Crystal vibrations - Phonons

Lecture 2

Recap
Goal: Describe / understand cryotal vibrations (collective motions of atoms)

\rightarrow Harmonic Approximation
 K and $K+0$ are only equivalent Attu pint
Ex. 10 monoatomic ch displacement
foment
position

$$
\begin{align*}
& \quad \text { Dispersion } \tag{K}\\
& \omega=\sqrt{\frac{4 C}{m}}\left|\sin \frac{K a}{2}\right| \\
& \hline
\end{align*}
$$

$\omega(K)$
small
i.e. $\lambda=2 a$ ${ }_{\text {boundary }}^{\text {zone }} \quad K=\frac{\pi}{a}$

Long λ-limit $\omega \alpha K$
sowed "Standing waves" Soludocity $v_{p}=\frac{\omega}{I K}=c t$. information (the there are fist
repetitions) repetitions)

Recap
Vibrations of 1D diatomic chain

$$
\begin{aligned}
& \ldots n-2 \quad n-1 \quad n \quad n+1 \quad n+2 \quad n+3 \ldots \text { Ansate }
\end{aligned}
$$

substituing
Ansate in the 2 equations of metic and soling one homogeneous eq
solution \longrightarrow

Diatomic chain: dispersion relation

$$
\omega^{2}=C\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \pm C \sqrt{\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)^{2}-\frac{4 \sin ^{2} K b}{m_{1} m_{2}}} \Rightarrow 2 \text { solutions }=2 \text { dispersion curves } \text { (} \equiv \text { Branches) }
$$

OPTICAL
it m_{1} and w_{2} have opposite charge, these motion can be
excited by E

$$
K \rightarrow 0 \Rightarrow m_{1} A_{1}+m_{2} A_{2}=0
$$

\rightarrow atoms m_{1} and w_{2} oscillate ii apposite direction

$$
\mapsto<0 \quad \longrightarrow<0 \quad \longrightarrow
$$

ACOUSTIC BRANCH $\quad\left[\right.$ as $K \rightarrow 0, \frac{\omega}{K}=$ sound velocity $\rightarrow c t$.]

$$
J=0, \omega=0 \Rightarrow A_{1}=A_{2}
$$

\rightarrow atoms m_{1} and w_{2} oscillate in phase as $K \rightarrow 0$

Diatomic chain: dispersion relation

$$
\omega^{2}=C\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \pm C \sqrt{\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)^{2}-\frac{4 \sin ^{2} K b}{m_{1} m_{2}}}
$$

Limit $m_{1} \rightarrow m_{2}$:

$$
\omega^{2}=C\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \pm C \sqrt{\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)^{2}-\frac{4 \sin ^{2} K b}{m_{1} m_{2}}}
$$

Experimental and theoretical phonon dispersion curves of AI
Squares represent experimental data at 300 K

Optical Mode

Acoustical Mode

Quiz: Dispersion curves in Diamond

$$
\text { FCC with } 2 \text { atoms basis } \Rightarrow 35=3 \times 2=6 \text { tranches }
$$

 3 acoustic $\underset{3 \text { optic }}{\downarrow}$

3D info on a $1 D$. diagram is achieved

Monteverde et al., Carboni 91, 266 (2015) cots along specific directions of reciprocal Lattice

Quantum modes: Phonons

Quantum correspondence: If a classical harmonic system (ie. any quadratic Hamiltonian) has a normal oscillation mode at frequency ω, the corresponding quantum system will have eigenstates with energy

$$
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) \quad n=\text { quantum number }
$$

PHONON quantum of vibration (in aualogy to phonon)
\longrightarrow its energy is $\hbar \omega$
A phonon is a boson (you caul put more than 1 ii a KK mode) Phonons can be vieured as particles
(i.e. They can transport energy)

Phonons
"So, if a nomal mode off vibration in a custal with frequency ω is given by $\bar{\delta}=\bar{A} e-i \omega t+i \bar{k} \bar{r}$,
its energy is given by $E_{n}=(n+1 / 2) \hbar w$, and we say it is occupied by n phonons of evergy tw ".

