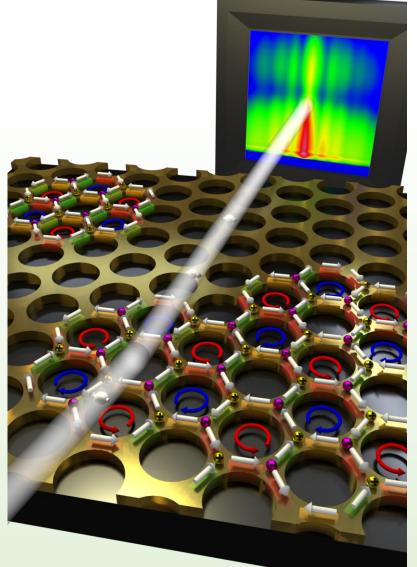
- Use optical formalism (Parratt) to describe strong dynamic effect
- In each layer perform Born approximation for the in-plane scattering of the difference potential that fulfills small scattering condition
- Need to account for all possible initial and final wave directions that may be present due to reflection below

$$\Rightarrow F_{DWBA} \left(Q_{||}, k_{i,z}, k_{f,z} \right) = F \left(Q_{||}, k_{f,z} - k_{i,z} \right) + r_i F \left(Q_{||}, k_{f,z} + k_{i,z} \right) + r_f F \left(Q_{||}, -k_{f,z} - k_{i,z} \right) + r_i r_f F \left(Q_{||}, -k_{f,z} - k_{i,z} \right)$$

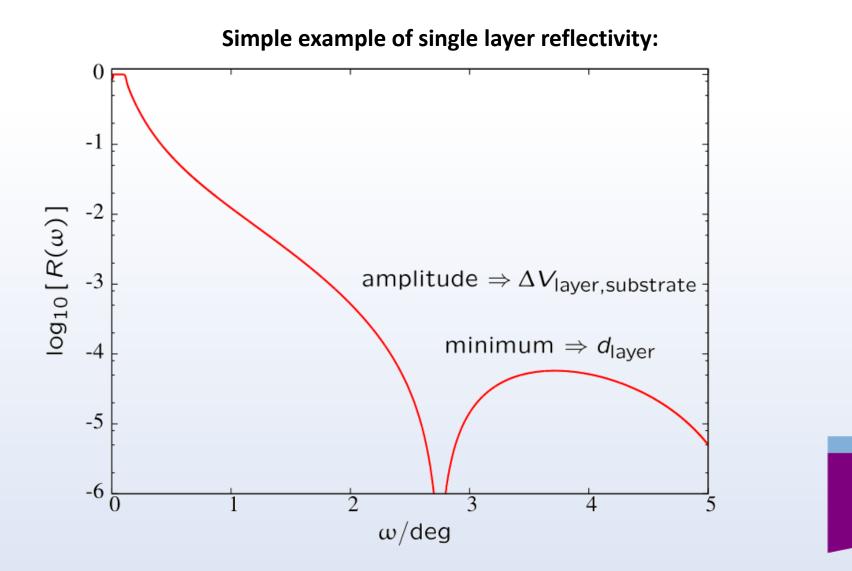


Relevant for off-specular and GISAS:

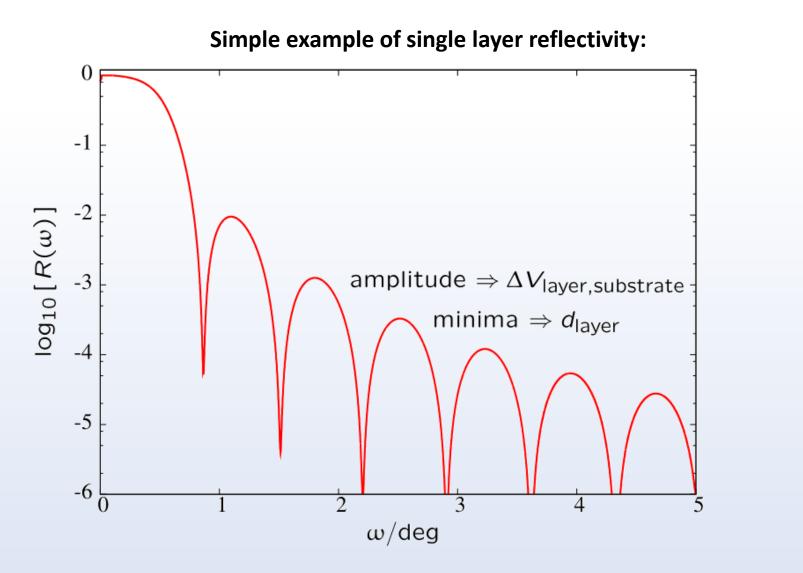
- Roughness between layers
- Magnetic domains
- Structured samples
- Embedded particles



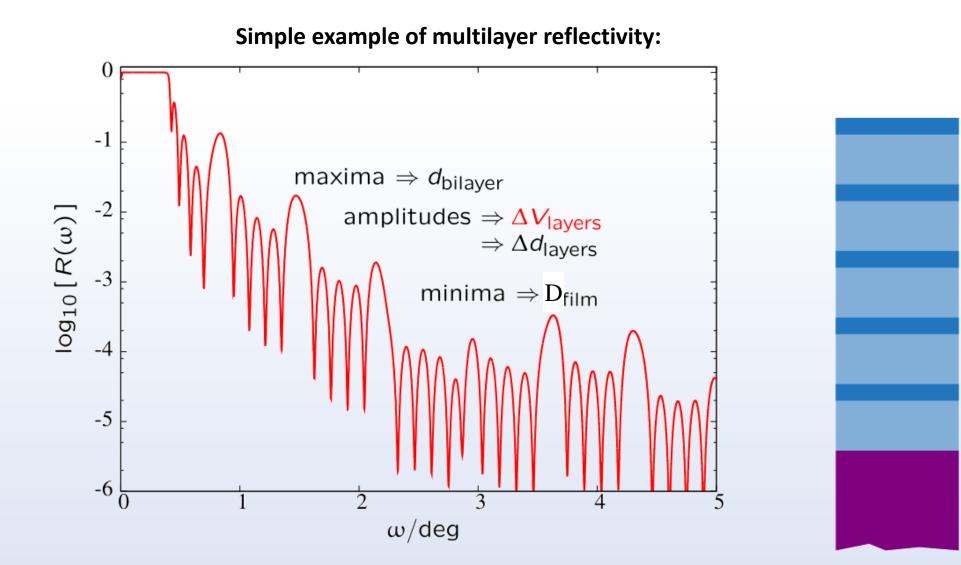
NR from homogeneous layers



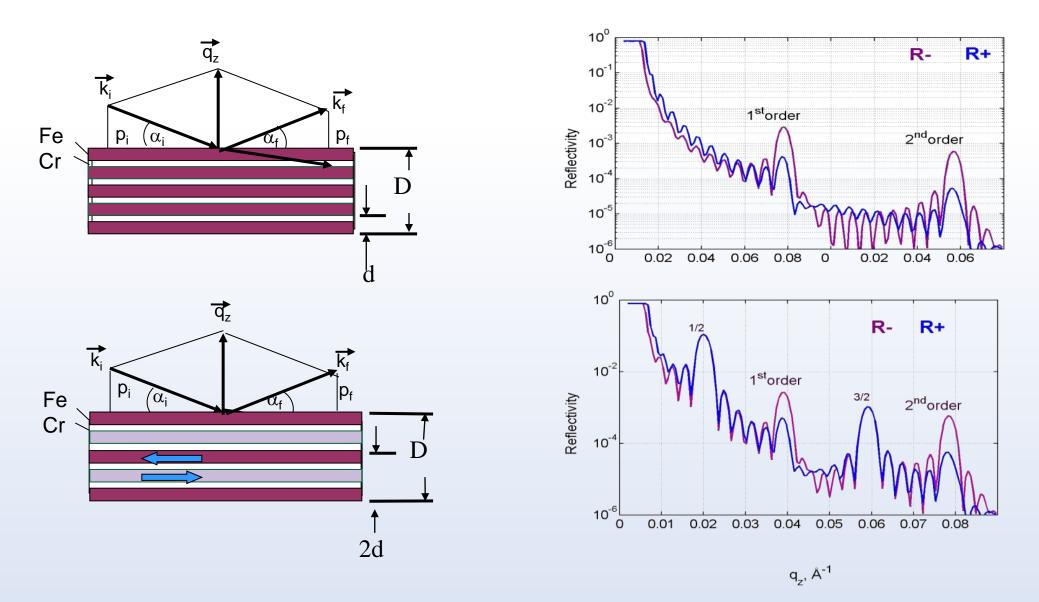
NR from homogeneous layers



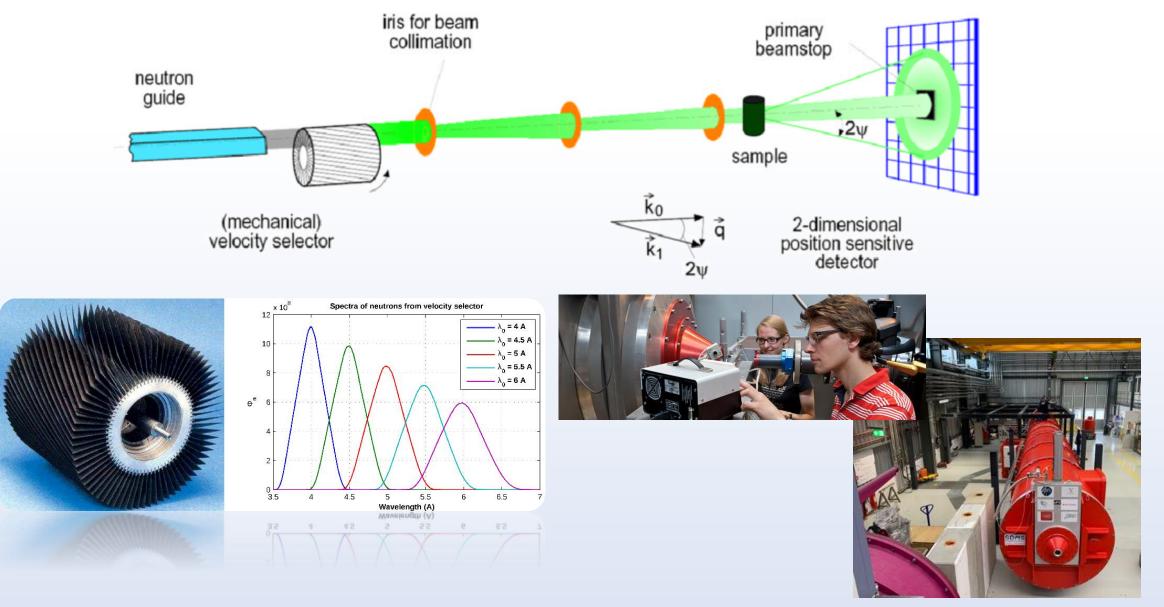