Coupanison dassical/quautum solutions ie 10 Energy of a normal mode of vibration averdged over time

$$
E=\frac{1}{2} m \omega^{2} A^{2}=\left(n+\frac{1}{2}\right) \hbar \omega
$$ Relation Awplitude vibration \&erion awplude occupation of

\&his mode.

Phonon momentum

- Phonon can interact with other particles (i.e. photons, neutrons, electrons).
- This interaction occurs such as if the photon had a momentum $\hbar \vec{K}$.
- However, a phonon does not carry a real physical momentum.
preudomomentum or
crystal moment crystal momentum \Leftrightarrow phonon "coordinates" are relative coordinates)

1 monoatomic chain

$$
\begin{aligned}
& \text { protal }=m \frac{d}{d t} \sum_{n}^{N} \delta_{n}=-i \omega m A e^{-i \omega t} \sum_{n=1}^{N} e^{i K n a}=-i \omega m A e^{-i \omega t} \frac{e^{i K a}}{1-e^{i K a}}\left(1-e^{i K N a}\right) \\
& \qquad \delta_{\eta}=A e^{i(K n a-\omega t)} \quad \sum_{n=1}^{N} s^{n}=\frac{s^{M}-s^{N+1}}{1-5} \\
& \text { p depends on boundary conditions (note that } N a=L) \\
& \text { for periodic boundary conditions: } e^{i K n a}=e^{i K(n+N) a}=e^{i K n a} \underbrace{e^{i K N a}}_{=1} \\
& \Rightarrow \text { ptotal }=0 \text { aud } \hbar \vec{K} \Rightarrow \text { ptotal }
\end{aligned}
$$

Inelastic scattering by phonons
Remember: Elastic scattering $\vec{K}^{\prime}=\vec{K}+\vec{G}$
Inelastic scattering: $\vec{K}^{\prime}=\vec{K} \pm \bar{K}+\bar{G}$ ~ Reciprocal lattice outgoing
photo
$\begin{gathered}\text { incident } \\ \text { photon }\end{gathered}$
$\begin{gathered}\text { phonon } \\ \text { cream }\end{gathered}$ vector
$\omega(K)$ dispersion curves can be determined by inelastic scattering of neutrons
conservation of quasi momentum $\quad \bar{K}^{\prime}=\bar{K}+\bar{K}+\bar{G}$ conservation of energy: $\frac{\hbar^{2} K^{2}}{2 m}=\frac{\hbar^{2} K^{2}}{2 m} \pm \hbar \omega^{\text {phonon }}$

Triple axis spectrometer

https://www.helmholtz-berlin.de/forschung/oe/em/transport-phenomena/flex/index_en.html

The Nobel Prize in Physics 1994
Bertram N. Brockhouse, Clifford G. Shull

Learning outcomes - Phonons

$>$ Normal modes are collective oscillations where all particles move at the same frequency.
$>$ A normal mode of frequency ω is translated into quantum-mechanical eigenstates $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$.
$>$ The quantum unit of a crystal vibration is a phonon, which has energy $\hbar \omega$. Phonons can be thought as particles that obey Bose statistics. Thus, if a mode is in the $n^{\text {th }}$ eigenstate, we say it is occupied by n phonons.
$>$ All elastic waves can be described by wavevectors that lie within the first Brillouin zone of the reciprocal space.
$>$ If there are s atoms in the primitive cell, the phonon dispersion relation has 3 s branches: $\mathbf{3}$ acoustical phonon branches (i.e. have linear dispersion at small k; sound wave) and $3 s-3$ optical phonon branches (i.e. have finite frequency at $\boldsymbol{k}=0$).
$>$ The wavevector selection rule for an inelastic scattering process of a photon or a neutron from wavevector $\overrightarrow{\boldsymbol{k}}$ to $\overrightarrow{\boldsymbol{k}}^{\prime}$, when a phonon of wavevector \vec{K} is created, is

$$
\overrightarrow{\boldsymbol{k}}=\overrightarrow{\boldsymbol{k}^{\prime}}+\overrightarrow{\boldsymbol{K}}+\overrightarrow{\boldsymbol{G}}
$$

where $\overrightarrow{\boldsymbol{G}}$ is a reciprocal lattice vector.