NR from homogeneous layers



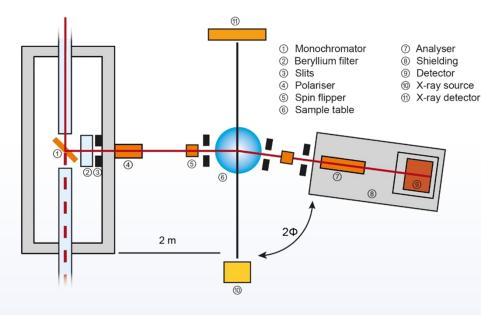
Polarized NR from magnetic layers



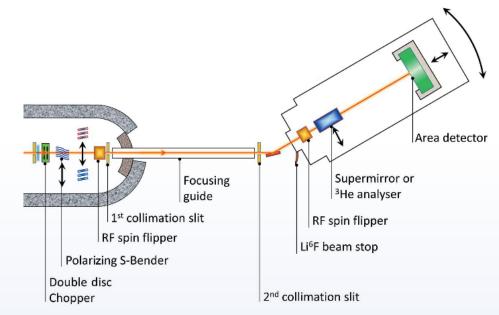
SANS instruments



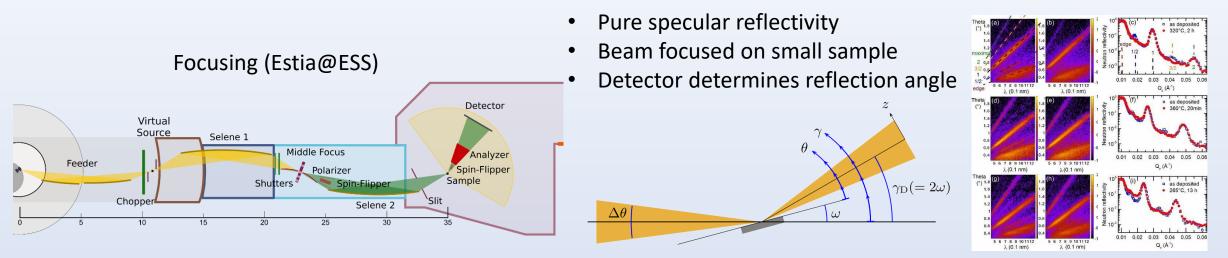
Neutron Reflectometers



Traditional Monochromatic (NREX@MLZ)

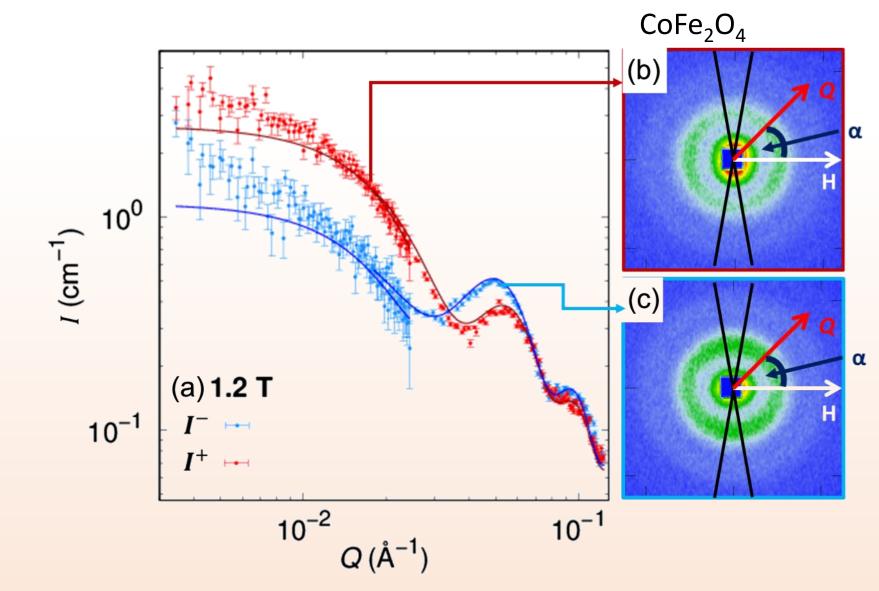


Traditional ToF (D17@ILL)



15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

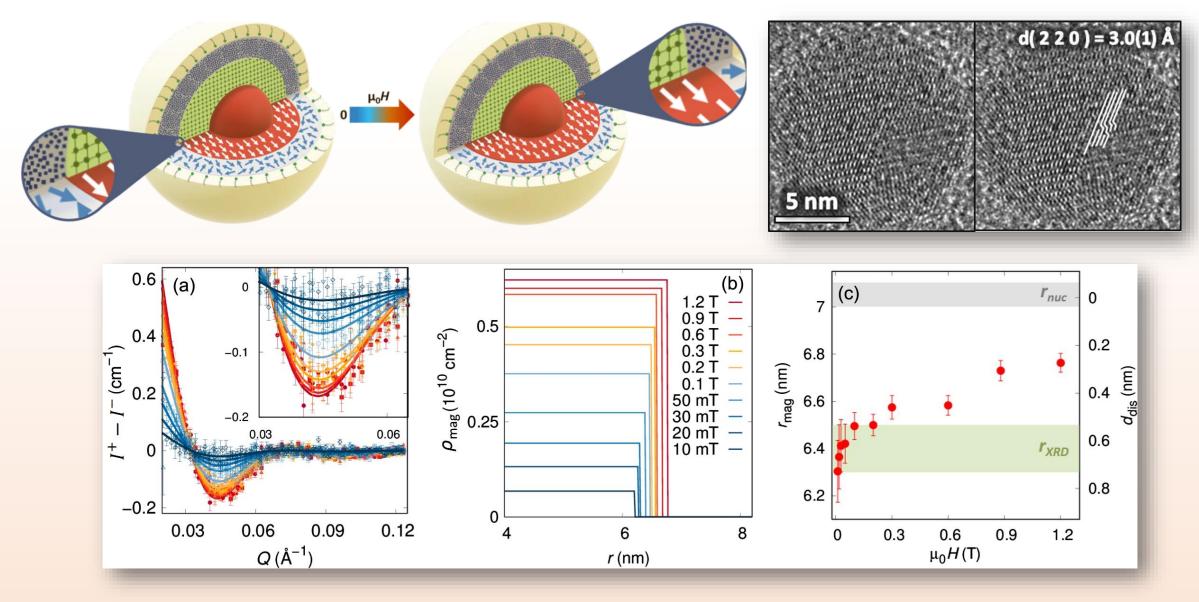
SANS on Magnetic Nanoparticles



Form factor is a sphere of magnetic core and non-magnetic shell

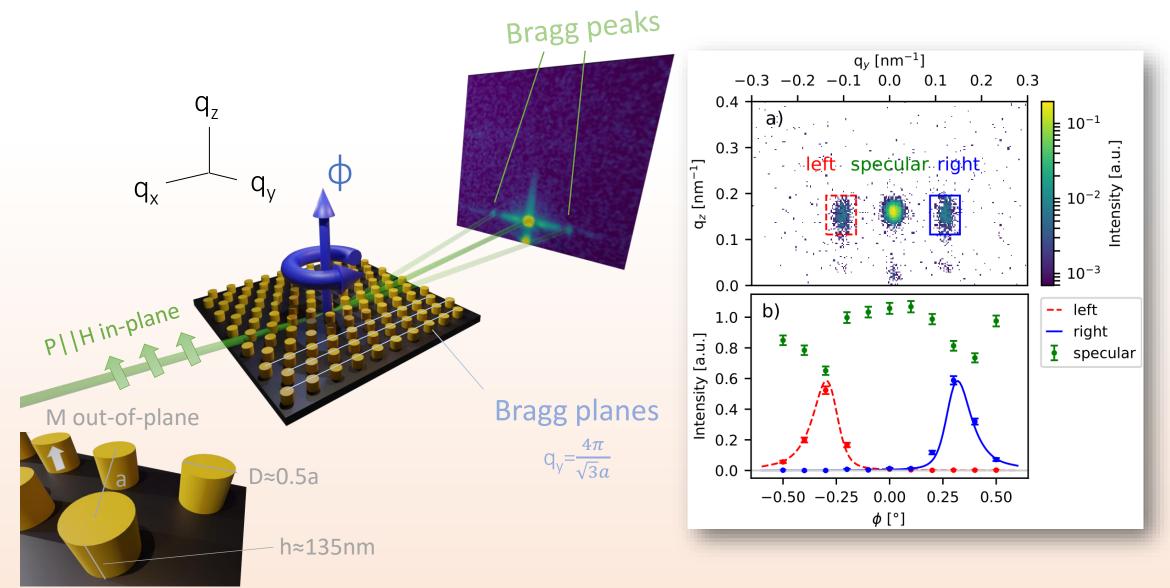
PHYSICAL REVIEW X 10, 031019 (2020)

Polarized SANS on Magnetic Nanoparticles



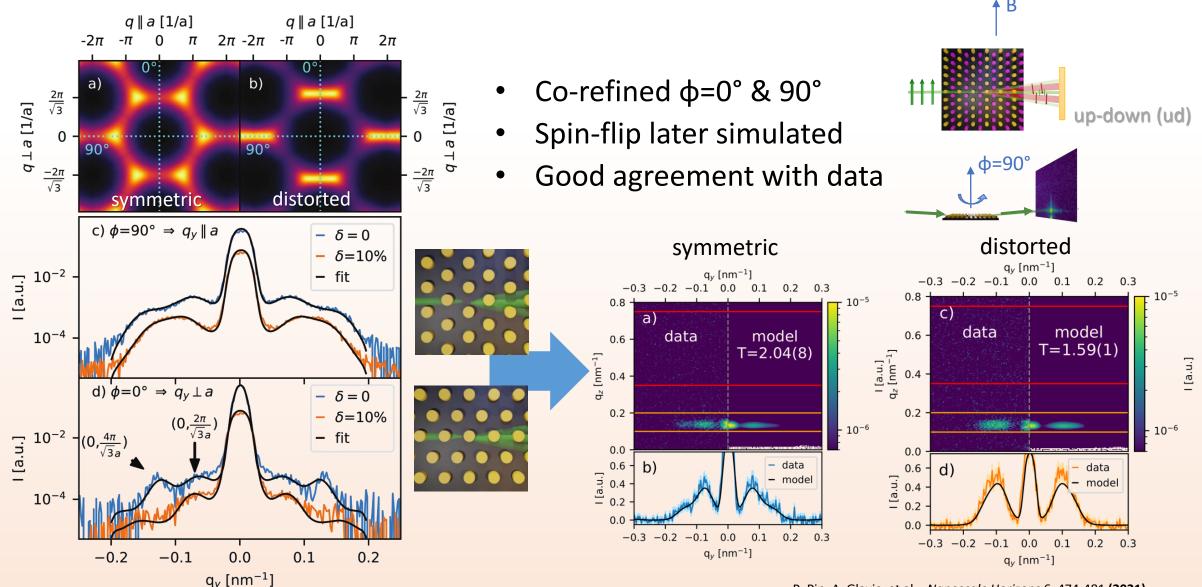
15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Frustrated artificial spins on triangular lattice



P. Pip, A. Glavic, et al., Nanoscale Horizons 6, 474-481 (2021)

Frustrated artificial spins on triangular lattice

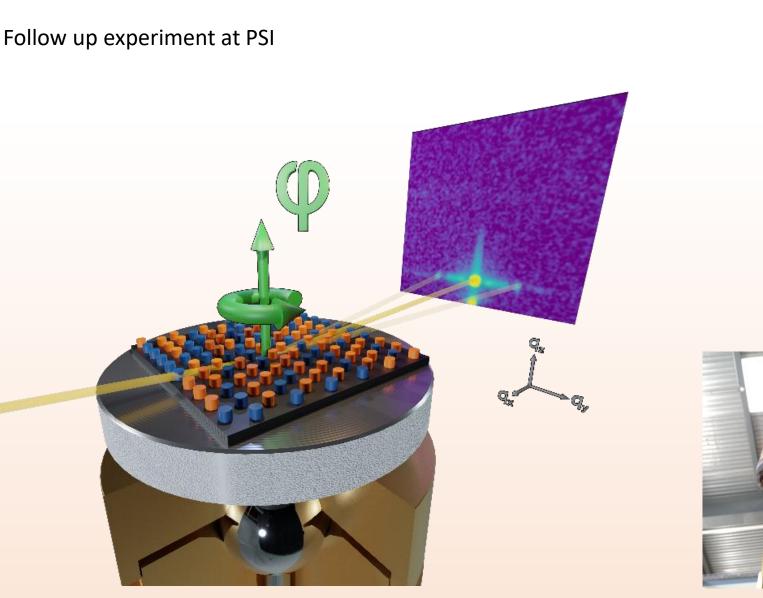


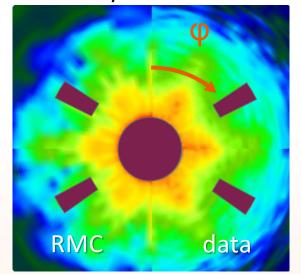
P. Pip, A. Glavic, et al., Nanoscale Horizons 6, 474-481 (2021)

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

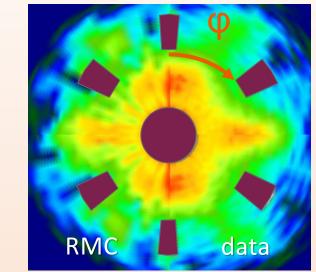
Frustrated artificial spins on triangular lattice

symmetric





distorted



15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic