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Figure 1: Left: Schematic of an enhanced axion helioscope: solar axions travelling through an intense transverse magnetic field with an axion-
sensitive area A, are converted into x-rays. With the help of x-ray focusing devices, these are concentrated onto a spot on low background detectors
(figure from [2]). Right: The solar axion flux as expected at the Earth. A value of 1 × 10−10 GeV−1 for gaγ is assumed.

As Fig. 1(right) shows, the expected signal is in the
energy range of 1–10 keV. The operation of a helio-
scope consists in following the Sun as long as techni-
cally possible, in axion sensitive conditions, and taking
background data when there is no alignment with the
Sun. The sought-after signal would be the excess of
photons in the expected energy range that the x-ray de-
tectors will register when tracking the Sun, compared
to the background gathered during the rest of the time.
The number of excess photons expected depends on the
very weak gaγ coupling constant, which is a measure of
a helioscope’s sensitivity. According to the following
expression [13]

g4
aγ ∼ B2L2A ϵdb−1/2 ϵoa−1/2 ϵ1/2t t1/2, (1)

four are the main parameters to take into account when
designing a helioscope: a) time: the total time of data-
taking of the experiment t and ϵt, the fraction of time
the magnet tracks the Sun; b) magnet: the length L and
the strength B of the provided magnetic field as well as
the axion-sensitive area A; c) low-background x-ray de-
tectors: the background level b and their detection effi-
ciencies ϵd and d) x-ray focusing optics: their efficiency
ϵo and total focusing area a. The focusing devices are
an addition to the classical helioscope experiment, and
were implemented for the first time in the third genera-
tion axion helioscope, the CAST experiment.

3. The CERN Axion Solar Telescope (CAST)

The CERN Axion Solar Telescope (CAST) presented
an important improvement in the sensitivity of the he-
lioscope technique, based on two major innovations; fo-
cusing optics and low background techniques for the de-
tectors. CAST is the first helioscope to use an x-ray tele-
scope, comprising of an x-ray focusing device coupled
to a Charged Coupled Device (CCD) camera, recycled

from the ABRIXAS and XMM-Newton space missions.
The addition of the telescope improved the signal-to-
noise ratio of the system and therefore the sensitivity of
the experiment. On the magnet front, CAST recycled a
decommissioned LHC prototype magnet, which reaches
9 T over a length of 10 m. The magnet has two bores
and has been equipped with up to four detectors; the x-
ray telescope mentioned above, and three Micromegas
detectors was the latest configuration. The total axion-
sensitive area achieved in this way is ∼ 30 cm2. The
whole system is sitting on a movable platform con-
trolled by a tracking system, pointing it to the centre
of the Sun during 1.5 h twice a day, at sunrise and at
sunset.

Since 2003, when CAST started operating, data have
been taken in different experimental conditions which
gradually extended the axion mass sensitivity of the ex-
periment: from keeping the magnet bores under vac-
uum (ma !0.02 eV) [14, 15] to gradually filling them
with 4He (ma !0.39 eV) [16] and later on with 3He.
The first part of the 3He data covered the mass range
up to ma ∼0.64 eV [17] and in 2011 masses up to
ma ∼1.17 eV were reached. A part of these data has
been analyzed and has shown no excess of signal over
background, leading to an upper bound of the axion-to-
photon constant of gaγ < 3.3 × 10−10 GeV−1 for the
mass range between 0.64 eV and 1.17 eV [18]. CAST
has provided the most stringent limits on the axion-to-
photon coupling constant over a large part of the axion
masses and has covered -for the first time- part of the
QCD-favoured band for masses above ∼0.15 eV, as can
be seen in Fig. 2.

Currently, CAST is revisiting the vacuum phase; this
time with the aim, on one hand to look at the low energy
part for evidence of other hypothetical particles such as
chameleons, which appear in Dark Energy models or
hidden photons [19], and on the other to exploit the
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Figure 14: Conceptual arrangement of an axion haloscope. If ma is within 1/Q of the resonant
frequency of the cavity, the axion will show as a narrow peak in the power spectrum extracted form the
cavity.

signal frequency bandwidth is even smaller. One usually defines a DM quality factor Qa ⇠ 1/�2

v
⇠ 106

to reflect the ALP DM signal width. The cavity must be tuneable and the data taking is performed by
subsequent measurements with the resonant frequency centred at slightly di↵erent values, scanning the
ALP DM mass in small overlapping steps. For QCD axions, the signal is typically much smaller than
noise,

Pn = Tsys�⌫ = Tsys

ma

2⇡Qa

(7.3)

= 3.3⇥ 10�21

✓
Tsys

K
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ma

µeV
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where Tsys is the e↵ective noise temperature of the detector (typically amplifier + thermal fluctuations).
One hopes that measuring enough time, the signal becomes larger than noise fluctuations. The signal
to noise as a function of the measurement time in a frequency bin �⌫ is given by Dicke’s radiometer
equation

S

N
=

Ps

Tsys

r
�t

�⌫
, (7.5)

where Tsys is the e↵ective noise temperature of the detector (typically amplifier + thermal fluctuations).
Therefore, given a theoretical axion signal Ps, a time �t = (S/N)2(Tsys/Ps)2�⌫ is needed to achieve a
given detection significance specified by a signal to noise. In order to scan an ALP mass interval, dma

with measurements of width �⌫ = ma/Q, we need a number (Q/Qa)(dma/ma) of �t measurements,
and so the scanning rate is

dma

dt
=

Qa

Q
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=
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Q
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◆2 ✓Tsys
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• P and CP were believed to be symmetries of QCD until ~1975

[Belavin, Polyakov, Schwarz, Tyupkin PLB59 (1975), 
Jackiw, Rebbi PRL37 (1976) 
Callan, Dashen, Gross PLB63 (1976) …] 

discovery of  YM instantons 
& QCD vacuum structure 

Strong CP (1)

 L. Di Luzio (DESY) - The quest for the QCD axion                                                                      02/18



1 Introduction

Almost 25 years elapsed since the axion was introduced in particle physics [1, 2] as a
possible solution of the strong CP problem. Since then, it became a text-book and
encyclopedia subject. For instance, Oxford University’s “A Dictionary of Science”
defines axion as “a hypothetical elementary particle postulated to explain why there
is no observed CP violation (see CP invariance) in the strong interaction (see fun-
damental interactions). Axions have not been detected experimentally, although it
has been possible to put limits on their mass and other properties from the effects
that they would have on some astrophysical phenomena (e.g. the cooling of stars).
It has also been suggested that they may account for some or all of the missing mass
in the universe.”

While at the early stages the axion physics was considered predominantly in
the context of quantum chromodynamics, at present the center of gravity of the
axion studies shifted in astrophysics. It was realized rather early that the axion was
a viable dark matter candidate. The research on this aspect of the axion physics
quickly picked up and never subsided. Extensive investigations were and are being
carried out in the astrophysical community. At the same time, after the rapid
advances in the 1980’s, the QCD practitioners seemingly lost interest in this subject.
The reason is obvious: the progress in understanding the QCD vacuum structure
was painfully slow. The prevailing impression was that “nothing happened here,”
so there was no motivation for revisiting QCD-related aspects of the axion physics.

In this review we will try to argue that “something interesting happened here.”
A substantial progress has been achieved in the recent years mainly due to insights
in QCD obtained from supersymmetry and the brane theory. The existence of a
multitude of (quasi) stable vacua at large Nc and “abnormally” thin domain walls
with “abnormally” heavy excitations are just a few topics of interest that should be
mentioned in this context. A deeper understanding of the QCD vacuum structure
requires a reassessment of a number of issues of direct relevance to axions. After a
brief summary of basics of the axion physics we review these new developments.

2 The strong CP problem

2.1 The θ term

After the discovery of asymptotic freedom in QCD in 1973 [3, 4] for a short while
it was believed that QCD possesses the same natural conservation laws as its more
primitive predecessor, QED. The discovery that P and T conservation in QCD is
not natural came as a shocking surprise. This fact was realized with the advent of
instantons [5] which demonstrated that the so-called θ term

∆Lθ ≡ θ

32 π2
Ga

µν G̃a
µν , (1)

1

2

G̃
a

µ⌫
=

1

2
✏µ⌫⇢�G
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32 π2
Ga

µν G̃a
µν , (1)

1

does not necessarily vanish. Here the dual field strength is defined as

G̃a
µν ≡ (1/2) εµναβ Ga

αβ .

(The indices are assumed to be contracted via the flat space metric). The operator
GG̃ has dimension four, it can and should be added to the QCD Lagrangian. The
θ term (1) violates P and T invariance (and hence, it violates CP since CPT is
preserved). Note that the analogous term ∆L ∼ FF̃ in QED has no impact on the
theory whatsoever. What is the difference?

The θ term can be rewritten as follows

∆Lθ = θ ∂µ Kµ , (2)

where Kµ is the Chern-Simons current defined as

Kµ =
1

16 π2
εµναβ

(

Aa
ν ∂α Aa

β +
1

3
fabcA

a
ν Ab

α Ac
β

)

. (3)

Being a total derivative, the θ term does not affect the equations of motion. At a
naive level, one can discard in the action the integrals over full derivatives. This
was a rationale behind the original belief that QCD naturally conserves P and T .

The instantons revealed the fact that the vacuum structure in QCD is more com-
plicated than that in QED. In particular, the field configurations with the instanton
boundary conditions give rise to a nonvanishing

(∆Sθ)one inst =
∫

d4x (∆Lθ)one inst = θ . (4)

The integral over the full derivative does not vanish 1. Therefore, CP -violating
effects may be present in strong interactions.

We pause here to make an explanatory remark regarding Eq. (4). A key notion
is the topological charge V of a gauge field configuration,

V ≡
∫

d4x ∂µ Kµ =
∫

d3xK0(x, t)|t=+∞
t=−∞

≡ K(t = +∞) −K(t = −∞) , (5)

where K is usually referred to as the Pontryagin number. The topological charge is
zero for any perturbative gauge fields — such fields are said to have trivial topology.
The instanton field configuration has a nontrivial topology. In the A0 = 0 gauge it
interpolates between Am(x, t → −∞) = 0 , m =, 1, 2, 3, and

Am(x, t → +∞) = U+ ∂m U , (6)
1 We jumped here from the Minkowski to the Euclidean formulation of the theory. In passing

from Minkowski to Euclidean, the θ term (1) acquires an “i” factor, so does the integration measure
in the action. Since this is a text-book topic, we will pass freely from Minkowski to Euclidean and
back making no explicit statements as to which space any given formula belongs to.

2

does not necessarily vanish. Here the dual field strength is defined as

G̃a
µν ≡ (1/2) εµναβ Ga

αβ .

(The indices are assumed to be contracted via the flat space metric). The operator
GG̃ has dimension four, it can and should be added to the QCD Lagrangian. The
θ term (1) violates P and T invariance (and hence, it violates CP since CPT is
preserved). Note that the analogous term ∆L ∼ FF̃ in QED has no impact on the
theory whatsoever. What is the difference?

The θ term can be rewritten as follows

∆Lθ = θ ∂µ Kµ , (2)

where Kµ is the Chern-Simons current defined as

Kµ =
1

16 π2
εµναβ

(

Aa
ν ∂α Aa

β +
1

3
fabcA

a
ν Ab

α Ac
β

)

. (3)

Being a total derivative, the θ term does not affect the equations of motion. At a
naive level, one can discard in the action the integrals over full derivatives. This
was a rationale behind the original belief that QCD naturally conserves P and T .

The instantons revealed the fact that the vacuum structure in QCD is more com-
plicated than that in QED. In particular, the field configurations with the instanton
boundary conditions give rise to a nonvanishing

(∆Sθ)one inst =
∫

d4x (∆Lθ)one inst = θ . (4)

The integral over the full derivative does not vanish 1. Therefore, CP -violating
effects may be present in strong interactions.

We pause here to make an explanatory remark regarding Eq. (4). A key notion
is the topological charge V of a gauge field configuration,

V ≡
∫

d4x ∂µ Kµ =
∫

d3xK0(x, t)|t=+∞
t=−∞

≡ K(t = +∞) −K(t = −∞) , (5)

where K is usually referred to as the Pontryagin number. The topological charge is
zero for any perturbative gauge fields — such fields are said to have trivial topology.
The instanton field configuration has a nontrivial topology. In the A0 = 0 gauge it
interpolates between Am(x, t → −∞) = 0 , m =, 1, 2, 3, and

Am(x, t → +∞) = U+ ∂m U , (6)
1 We jumped here from the Minkowski to the Euclidean formulation of the theory. In passing

from Minkowski to Euclidean, the θ term (1) acquires an “i” factor, so does the integration measure
in the action. Since this is a text-book topic, we will pass freely from Minkowski to Euclidean and
back making no explicit statements as to which space any given formula belongs to.

2

• P and CP were believed to be symmetries of QCD until ~1975

despite being a total derivative, it contributes to the action via instanton configurations 

where the transition amplitude
P

m
hm+|(⌫ +m)�iJ has been expressed in terms of a path integral over all

possible gauge field configurations A with fixed ⌫ (hence the delta function) and the phase factor ei⌫✓ has
been replaced by a GG̃ term in the Euclidean action.

In summary, the non-trivial structure of the Yang-Mills vacuum requires an extra GG̃ term to be included
in the e↵ective action, and the path integral has been extended to the sum over all gauge field configurations,
including those with non-trivial topological charge.

1.2. ✓ dependence of physical observables

We are interested in determining the ✓ dependence of physical observables in QCD. In the absence of
fermions the most relevant one is the QCD vacuum energy density, E(✓). In the large 4-volume (V4) limit,
this is related to the Euclidean functional generator, Z[A], via (see e.g. [6])

Z[A] = e�E(✓)V4 . (16)

The latter also admits a path-integral representation given by3

Z[A] =

Z
DAe�

1
4

R
d
4
xGG+i✓

g
2
s

32⇡2

R
d
4
xGG̃

⇠ e
� 8⇡2

g2
s ein✓ , (17)

where in the last step we have taken the leading term in the semi-classical approximation ~ ! 0, correspond-
ing to the contribution of an n instanton. Summing-up the contribution of n instantons and n̄ anti-instantons
within the dilute-instanton-gas approximation, one gets (see e.g. [6])

E(✓) = �2Ke
� 8⇡2

g2
s cos ✓ , (18)

where K is a positive constant encoding Jacobian factors due to the instanton zero modes (translations
and dilatations) and a functional determinant originating from the gaussian integration over the quantum
fluctuations on the instanton background. The latter are actually crucial for stabilizing the zero mode
associated to dilatations, since the integration over the instanton size ⇢ formally diverges at the classical
level, due to the classical scale invariance of QCD which is broken via radiative corrections. In practice,
the breaking of scale invariance can be approximated by taking a running coupling gs(µ = 1/⇢) in Eq. (18),
with

g2
s
(µ) =

8⇡2

�0 log(µ/⇤QCD)
, (19)

in terms of the one-loop QCD beta-function �0 = 11 � 2nf/3 with nf active flavours and the integration
constant ⇤QCD ⇡ 150 MeV, which signals the scale of non-perturbative QCD. Hence, the integration over
the instanton sizes is dominated by values of ⇢ corresponding to an unsuppressed exponential factor

e
� 8⇡2

g2
s
(1/⇢) = (⇢⇤QCD)

�0 , (20)
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mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
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act with each other. We are therefore led to contemplate diagrams where the fermion 
line is festooned with non-interacting bosons. The diagram will have a factor from 
the q~-boson vertices of  the generic form 

Tr(Ut  rn nt Um n2 U? m n3 Umn4 ) , (4.1) 

and a logarithmic divergence which will be identical for diagrams of identical topo- 
logy, but will in general differ for different topologies. 

It is easy to satisfy oneself using the Feynman rules of  fig. 8 that the powers 
nl ... n4 in the generic expression (4.1) must all be even, and there will be a phase 
and hence CP violation only if they are all >~2. The expression (4.1) will be sym- 
metric, and hence no phase CP violation will arise, from any of  the following low- 
order combinations of  the hi: 

/71 =n2  =n3  =n4  = 2 ,  

n 1 = 4, n 2 = n 3 = n 4 = 2, and permutations thereof ; 

Ftl = /'/3 = 4 ,  /7 2 = / 7  4 = 2 ,  

n 2 = n 4 = 4, n 1 =/73 = 2 . (4.2) 

The first combinations of  the type (4.1) which might give a phase and hence CP vio- 
lation are therefore 

4 4 t 2 2 Tr(UCma Umc U m a  Umc) , (4.3a) 

Tr(Utma 2 UrnacUtm4aUm2c). (4.3b) 

We see from (4.3) that the lowest order in which a phase is potentially available is 
12th order. To get a divergence in this order all the quark mass factors in (4.3)would 
have to come from Higgs couplings, and there would be no vector boson couplings. 
But for every diagram on a catho-quark [29] line giving an expression of  type (4.3a) 
there will be a diagram on an ano-quark [29] fine giving an expression of  type (4.3b). 
When we add these together, the phases will cancel and there will be no CP violation. 
To get something non-zero, we need to add to twelfth-order diagrams which yield 
expressions of  the type (4.3) at least one U(1) boson line with at least one end on a 
right-handed fermion line so as to differentiate between ano- and catho-quarks. 
Therefore, the lowest order in which we may possibly find a logarithmically diver- 
gent contribution to 0 renormalization is the 14th. 

We should emphasize at this point that we cannot demonstrate that there is 

Fig. 9. Generic topology of a class of divergent CP violating 14th-order diagrams in the 
Kobayashi-Maskawa model [21,22]. 

[Ellis, Gaillard NPB 150 (1979), 
Khriplovich, Vainshtein NPB 414 (1994)]

divergence expected to arise at 7-loops
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical

[See e.g. Ubaldi, 0811.1599]
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(imagine a theory of flavour generating Yukawas: 
would expect O(1) phases like CKM)
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QCD vacuum flavour

3. more than a small value problem ?  

1. The strong CP problem and the axion solution
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admits two potential sources of CP violation: the phases of the quark masses ✓q and the so-called topological
term, proportional to ✓ (in short GG̃).2 The latter operator can be seen to correspond to a total derivative
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which bears no e↵ects in perturbation theory. The physical relevance of the GG̃ term is related to the non-
perturbative structure of the QCD vacuum, a deep subject that we briefly review in the following before
discussing the physical e↵ects of CP violation.

1.1. The ✓ vacuum in pure Yang-Mills theories

Let us neglect for a moment quark fields and consider the case of pure gluon-dynamics in Euclidean
space. It can be seen [1, 2] that the Yang-Mills Lagrangian
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has a discrete set of degenerate classical minima which belong to non-equivalent topological sectors. Yang-
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which is non-vanishing although the integrand is a total derivative. This is possible because while the gauge
invariant term GG needs to go to zero at infinity, in order for the instanton action to be finite, a pure gauge
field configuration A can be di↵erent from zero at infinity.
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where n is an integer referred to as the winding number. Each vacuum state |ni labels a topological sector,
connected to other inequivalent ones via a large gauge transformation, ⌦1|ni = |n+1i, where ⌦1 corresponds
to the action of an instanton. The latter di↵ers from a small gauge transformation, which is topologically
trivial since it does not change the topological charge of the vacuum (⌫ = 0).

A more general form of the vacuum state, known as the ✓ vacuum, is given by the linear combination
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where ✓ 2 [0, 2⇡) is an angular parameter. It can be seen that this form of the vacuum state has some good
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2Both ✓q and ✓ violate P and T (and hence CP, upon assuming CPT).
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).

vacuum re-alignment mechanism:
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ
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a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
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theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@
µ
J
PQ

µ
=

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (39)
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the numerical values of the coe�cients C�, p, n, e can be determined via chiral Lagrangian
techniques, as well as inputs from Lattice QCD, and they are found to be [4–6]

C� = �1.92(4) , Cp = �0.47(3) , Cn = �0.02(3) , Ce = �7.8(2) ⇥ 10�6 log
 

fa

me

!
. (3)

However, being the description of the e↵ective operator in Eq. (1) valid only until energies
of the order of fa, the theory must be UV completed. Remarkably, the UV completion of the
axion e↵ective Lagrangian can drastically a↵ect the low-energy properties of the axion, and
hence the way to experimentally probe it.

There are basically two main ways in which this can happen, as depicted schematically
in the diagrams of Fig. (2).

Figure 2. Model-dependent axion couplings to photons and SM quarks and leptons.

In the left diagram of Fig. (2), the PQ-charged colored fermions responsible for generating
the aGG̃ operator can also lead to a direct QED-anomalous contribution to aFF̃, if the new
fermions they are charged under U(1)EM. Then the axion coupling to photons gets modified
into C� = E/N � 1.92(4), where E/N is a group theory factor which depends on the quantum
numbers of the fermions running in the loop (see e.g. Refs. [7, 8] for phenomenologically
motivated ranges of E/N).

The other possibility, depicted in the right diagram of Fig. (2), is that the axion interacts
directly with the Standard Model (SM) fermions, which are charged under the U(1)PQ. In this
case, the axion e↵ective interaction can be written as (keeping for the sake of illustration only
SM quarks)
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where J
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PQ is the conserved (up to anomalies) PQ current, depending on the U(1)PQ charges.

The latter are denoted by XQL, uR, dR
, which are diagonal (in general, non-universal) matrices.

After going to the mass basis: uL ! VuL
uL, etc., and using the relation fa = vPQ/(2N) between

the axion decay constant and the PQ-breaking order parameter, we can recast Eq. (4) as
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where mass eigenstates are denoted as  i = {ui, di} and we have introduced the vector1 and
axial couplings
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1The diagonal vector couplings do not contribute to on-shell physical processes, as it can be seen upon integrating
by parts and using the equations of motion.
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2. ‘model-independent’ axion couplings to photons, nucleons, electrons, …

the numerical values of the coe�cients C�, p, n, e can be determined via chiral Lagrangian
techniques, as well as inputs from Lattice QCD, and they are found to be [4–6]

C� = �1.92(4) , Cp = �0.47(3) , Cn = �0.02(3) , Ce = �7.8(2) ⇥ 10�6 log
 

fa

me

!
. (3)

However, being the description of the e↵ective operator in Eq. (1) valid only until energies
of the order of fa, the theory must be UV completed. Remarkably, the UV completion of the
axion e↵ective Lagrangian can drastically a↵ect the low-energy properties of the axion, and
hence the way to experimentally probe it.

There are basically two main ways in which this can happen, as depicted schematically
in the diagrams of Fig. (2).

Figure 2. Model-dependent axion couplings to photons and SM quarks and leptons.

In the left diagram of Fig. (2), the PQ-charged colored fermions responsible for generating
the aGG̃ operator can also lead to a direct QED-anomalous contribution to aFF̃, if the new
fermions they are charged under U(1)EM. Then the axion coupling to photons gets modified
into C� = E/N � 1.92(4), where E/N is a group theory factor which depends on the quantum
numbers of the fermions running in the loop (see e.g. Refs. [7, 8] for phenomenologically
motivated ranges of E/N).

The other possibility, depicted in the right diagram of Fig. (2), is that the axion interacts
directly with the Standard Model (SM) fermions, which are charged under the U(1)PQ. In this
case, the axion e↵ective interaction can be written as (keeping for the sake of illustration only
SM quarks)

@µa

vPQ
J
µ
PQ =

@µa

vPQ

h
�Q̄LXQL

�µQL � ūRXuR
�µuR � d̄RXdL

�µdR

i
, (4)

where J
µ
PQ is the conserved (up to anomalies) PQ current, depending on the U(1)PQ charges.

The latter are denoted by XQL, uR, dR
, which are diagonal (in general, non-universal) matrices.

After going to the mass basis: uL ! VuL
uL, etc., and using the relation fa = vPQ/(2N) between

the axion decay constant and the PQ-breaking order parameter, we can recast Eq. (4) as

@µa

2 fa

 ̄i(CV

 i j
+C

A

 i j
�5)�µ j , (5)

where mass eigenstates are denoted as  i = {ui, di} and we have introduced the vector1 and
axial couplings

C
V, A
uiu j
=

1
2N

⇣
V
†

uL
XQL

VuL
± V

†

uR
XuR

VuR

⌘
i j
, (6)

C
V, A
did j

=
1

2N

⇣
V
†

dL

XQL
VdL
± V

†

dR

XdR
VdR

⌘
i j
. (7)

1The diagonal vector couplings do not contribute to on-shell physical processes, as it can be seen upon integrating
by parts and using the equations of motion.

Axion properties [model-indep.]

• EFT breaks down at energies of order fa UV completion can drastically 
affect low-energy axion properties
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@
µ
J
PQ

µ
=

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (39)
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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Renormalizable UV Completion of SM Predicting Axion  

>  A singlet complex scalar field     featuring 
a global            symmetry is added to SM  

>  Symmetry is broken by vev 

§  Excitation of modulus:  

§  Excitation of angle: NGB 

>  Quarks (SM or extra) carry PQ charges                                           
such that            is anomalously broken 
due to gluonic triangle anomaly 
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7sg~p 1759p 1759p

couple to quarks only through a T-conserving pseudosca-
lar vertex:

mq
Q ql p5q

(0) (b) (c)

FIG. 1. Graphs for the potentials of Eqs. (4), (5), and (6). (a)
(Monopole), (b) monopole-dipole, (c) (dipole).

Spero et a/. performed a Cavendish experiment to test
deviations from the Newtonian 1/r potential over the dis-
tance range 2 to 5 cm. Their experiment established an
upper bound for additional Yukawa-type interactions
given by

V(r) =- 6m ~m2 (1+ac ' );—r/A.
r

at their scale of greatest sensitivity A, -3 cm, a was found
to be less than 10 . Since the dimensionless coupling
constant for the gravitational interaction between two nu-
cleons is (mz/mp~) =10, we see that any anomalous
Yukawa coupling at a scale of 3 cm must have a dimen-
sional magnitude of 10 ' or smaller.
The measured g factor of the electron provides a limit

on nonelectromagnetic electron spin-spin interactions.
Since the experimental findings agree with the predictions
of QED to eight digits for experiments using ferromag-
nets, we get a limit for any nonelectromagnetic spin-spin
coupling at a scale of 1 cm of 10 Xa(A,,/1 cm)
=10 ', where A,, is the electron Cornpton wavelength

1and cx:
A limit on photon spin-spin tensor interactions is pro-

vided by Ramsey, based upon studies of the hydrogen
molecule. Ramsey finds that any nonmagnetic interac-
tion must be 4&10 " smaller than that between proton
magnetic moments. Extrapolated to a distance of 1 cm,
this establishes an upper limit on the dimensionless cou-
pling for an r tensor force of 10
Of these various limits, only the anomalous (mono-

pole) interaction limit of 10 ' obtained by Spero et al.
comes close to testing the range of possible strengths for
axion-mediated forces. Furthermore, we know of no obvi-
ous experimental limit on the macroscopic P- and T-
violating monopole-dipole interaction. Thus, the oppor-
tunity is ripe for pushing past known limits and perhaps
finding something new. We shall shortly discuss some ex-
periments which may do so.
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Under a Peccei-Quinn transformation,
—ig/2 i g/2mq~mqe, ql. ~e qL, , qR~e qg,

the phase of the 't Hooft vertex varies as
r

arg g k, gg
q

hence, e' becomes e' + "', where N = number of quark
flavors. Similarly, under chiral U(1),

and the 't Hooft vertex changes as e'e~e'e+ '. Thus, a
combined Peccei-Quinn and chiral U(1) transformation
with v= —q leaves 0 invariant.
To calculate the mass of the axion, we imagine per-

forming a Peccei-Quinn transformation; this leaves the
quark mass terms unchanged, but changes 0 to 0+60.
We now undo this change of 0 by reabsorbing b,8 into the
quark mass sector by the combined chiral SU(N))&U(1)
transformation which minimizes the energy. This gives

where F is the scale of Peccei-Quinn symmetry breaking.
However, a pure Peccei-Quinn transformation changes

the phase multiplying the 't Hooft vertex. It is energeti-
cally unfavorable to change this phase (which requires en-
ergies of the order of the mass of the g'), so the Peccei-
Quinn transformation is compensated for by a combined
chiral U(1) and chiral SU(N) transformation which leaves
the phase invariant and minimizes the energy. Since the
quark masses are not zero, these combined (Peccei-
Quinn) [U(1)q ] [SU(X)~ j transformations cost energy,
and the axion acquires a small mass. If, in addition, the
effective 8 parameter Hcff is not zero, the axion will also
couple to the quarks with T-violating scalar vertices.
To see how this all works, consider the quark-mass and

T-violating sectors,

AXIONS H „=m„uu cosh'„+ m~dd coshO~+ . (10)

A particularly well-motivated proposal for a very light
spin-0 boson is the axion. It arises in models to explain
the smallness of a potentially large P- and T-violating
coupling in QCD.
The axion is the quasi-Nambu-Goldstone boson of a

spontaneously broken Peccei-Quinn quasisymmetry. If
the Peccei-Quinn symmetry were not broken by the
t Hooft vertex associated with fermion emission in in-
stanton fields, the axion would be massless and would

i&q

mj

subject to the constraint 40„+40~+48, +.. . =60.
Since the quark bilinears acquire the vacuum expectation
value (uu)=(dd)= . =V&0, the minimum is found
to be at
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@
µ
J
PQ

µ
=

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (39)

2

I. INTRODUCTION

gS
aN

⇠
f⇡
fa

✓e↵ (1)

f⇡
2

a2

f2
a

NN �! gS
aN

aNN (2)

|dexp
n

| . 10�26 e cm (3)

dSM
n

' 10�32 e cm (4)

daxion
n

⇠ 10�16 ✓e↵ e cm (5)

E/N ⇠ 2n+1 (6)

X (He) = 2n+1

✓
1�

v2
e

v2

◆
�

nX

k=2

2k
v2
k

v2
(7)

LY = Yu QL
uRHu + Yd QL

dRHd + Ye LLeRHe + h.c. (8)

E

N
=

4
3X (Hu) +

1
3X (Hd) + X (He)

1
2X (Hu) +

1
2X (Hd)

(9)

E

N
=

4
3Xu + 1

3Xd + Xe

1
2Xu + 1

2Xd

(10)

U(1)n+3
! U(1)PQ ⇥ U(1)Y (11)

U(1)n+1
! U(1)PQ ⇥ U(1)Y (12)

� (13)

fa ! MPl (14)

=) N3 = 2Xq3 �Xu3 �Xd3 = X1 �X2

=) N2 = 2Xq2 �Xu2 �Xd2 = X2 �X1 (15)

2

I. INTRODUCTION

Jµ

PQ (1)

{} (2)

gS
aN

⇠
f⇡
fa

✓e↵ (3)

f⇡
2

a2

f2
a

NN �! gS
aN

aNN (4)

|dexp
n

| . 10�26 e cm (5)

dSM
n

' 10�32 e cm (6)

daxion
n

⇠ 10�16 ✓e↵ e cm (7)

E/N ⇠ 2n+1 (8)

X (He) = 2n+1

✓
1�

v2
e

v2

◆
�

nX

k=2

2k
v2
k

v2
(9)

LY = Yu QL
uRHu + Yd QL

dRHd + Ye LLeRHe + h.c. (10)

E

N
=

4
3X (Hu) +

1
3X (Hd) + X (He)

1
2X (Hu) +

1
2X (Hd)

(11)

E

N
=

4
3Xu + 1

3Xd + Xe

1
2Xu + 1

2Xd

(12)

U(1)n+3
! U(1)PQ ⇥ U(1)Y (13)

U(1)n+1
! U(1)PQ ⇥ U(1)Y (14)

� (15)

fa ! MPl (16)

2.  Axion-SM fermion current1.  Axion-photon
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [? ]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [? ? ]. The so-called Nelson-Barr (NB) type models [? ? ] either
require a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather
elaborated theoretical structures [? ]. The Peccei-Quinn (PQ) solution [? ? ? ? ] arguably stands on better
theoretical grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [? ]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [? ? ]. The so-called Nelson-Barr (NB) type models [? ? ] either
require a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather
elaborated theoretical structures [? ]. The Peccei-Quinn (PQ) solution [? ? ? ? ] arguably stands on better
theoretical grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ

• global U(1)PQ (QCD anomalous + spontaneously broken)
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• Some examples:

QCD axion parameter space much larger than what traditionally thought

- Flavour violating axions 

- CP violating axions 

[Bjorkeroth, LDL, Mescia, Nardi 1811.09637]

[Bertolini, LDL, Nesti 2006.12508]
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Figure 17: Phenomenological summary of the axion-photon interactions. We show also the region accessible to CASPEr
electric in phase II, when it will be able to probe the model independent axion coupling to gluons. The hatched region next to
it represents the experimental uncertainty induced by the QCD error in the coupling. The region expected for hadronic axions
for certain ranges of E/N is shown in yellow. The relevance of these particular ranges for E/N is discussed in Section 5. For
completeness, we also show the position of the DFSZ I and DFSZ II axions. However, in the case of helioscope the figure does
not take into account the possible contribution of gae to the axion production. Refer to Fig. 16 for a more comprehensive
analysis of the DFSZ axion models.{fig_gag_parameter_space}

principle (see, e.g., [14] and references therein). A better strategy for axion detection consists in using NMR
techniques to detect the axion field sourced by a macroscopic object. This program will be carried out by
the ARIADNE experiment [454]. Interestingly, in the most optimistic scenario (largest allowed CP odd
couplings), ARIADNE is expected to have enough sensitivity to probe the ḡaNgan combination of couplings
down to values expected for the DFSZ axion [454, 455]. The forecasted sensitivity under these assumptions
is shown in Fig. 16. Standard KSVZ axions are not accessible to ARIADNE, since in that case the coupling
to neutrons is vanishingly small.

Somewhat similarly, QUAX-gpgs probes the gS
aN

gae combination. However, even in the most optimistic
case, the expected sensitivity is still far from the coupling region expected in the case of KSVZ or DFSZ
axions.

4.5. Summary of experimental constraints
In this section we summarize the experimental and astrophyscal bounds on the individual axion couplings.

Table 4 provides a quick reference to the major probes for each coupling. More details can be found in Fig. 17,
for what concerns the axion-photon coupling, Fig. 18 for the axion-electron coupling, and Fig. 19 for the
axion couplings to protons and neutrons. Notice that, in all cases, we are assuming that the axion solves
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where we have added to the list of [25] also Cae, Ca⇡ (at the LO in the chiral expansion) and Can� (from
the static nEDM result in Eq. (31)).

Sometimes the axion coupling to photons and matter field (first two terms in Eq. (108)) is written as

L
int

a
�

1

4
ga�aF F̃ � igafaf̄�5f �

i

2
gd a n̄�µ⌫�5nF

µ⌫ , (116){eq:Laint2}{eq:Laint2}

where in the second term we have integrated by parts, applied the equations of motion (which is only valid
for on-shell fermion states) and defined

ga� =
↵

2⇡

Ca�

fa
, gaf = Caf

mf

fa
, gd =

Can�

mnfa
. (117){eq:gagammagaf}{eq:gagammagaf}

The ‘model-independent’ predictions for the axion couplings (namely those exclusively due to the aGG̃
operator) are obtained by setting E/N ! 0 and c0

i
! 0 in Eqs. (109)–(115). The latter also correspond

to the predictions of the simplest KSVZ model discussed in Section 1.7.1, while the two DFSZ variants of
Section 1.7.2 yield
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sin2 � , c0

ei
= �

1

3
sin2 � , (118)

DFSZ-II : E/N = 2/3 c0
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sin2 � , c0

ei
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1
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with the index i = 1, 2, 3 denoting generations and the perturbative unitarity domain tan� 2 [0.25, 170]. In
Section 5 we will explore in depth how these ‘model-dependent’ coefficients can be modified compared to
the standard KSVZ/DFSZ benchmarks.

For completeness, in the next two Sections we are going to discuss two other classes of model-dependent
axion couplings which can be of phenomenological interest, although they do not arise to a sizeable level in
the standard KSVZ/DFSZ benchmarks. These are namely flavour violating axion couplings (Section 1.9)
and CP-violating ones (Section 1.10).

1.9. Flavour violating axion couplings{sec:IntroFlavourViolating}
Relaxing the hypothesis of the universality of the PQ current in DFSZ-like constructions leads to flavour

violating axion couplings to quarks and leptons. This option will be explored in detail in Section 5.5.1. Here,
we preliminary show how such couplings arise in a generalized DFSZ setup with non-universal PQ charges.
Let us assume that quarks with the same EM charge but of different generations couple to different Higgs
doublets, for definiteness H1 or H2, to which we assign the same hypercharge YH1 = YH2 = �

1

2
but different

PQ charges X1 6= X2. Let us start by considering the following Yukawa terms for the up-type quarks

L
YU

12
= �(YU )11 q̄1Lu1RH1 � (YU )22 q̄2Lu2RH2 � (YU )12 q̄1Lu2RH1 + . . . . (120){eq:H1H2}{eq:H1H2}

The quark bilinear q̄1Lu2R in the last term (or alternatively a similar term in the down-quark sector) is needed
to generate the CKM mixing, and for the present discussion it is irrelevant whether it couples to H1 or H2.
Note, also, that from PQ charge consistency X (q̄2Lu1R) = X (q̄2Lu2R)�X (q̄1Lu2R)+X (q̄1Lu1R) = �X2 it
follows that the term q̄2Lu1RH2 is also allowed. However, being its structure determined by the first three
terms we do not need to consider it explicitly. Projecting out from the Higgs doublets the neutral Goldstone
bosons, as was done in Eq. (92), and identifying the axion field, we obtain the analogous of Eq. (97) in the
form

L
mU

12
= �(mu)11 ū1Lu1R eiX1

a

va � (mu)22 ū2Lu2R eiX2
a

va � (mu)12 ū1Lu2R eiX1
a

va + . . . . (121){eq:Lmu12}{eq:Lmu12}

Because of the presence of the mixing term, in this case it is not possible to remove the axion field from the
mass terms with a pure axial redefinition of the quark fields as in Eq. (98), but it is necessary to introduce
also a vectorial part in the field redefinition:

u1 ! e�i(�5X1+X2)
a

2va u1 , u2 ! e�i(�5X2+X1)
a

2va u2 . (122){eq:u1u2Vector}{eq:u1u2Vector}
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Renormalizable UV Completion of SM Predicting Axion  

>  A singlet complex scalar field     featuring 
a global            symmetry is added to SM  

>  Symmetry is broken by vev 

§  Excitation of modulus:  

§  Excitation of angle: NGB 

>  Quarks (SM or extra) carry PQ charges                                           
such that            is anomalously broken 
due to gluonic triangle anomaly 
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@
µ
J
PQ

µ
=

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (39)

7

by eq. (44). Finally, even in case ⌦Q is eventually close to the estimate eq. (44), the relative concentration

of Q-hadrons nQ/nb ⇠ 10�8 (mQ/TeV)1/2 would still be quite large, and if the Q’s could accumulate with
similar concentrations within the galactic disk, existing limits from searches of anomalously heavy isotopes
in terrestrial, lunar, and meteoritic materials [41] would be able to exclude them for most of the allowed
range of masses. Many other arguments have been put forth disfavoring the possibility of heavy stable Q’s:
their capture in neutron stars would form black holes on a time scale of a few years [42] and, more generically,
they could endanger stellar stability [43] (? check this ref.), their annihilation in the Earth interior would
result in an anomalously large heat flow [44], etc.

IV. Selection criteria. All in all, although no uncircumventable argument seems to exist forbidding
completely heavy strongly interacting relics, the first discriminating criterium we adopt is that: (i) Models

that allow for su�ciently short lifetimes ⌧Q <
⇠ 10�2

s are phenomenologically preferred with respect to models

containing long lived or cosmologically stable Q’s. All RQ allowing for decays via renormalizable operators
satisfy this requirement. Decays can also occur via operators of higher dimensions. To avoid introducing
(unnecessary) new scales, we assume that the cuto↵ scale is mP , and we write O

d>4
Qq

= m
4�d

P
Pd(Q,'

n)
where Pd is a d-dimensional Lorentz and gauge invariant monomial linear in Q and containing n SM fields
'. For d = 5, 6, 7 the final states always contain n � d � 3 particles. Taking conservatively n = d � 3 we
obtain:

�d
<
⇠

⇡gfmQ

(d� 4)!(d� 5)!

 
m

2
Q

16⇡2m2
P

!d�4

, (45)

where gf accounts for final states degrees of freedom, and we have integrated analytically the n-body phase
space neglecting ' masses and assuming momentum independent matrix elements (see e.g. [45]). Requiring

mQ  fa we obtain respectively for d = 5, 6, 7, ⌧ (d)
Q

>
⇠

�
4 · 10�20

, 7 · 10�3
, 4 · 1015

�
⇥ (fa/mQ)2d�7 s. For

d = 5, as long as mQ
>
⇠ 800TeV decays occur with safe lifetimes ⌧

(5)
Q

<
⇠ 10�2 s. For d = 6, even for the

largest values mQ ⇠ fa decays occur dangerously close to BBN [46]. Operators of d = 7 and higher are
always excluded. The RQ selected by this first criterium are the first seven listed in Table II which allow
for LQq 6= 0, plus other thirteen which allow for d = 5 decay operators. Some of these representations
are, however, rather large, and could induce Landau poles (LP) in the SM gauge couplings g1, g2, g3 at
some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g1, g2, g3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·

F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (33) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(46)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for R

s

Q
=

(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q
= (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger

than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
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E

N
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where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for R
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than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
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RQ OQq ⇤2�loop
Landau[GeV] E/N NDW

(3, 1,�1/3) QLdR 9.3 · 1038(g1) 2/3 1

(3, 1, 2/3) QLuR 5.4 · 1034(g1) 8/3 1

(3, 2, 1/6) QRqL 6.5 · 1039(g1) 5/3 2

(3, 2,�5/6) QLdRH
† 4.3 · 1027(g1) 17/3 2

(3, 2, 7/6) QLuRH 5.6 · 1022(g1) 29/3 2

(3, 3,�1/3) QRqLH
† 5.1 · 1030(g2) 14/3 3

(3, 3, 2/3) QRqLH 6.6 · 1027(g2) 20/3 3

(3, 3,�4/3) QLdRH
†2 3.5 · 1018(g1) 44/3 3

(6, 1,�1/3) QL�µ⌫dRG
µ⌫ 2.3 · 1037(g1) 4/15 5

(6, 1, 2/3) QL�µ⌫uRG
µ⌫ 5.1 · 1030(g1) 16/15 5

(6, 2, 1/6) QR�µ⌫qLG
µ⌫ 7.3 · 1038(g1) 2/3 10

(8, 1,�1) QL�µ⌫eRG
µ⌫ 7.6 · 1022(g1) 8/3 6

(8, 2,�1/2) QR�µ⌫`LG
µ⌫ 6.7 · 1027(g1) 4/3 12

(15, 1,�1/3) QL�µ⌫dRG
µ⌫ 8.3 · 1021(g3) 1/6 20

(15, 1, 2/3) QL�µ⌫uRG
µ⌫ 7.6 · 1021(g3) 2/3 20

TABLE II. RQ irreps which allow for renormalizable Q-decay operators (first seven rows above the bold horizontal
line) or d = 5 ones (next eight rows below the bold horizontal line), and leading to LPs above, or within one order of
magnitude below, the Planck scale. The second column list a sample operator OQq which can be responsible for the
decay of Q, while in the third one we report the value of the LP estimated at two loops by setting the threshold of
the vectorlike quarks at 5 · 1011 GeV (the gauge coupling which triggers the Landau pole is specified in parenthesis).
The next column gives the value of the E/N term contributing to the axion-photon coupling (cf. Eq. (22)), and the
last one is the DW number (cf. Eq. (??)).

massless nf final states, the phase space factor can be integrated analytically, thus yielding (see e.g. [? ])

�NDA =
1

4(4⇡)2nf�3(nf � 1)!(nf � 2)!

m
2d�7
Q

M
2(d�4)
Planck

, (17)

where we neglected the possibility of scalar field condensations in the e↵ective operator.
Since Q-decay operators of d = 5, 6, 7 will at least involve nf = 2, 3, 4 particles in the final state, we have

⌧
NDA
d=5, nf=2 = 3.9 · 10�20 s

✓
5 · 1011 GeV

mQ

◆3

, (18)

⌧
NDA
d=6, nf=3 = 7.4 · 10�3 s

✓
5 · 1011 GeV

mQ

◆5

, (19)

⌧
NDA
d=7, nf=4 = 4.2 · 1015 s

✓
5 · 1011 GeV

mQ

◆7

. (20)

In order to be completely safe from a cosmological point of view the decay must happen before the time of
BBN, namely ⇠ 0.01 s [? ]. This is always the case for d = 5 operators if mQ & 106 GeV. On the other
hand, if the decay happens via d = 6 operators a much higher mass scale mQ & 1011÷12 GeV is needed. In
the post-inflationary PQ symmetry breaking scenario this is in tension with the bounds from axion DM via
the misalignment mechanism, leading to fa . 5 · 1011 GeV (see Refs. [? ? ] for some recent Lattice QCD
analyses). Finally, operators of d � 7 require an even higher mQ in the ballpark of the GUT or Planck
scale, which is clearly in the cosmological dangerous region.

Landau Poles. The presence of large matter multiplets drives the gauge couplings of the SM towards a
nonperturbative regime, eventually leading to Landau poles (LPs). We require the KSVZ axion model to
be a perturbatively calculable and UV complete framework up to the Planck scale, and hence reject those
irreps which lead to LPs below the Planck scale. To be conservative, and to retain the largest number of
RQ, we set the threshold of the heavy quark at mQ = 5 · 1011 GeV (at the boundary of compatibility with
post-inflationary axion-DM limits) and also keep those irreps with a LP within an order of magnitude below
the Planck scale. In fact, gravitational corrections on the running of the gauge couplings, that are under
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ga� ! 0 (1.1)

E/N < 170/3 (1.2)

E/N 2 [5/3, 44/3] (1.3)

2 [5/3, 44/3] (1.4)

d & 9 (1.5)

⇤UV ⇠ MPl (1.6)

fa ⇠ 109 GeV (1.7)

✓e↵ ⌘
hai

fa
. 10�10 (1.8)

OPQ�break =
�d

⇤d�4
UV

(1.9)

� ⇠ fae
i

a
fa (1.10)

VPQ�break. =
�d

⇤d�4
UV

+ h.c. (1.11)

✓
fa
⇤UV

◆d�4

f 4
a . 10�10⇤4

QCD (1.12)

c

fa
(1.13)

c /fa (1.14)

MZ (1.15)

fa ⇡
vS
6

(1.16)

X (1.17)

⌧p / M4
GUT (1.18)

B0 (1.19)
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1. Q-short lived (no coloured relics)

2. No Landau poles below Planck 
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Axion-PhotonAxion-Photon

where we have added to the list of [25] also Cae, Ca⇡ (at the LO in the chiral expansion) and Can� (from
the static nEDM result in Eq. (31)).

Sometimes the axion coupling to photons and matter field (first two terms in Eq. (108)) is written as

L
int

a
�

1

4
ga�aF F̃ � igafaf̄�5f �

i

2
gd a n̄�µ⌫�5nF

µ⌫ , (116){eq:Laint2}{eq:Laint2}

where in the second term we have integrated by parts, applied the equations of motion (which is only valid
for on-shell fermion states) and defined

ga� =
↵

2⇡

Ca�

fa
, gaf = Caf

mf

fa
, gd =

Can�

mnfa
. (117){eq:gagammagaf}{eq:gagammagaf}

The ‘model-independent’ predictions for the axion couplings (namely those exclusively due to the aGG̃
operator) are obtained by setting E/N ! 0 and c0

i
! 0 in Eqs. (109)–(115). The latter also correspond

to the predictions of the simplest KSVZ model discussed in Section 1.7.1, while the two DFSZ variants of
Section 1.7.2 yield

DFSZ-I : E/N = 8/3 c0
ui

= �
1

3
cos2 � , c0

di
= �

1

3
sin2 � , c0

ei
= �

1

3
sin2 � , (118)

DFSZ-II : E/N = 2/3 c0
ui

= �
1

3
cos2 � , c0

di
= �

1

3
sin2 � , c0

ei
=

1

3
cos2 � , (119)

with the index i = 1, 2, 3 denoting generations and the perturbative unitarity domain tan� 2 [0.25, 170]. In
Section 5 we will explore in depth how these ‘model-dependent’ coefficients can be modified compared to
the standard KSVZ/DFSZ benchmarks.

For completeness, in the next two Sections we are going to discuss two other classes of model-dependent
axion couplings which can be of phenomenological interest, although they do not arise to a sizeable level in
the standard KSVZ/DFSZ benchmarks. These are namely flavour violating axion couplings (Section 1.9)
and CP-violating ones (Section 1.10).

1.9. Flavour violating axion couplings{sec:IntroFlavourViolating}
Relaxing the hypothesis of the universality of the PQ current in DFSZ-like constructions leads to flavour

violating axion couplings to quarks and leptons. This option will be explored in detail in Section 5.5.1. Here,
we preliminary show how such couplings arise in a generalized DFSZ setup with non-universal PQ charges.
Let us assume that quarks with the same EM charge but of different generations couple to different Higgs
doublets, for definiteness H1 or H2, to which we assign the same hypercharge YH1 = YH2 = �

1

2
but different

PQ charges X1 6= X2. Let us start by considering the following Yukawa terms for the up-type quarks

L
YU

12
= �(YU )11 q̄1Lu1RH1 � (YU )22 q̄2Lu2RH2 � (YU )12 q̄1Lu2RH1 + . . . . (120){eq:H1H2}{eq:H1H2}

The quark bilinear q̄1Lu2R in the last term (or alternatively a similar term in the down-quark sector) is needed
to generate the CKM mixing, and for the present discussion it is irrelevant whether it couples to H1 or H2.
Note, also, that from PQ charge consistency X (q̄2Lu1R) = X (q̄2Lu2R)�X (q̄1Lu2R)+X (q̄1Lu1R) = �X2 it
follows that the term q̄2Lu1RH2 is also allowed. However, being its structure determined by the first three
terms we do not need to consider it explicitly. Projecting out from the Higgs doublets the neutral Goldstone
bosons, as was done in Eq. (92), and identifying the axion field, we obtain the analogous of Eq. (97) in the
form

L
mU

12
= �(mu)11 ū1Lu1R eiX1

a

va � (mu)22 ū2Lu2R eiX2
a

va � (mu)12 ū1Lu2R eiX1
a

va + . . . . (121){eq:Lmu12}{eq:Lmu12}

Because of the presence of the mixing term, in this case it is not possible to remove the axion field from the
mass terms with a pure axial redefinition of the quark fields as in Eq. (98), but it is necessary to introduce
also a vectorial part in the field redefinition:

u1 ! e�i(�5X1+X2)
a

2va u1 , u2 ! e�i(�5X2+X1)
a

2va u2 . (122){eq:u1u2Vector}{eq:u1u2Vector}

24

2

I. INTRODUCTION

Ca� = E/N � 1.92(4) (1)

q q � a (2)

tan� =
vu
vd

(3)

E/N = 8/3 (4)

E/N = 0 (5)

⇡ 10�5 (6)

✓e↵ ⇠ G2
F
f4
⇡
jCKM ⇡ 10�18 , (7)

(note that jCKM = ImVudV ⇤
cd
VcsV ⇤

us

fa & 108 GeV (8)

ma . 0.1 eV (9)

�LQCD = ✓
↵s

8⇡
GG̃ (10)

✓ (11)

��✓
�� . 10�10 (12)

m2
H

⇠ loop⇥ ⇤2
UV (13)

⇠ 10�46 log⇤UV (14)

10�2
÷ 10�3 (15)

e GeV�1 (16)
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Renormalizable UV Completion of SM Predicting Axion  

>  A singlet complex scalar field     featuring 
a global            symmetry is added to SM  

>  Symmetry is broken by vev 

§  Excitation of modulus:  

§  Excitation of angle: NGB 

>  Quarks (SM or extra) carry PQ charges                                           
such that            is anomalously broken 
due to gluonic triangle anomaly 

       

  
 
 
 
 
 

    

U(1)PQ

U(1)PQ
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4

ga�� =
ma

eV

2.0

1010 GeV

✓
Ec

Nc

� 1.92(4)

◆
(33)

R
1
Q
+R

2
Q

(34)

Ec

Nc

=
E1 + E2

N1 + E2
(35)

(3, 2, 1/6)� (3, 3,�4/3) (36)

Ec/Nc = 122/3 (37)

CQ 6= I (38)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@
µ
J
PQ

µ
=

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (39)

•  Pheno preferred hadronic axions

•  More Q’s ? 
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[“such a cancellation is immoral, but not unnatural”, 
D. B. Kaplan, NPB260 (1985)]

(perturbativity)
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Axion-PhotonAxion-Photon

where we have added to the list of [25] also Cae, Ca⇡ (at the LO in the chiral expansion) and Can� (from
the static nEDM result in Eq. (31)).

Sometimes the axion coupling to photons and matter field (first two terms in Eq. (108)) is written as

L
int

a
�

1

4
ga�aF F̃ � igafaf̄�5f �

i

2
gd a n̄�µ⌫�5nF

µ⌫ , (116){eq:Laint2}{eq:Laint2}

where in the second term we have integrated by parts, applied the equations of motion (which is only valid
for on-shell fermion states) and defined

ga� =
↵

2⇡

Ca�

fa
, gaf = Caf

mf

fa
, gd =

Can�

mnfa
. (117){eq:gagammagaf}{eq:gagammagaf}

The ‘model-independent’ predictions for the axion couplings (namely those exclusively due to the aGG̃
operator) are obtained by setting E/N ! 0 and c0

i
! 0 in Eqs. (109)–(115). The latter also correspond

to the predictions of the simplest KSVZ model discussed in Section 1.7.1, while the two DFSZ variants of
Section 1.7.2 yield

DFSZ-I : E/N = 8/3 c0
ui

= �
1

3
cos2 � , c0

di
= �

1

3
sin2 � , c0

ei
= �

1

3
sin2 � , (118)

DFSZ-II : E/N = 2/3 c0
ui

= �
1

3
cos2 � , c0

di
= �

1

3
sin2 � , c0

ei
=

1

3
cos2 � , (119)

with the index i = 1, 2, 3 denoting generations and the perturbative unitarity domain tan� 2 [0.25, 170]. In
Section 5 we will explore in depth how these ‘model-dependent’ coefficients can be modified compared to
the standard KSVZ/DFSZ benchmarks.

For completeness, in the next two Sections we are going to discuss two other classes of model-dependent
axion couplings which can be of phenomenological interest, although they do not arise to a sizeable level in
the standard KSVZ/DFSZ benchmarks. These are namely flavour violating axion couplings (Section 1.9)
and CP-violating ones (Section 1.10).

1.9. Flavour violating axion couplings{sec:IntroFlavourViolating}
Relaxing the hypothesis of the universality of the PQ current in DFSZ-like constructions leads to flavour

violating axion couplings to quarks and leptons. This option will be explored in detail in Section 5.5.1. Here,
we preliminary show how such couplings arise in a generalized DFSZ setup with non-universal PQ charges.
Let us assume that quarks with the same EM charge but of different generations couple to different Higgs
doublets, for definiteness H1 or H2, to which we assign the same hypercharge YH1 = YH2 = �

1

2
but different

PQ charges X1 6= X2. Let us start by considering the following Yukawa terms for the up-type quarks

L
YU

12
= �(YU )11 q̄1Lu1RH1 � (YU )22 q̄2Lu2RH2 � (YU )12 q̄1Lu2RH1 + . . . . (120){eq:H1H2}{eq:H1H2}

The quark bilinear q̄1Lu2R in the last term (or alternatively a similar term in the down-quark sector) is needed
to generate the CKM mixing, and for the present discussion it is irrelevant whether it couples to H1 or H2.
Note, also, that from PQ charge consistency X (q̄2Lu1R) = X (q̄2Lu2R)�X (q̄1Lu2R)+X (q̄1Lu1R) = �X2 it
follows that the term q̄2Lu1RH2 is also allowed. However, being its structure determined by the first three
terms we do not need to consider it explicitly. Projecting out from the Higgs doublets the neutral Goldstone
bosons, as was done in Eq. (92), and identifying the axion field, we obtain the analogous of Eq. (97) in the
form

L
mU

12
= �(mu)11 ū1Lu1R eiX1

a

va � (mu)22 ū2Lu2R eiX2
a

va � (mu)12 ū1Lu2R eiX1
a

va + . . . . (121){eq:Lmu12}{eq:Lmu12}

Because of the presence of the mixing term, in this case it is not possible to remove the axion field from the
mass terms with a pure axial redefinition of the quark fields as in Eq. (98), but it is necessary to introduce
also a vectorial part in the field redefinition:

u1 ! e�i(�5X1+X2)
a

2va u1 , u2 ! e�i(�5X2+X1)
a

2va u2 . (122){eq:u1u2Vector}{eq:u1u2Vector}
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Renormalizable UV Completion of SM Predicting Axion  

>  A singlet complex scalar field     featuring 
a global            symmetry is added to SM  

>  Symmetry is broken by vev 

§  Excitation of modulus:  

§  Excitation of angle: NGB 

>  Quarks (SM or extra) carry PQ charges                                           
such that            is anomalously broken 
due to gluonic triangle anomaly 

       

  
 
 
 
 
 

    

U(1)PQ

U(1)PQ

global

gauge
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4

ga�� =
ma

eV

2.0

1010 GeV

✓
Ec

Nc

� 1.92(4)

◆
(33)

R
1
Q
+R

2
Q

(34)
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Nc

=
E1 + E2

N1 + E2
(35)

(3, 2, 1/6)� (3, 3,�4/3) (36)

Ec/Nc = 122/3 (37)

CQ 6= I (38)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@
µ
J
PQ

µ
=

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (39)

•  Pheno preferred hadronic axions
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•  More Q’s ? 1 Introduction
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(perturbativity)
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A change of perspective

where we have added to the list of [25] also Cae, Ca⇡ (at the LO in the chiral expansion) and Can� (from
the static nEDM result in Eq. (31)).

Sometimes the axion coupling to photons and matter field (first two terms in Eq. (108)) is written as

L
int

a
�

1

4
ga�aF F̃ � igafaf̄�5f �

i

2
gd a n̄�µ⌫�5nF

µ⌫ , (116){eq:Laint2}{eq:Laint2}

where in the second term we have integrated by parts, applied the equations of motion (which is only valid
for on-shell fermion states) and defined

ga� =
↵

2⇡

Ca�

fa
, gaf = Caf

mf

fa
, gd =

Can�

mnfa
. (117){eq:gagammagaf}{eq:gagammagaf}

The ‘model-independent’ predictions for the axion couplings (namely those exclusively due to the aGG̃
operator) are obtained by setting E/N ! 0 and c0

i
! 0 in Eqs. (109)–(115). The latter also correspond

to the predictions of the simplest KSVZ model discussed in Section 1.7.1, while the two DFSZ variants of
Section 1.7.2 yield

DFSZ-I : E/N = 8/3 c0
ui

= �
1

3
cos2 � , c0

di
= �

1

3
sin2 � , c0

ei
= �

1

3
sin2 � , (118)

DFSZ-II : E/N = 2/3 c0
ui

= �
1

3
cos2 � , c0

di
= �

1

3
sin2 � , c0

ei
=

1

3
cos2 � , (119)

with the index i = 1, 2, 3 denoting generations and the perturbative unitarity domain tan� 2 [0.25, 170]. In
Section 5 we will explore in depth how these ‘model-dependent’ coefficients can be modified compared to
the standard KSVZ/DFSZ benchmarks.

For completeness, in the next two Sections we are going to discuss two other classes of model-dependent
axion couplings which can be of phenomenological interest, although they do not arise to a sizeable level in
the standard KSVZ/DFSZ benchmarks. These are namely flavour violating axion couplings (Section 1.9)
and CP-violating ones (Section 1.10).

1.9. Flavour violating axion couplings{sec:IntroFlavourViolating}
Relaxing the hypothesis of the universality of the PQ current in DFSZ-like constructions leads to flavour

violating axion couplings to quarks and leptons. This option will be explored in detail in Section 5.5.1. Here,
we preliminary show how such couplings arise in a generalized DFSZ setup with non-universal PQ charges.
Let us assume that quarks with the same EM charge but of different generations couple to different Higgs
doublets, for definiteness H1 or H2, to which we assign the same hypercharge YH1 = YH2 = �

1

2
but different

PQ charges X1 6= X2. Let us start by considering the following Yukawa terms for the up-type quarks

L
YU

12
= �(YU )11 q̄1Lu1RH1 � (YU )22 q̄2Lu2RH2 � (YU )12 q̄1Lu2RH1 + . . . . (120){eq:H1H2}{eq:H1H2}

The quark bilinear q̄1Lu2R in the last term (or alternatively a similar term in the down-quark sector) is needed
to generate the CKM mixing, and for the present discussion it is irrelevant whether it couples to H1 or H2.
Note, also, that from PQ charge consistency X (q̄2Lu1R) = X (q̄2Lu2R)�X (q̄1Lu2R)+X (q̄1Lu1R) = �X2 it
follows that the term q̄2Lu1RH2 is also allowed. However, being its structure determined by the first three
terms we do not need to consider it explicitly. Projecting out from the Higgs doublets the neutral Goldstone
bosons, as was done in Eq. (92), and identifying the axion field, we obtain the analogous of Eq. (97) in the
form

L
mU

12
= �(mu)11 ū1Lu1R eiX1

a

va � (mu)22 ū2Lu2R eiX2
a

va � (mu)12 ū1Lu2R eiX1
a

va + . . . . (121){eq:Lmu12}{eq:Lmu12}

Because of the presence of the mixing term, in this case it is not possible to remove the axion field from the
mass terms with a pure axial redefinition of the quark fields as in Eq. (98), but it is necessary to introduce
also a vectorial part in the field redefinition:

u1 ! e�i(�5X1+X2)
a

2va u1 , u2 ! e�i(�5X2+X1)
a

2va u2 . (122){eq:u1u2Vector}{eq:u1u2Vector}
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Figure 15: Phenomenological and experimental status for the hadronic axion. The experiments presented here are the same
shown in Fig. 14. Experimental bounds are shown in solid lines while projected sensitivity in dashed lines. The Helioscope lines
refer to the latest results from CAST [431] and to the expected sensitivity of BabyIAXO and IAXO [320]. For ABRACADABRA
we are using the expected sensitivity in phase 1 (Bmax = 5T and Volume=1m3 [308]) for the resonant case. The parameter
space is constrained at low masses by the BH superradiance and at high masses by the SN 1987A bound on the nEDM (see
text for more details). {fig_hadronic_parameter_space_grandAngolo}

The expected number of events in the Sikivie helioscope is

N� �Nb =
S�t

4⇡D2
�

Z
dNa

dtd!
Pa�✏ d! (229)

where Nb the total background, D� ' 1.5⇥ 1011 m is the distance to the Sun, S is the detector total area,
�t the exposure time, and ✏ a parameter that measure the detection efficiency. In general, the integral
should be restricted to some ! region. We assume that these threshold values are accounted for by ✏.

Be ḡa� the bound on the axion-photon coupling in the case of gae = 0. In the general case, we find

g2
a�

Z
(g2

a�
n� + g2

ae
ne)P̃a�✏ d!  ḡ4

a�

Z
n�P̃a�✏ d! (230)

where ga� is given in units of GeV�1 and P̃a� is the osciallation probability divided by ga� . In the case of
small axion mass, the factor qL in the expression for the probability is small and Pa� does not depend on
the axion energy. We can assume that the factor ✏ is also roughly constant in the energy interval relevant
for solar axions, if the experimental cuts in ! are performed far from the regions where the two fluxes are

66

1.  They are all QCD axions, exp.s have just started to constrain E/N from above

2.  E/N ~ 1.92 appears as a tuned region in theory space
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• New CP violation in the UV can source a scalar axion-nucleon coupling

[Moody, Wilczek PRD30 (1984)]
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We compute the CP-violating (CPV) scalar axion coupling to nucleons in the framework of baryon
chiral perturbation theory and we apply the results to the case of left-right symmetry. The correlated
constraints with other CPV observables show that the predicted axion nucleon coupling is within
the reach of present axion-mediated force experiments for MWR up to 1000 TeV.
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Introduction. The axion experimental program
has received an impressive boost in the last decade.
Novel detection strategies, bridging distant areas of
physics, promise to open for exploration the param-
eter space of the QCD axion in the not-so-far fu-
ture, possibly addressing the issue of strong CP vi-
olation in the Standard Model (SM) via the Peccei-
Quinn (PQ) mechanism [1–4] and the Dark Matter
(DM) puzzle [5–7] (for updated reviews, see [8–10]).
Standard axion searches often rely on highly model-
dependent axion production mechanisms, as in the
case of relic axions (haloscopes) or to a less extent
solar axions (helioscopes); while traditional optical
setups in which the axion is produced in the lab
are still far from probing the standard QCD ax-
ion. A di↵erent experimental approach, as old as
the axion itself [3], consists in searching for axion-
mediated macroscopic forces [11]. Given the typical
axion Compton wavelength �a ⇠ 2 cm (10µeV/ma),
an even tiny scalar axion coupling to matter may
coherently enhance the force between macroscopic
bodies. The sensitivity of these experiments cru-
cially depends on the (pseudo)scalar nature of the
axion field, a matter of ultraviolet (UV) physics.

Within QCD the Vafa-Witten theorem [12] en-
sures that the axion vacuum expectation value
(VEV) relaxes on the ✓e↵ ⌘ hai /fa + ✓ = 0 min-
imum, where ✓ denotes the QCD topological term.
However, extra CP violation in the UV invalidate
the hypotheses of this theorem, and in general one
expects a minimum with ✓e↵ 6= 0. While the CKM
phase in the SM yields ✓e↵ ' 10�18 [13], too tiny to

be experimentally accessible, CPV phases from new
physics can saturate the neutron Electric Dipole Mo-
ment (nEDM) bound |✓e↵ | . 10�10.

Another remarkable consequences of a non-zero
✓e↵ is the generation of CPV scalar axion couplings
to nucleons, gaN , which is probed in axion-mediated
force experiments. In particular, given the nEDM
bound on ✓e↵ the scalar-pseudoscalar combination
(also known as monopole-dipole interaction) o↵ers
the best chance for detecting the QCD axion. Ad-
ditionally, the presence of a spin-dependent inter-
action allows to use Nuclear Magnetic Resonance
(NMR) to enhance the signal. This is the strat-
egy pursued by ARIADNE [14, 15] which aims at
probing the monopole-dipole force via a sample of
nucleon spins. A similar approach is pursued by
QUAX-gpgs [16, 17], using instead electron spins.
ARIADNE will probe |✓e↵ | . 10�10 for axion masses
1 . ma/µeV . 104, a range highly motivated by
DM.

In this Letter, we provide a coherent framework
for computing the CPV scalar axion coupling to nu-
cleons in terms of new sources of CP violation be-
yond the SM. This is done in the framework of the
baryon chiral Lagrangian that allows us to compute
all contributions of meson tadpoles and ✓e↵ at once,
as well as isospin-breaking e↵ects. In comparison to
previous works [11, 18–20], the contributions of the
pion tadpole induced by the QCD dipole operator
was estimated in [18] by naive dimensional analysis
and in [19] using current algebra techniques, while
isospin breaking was considered in [20] for ✓e↵ with-
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Introduction. The axion experimental program
has received an impressive boost in the last decade.
Novel detection strategies, bridging distant areas of
physics, promise to open for exploration the param-
eter space of the QCD axion in the not-so-far fu-
ture, possibly addressing the issue of strong CP vi-
olation in the Standard Model (SM) via the Peccei-
Quinn (PQ) mechanism [1–4] and the Dark Matter
(DM) puzzle [5–7] (for updated reviews, see [8–10]).
Standard axion searches often rely on highly model-
dependent axion production mechanisms, as in the
case of relic axions (haloscopes) or to a less extent
solar axions (helioscopes); while traditional optical
setups in which the axion is produced in the lab
are still far from probing the standard QCD ax-
ion. A di↵erent experimental approach, as old as
the axion itself [3], consists in searching for axion-
mediated macroscopic forces [11]. Given the typical
axion Compton wavelength �a ⇠ 2 cm (10µeV/ma),
an even tiny scalar axion coupling to matter may
coherently enhance the force between macroscopic
bodies. The sensitivity of these experiments cru-
cially depends on the (pseudo)scalar nature of the
axion field, a matter of ultraviolet (UV) physics.

Within QCD the Vafa-Witten theorem [12] en-
sures that the axion vacuum expectation value
(VEV) relaxes on the ✓e↵ ⌘ hai /fa + ✓ = 0 min-
imum, where ✓ denotes the QCD topological term.
However, extra CP violation in the UV invalidate
the hypotheses of this theorem, and in general one
expects a minimum with ✓e↵ 6= 0. While the CKM
phase in the SM yields ✓e↵ ' 10�18 [13], too tiny to

be experimentally accessible, CPV phases from new
physics can saturate the neutron Electric Dipole Mo-
ment (nEDM) bound |✓e↵ | . 10�10.

Another remarkable consequences of a non-zero
✓e↵ is the generation of CPV scalar axion couplings
to nucleons, gaN , which is probed in axion-mediated
force experiments. In particular, given the nEDM
bound on ✓e↵ the scalar-pseudoscalar combination
(also known as monopole-dipole interaction) o↵ers
the best chance for detecting the QCD axion. Ad-
ditionally, the presence of a spin-dependent inter-
action allows to use Nuclear Magnetic Resonance
(NMR) to enhance the signal. This is the strat-
egy pursued by ARIADNE [14, 15] which aims at
probing the monopole-dipole force via a sample of
nucleon spins. A similar approach is pursued by
QUAX-gpgs [16, 17], using instead electron spins.
ARIADNE will probe |✓e↵ | . 10�10 for axion masses
1 . ma/µeV . 104, a range highly motivated by
DM.

In this Letter, we provide a coherent framework
for computing the CPV scalar axion coupling to nu-
cleons in terms of new sources of CP violation be-
yond the SM. This is done in the framework of the
baryon chiral Lagrangian that allows us to compute
all contributions of meson tadpoles and ✓e↵ at once,
as well as isospin-breaking e↵ects. In comparison to
previous works [11, 18–20], the contributions of the
pion tadpole induced by the QCD dipole operator
was estimated in [18] by naive dimensional analysis
and in [19] using current algebra techniques, while
isospin breaking was considered in [20] for ✓e↵ with-
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• New CP violation in the UV can source a scalar axion-nucleon coupling

[Moody, Wilczek PRD30 (1984)]
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7sg~p 1759p 1759p

couple to quarks only through a T-conserving pseudosca-
lar vertex:

mq
Q ql p5q

(0) (b) (c)

FIG. 1. Graphs for the potentials of Eqs. (4), (5), and (6). (a)
(Monopole), (b) monopole-dipole, (c) (dipole).

Spero et a/. performed a Cavendish experiment to test
deviations from the Newtonian 1/r potential over the dis-
tance range 2 to 5 cm. Their experiment established an
upper bound for additional Yukawa-type interactions
given by

V(r) =- 6m ~m2 (1+ac ' );—r/A.
r

at their scale of greatest sensitivity A, -3 cm, a was found
to be less than 10 . Since the dimensionless coupling
constant for the gravitational interaction between two nu-
cleons is (mz/mp~) =10, we see that any anomalous
Yukawa coupling at a scale of 3 cm must have a dimen-
sional magnitude of 10 ' or smaller.
The measured g factor of the electron provides a limit

on nonelectromagnetic electron spin-spin interactions.
Since the experimental findings agree with the predictions
of QED to eight digits for experiments using ferromag-
nets, we get a limit for any nonelectromagnetic spin-spin
coupling at a scale of 1 cm of 10 Xa(A,,/1 cm)
=10 ', where A,, is the electron Cornpton wavelength

1and cx:
A limit on photon spin-spin tensor interactions is pro-

vided by Ramsey, based upon studies of the hydrogen
molecule. Ramsey finds that any nonmagnetic interac-
tion must be 4&10 " smaller than that between proton
magnetic moments. Extrapolated to a distance of 1 cm,
this establishes an upper limit on the dimensionless cou-
pling for an r tensor force of 10
Of these various limits, only the anomalous (mono-

pole) interaction limit of 10 ' obtained by Spero et al.
comes close to testing the range of possible strengths for
axion-mediated forces. Furthermore, we know of no obvi-
ous experimental limit on the macroscopic P- and T-
violating monopole-dipole interaction. Thus, the oppor-
tunity is ripe for pushing past known limits and perhaps
finding something new. We shall shortly discuss some ex-
periments which may do so.

arid

H „,=m„ut ug+mgdLdg+ +H.c.

2

HT——0 GG .
32m2

(7a)

(7b)

Under a Peccei-Quinn transformation,
—ig/2 i g/2mq~mqe, ql. ~e qL, , qR~e qg,

the phase of the 't Hooft vertex varies as
r

arg g k, gg
q

hence, e' becomes e' + "', where N = number of quark
flavors. Similarly, under chiral U(1),

and the 't Hooft vertex changes as e'e~e'e+ '. Thus, a
combined Peccei-Quinn and chiral U(1) transformation
with v= —q leaves 0 invariant.
To calculate the mass of the axion, we imagine per-

forming a Peccei-Quinn transformation; this leaves the
quark mass terms unchanged, but changes 0 to 0+60.
We now undo this change of 0 by reabsorbing b,8 into the
quark mass sector by the combined chiral SU(N))&U(1)
transformation which minimizes the energy. This gives

where F is the scale of Peccei-Quinn symmetry breaking.
However, a pure Peccei-Quinn transformation changes

the phase multiplying the 't Hooft vertex. It is energeti-
cally unfavorable to change this phase (which requires en-
ergies of the order of the mass of the g'), so the Peccei-
Quinn transformation is compensated for by a combined
chiral U(1) and chiral SU(N) transformation which leaves
the phase invariant and minimizes the energy. Since the
quark masses are not zero, these combined (Peccei-
Quinn) [U(1)q ] [SU(X)~ j transformations cost energy,
and the axion acquires a small mass. If, in addition, the
effective 8 parameter Hcff is not zero, the axion will also
couple to the quarks with T-violating scalar vertices.
To see how this all works, consider the quark-mass and

T-violating sectors,

AXIONS H „=m„uu cosh'„+ m~dd coshO~+ . (10)

A particularly well-motivated proposal for a very light
spin-0 boson is the axion. It arises in models to explain
the smallness of a potentially large P- and T-violating
coupling in QCD.
The axion is the quasi-Nambu-Goldstone boson of a

spontaneously broken Peccei-Quinn quasisymmetry. If
the Peccei-Quinn symmetry were not broken by the
t Hooft vertex associated with fermion emission in in-
stanton fields, the axion would be massless and would

i&q

mj

subject to the constraint 40„+40~+48, +.. . =60.
Since the quark bilinears acquire the vacuum expectation
value (uu)=(dd)= . =V&0, the minimum is found
to be at
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The forces mediated by spin-0 bosons are described, along with the existing experimental limits.
The mass and couplings of the invisible axion are derived, followed by suggestions for experiments
to detect axions via the macroscopic forces they mediate. In particular, novel tests of the T-
violating axion monopole-dipole forces are proposed.

MACROSCOPIC FORCES

Very light, weakly coupled bosons are occasionally sug-
gested in the literature, for example, axions, ' familons,
majorons, arions„and spin-1 antigravitons. Such parti-
cles must couple very weakly to ordinary matter to have
eluded detection thus far. A boson with small enough
mass (say, 10 eV) would have a macroscopic Compton
wavelength (say, 2 cm) and would mediate a force on lab-
oratory scales. Even if very weakly coupled at the single-
particle level, a macroscopic body with 10 constituents
could produce a measurable, coherent light-boson field.
In the familiar case of gravity, the dimensionless coupling
between two nucleons due to graviton exchange is absurd-
ly small [(m„„,&„„/Mp] g) —10 ], but two 1-g masses
separated by 1 cm experience a measurable force of

(6X10 ) (m~/Mpi) =6.7X10 dyn .
(1 cm)

We shall be interested in the possibility of detecting
very light spin-0 bosons through the macroscopic forces
which they mediate. The possible forces are determined
by the allowed couplings; the spin-0 boson must couple to
an effectively conserved quantity. There are only two
possibilities for couplings to fundamental fermions: the
scalar vertex and the pseudoscalar vertex. The scalar and
pseudoscalar vertices can be analyzed in momentum space
using the Gordon decomposition. For pure spacelike
momentum transfer q, they become

scalar,

pseudoscalar,

qP
gpq(qW'(pf }t YS P(p )gpq'(q} 2M P(pf )t1 s1 tb(p'}

=gptp(q} [gt(pf );&g(p;)] . (2)

Here pf——p +q/2 and p; =p —q/2 are the final and ini-
tial on-shell momenta and M is the fermion mass. The
matrix X is the diagonal spin matrix. In the nonrelativis-
tic limit (small fermion velocity and momentum transfer),
the scalar coupling is spin-independent and depends only

~~
upon the fermion density g&@pe

' q '. The pseudoscalar
coupling is entirely spin-dependent, however. The virtual
boson fields of a fermion in the two cases will thus be
"monopole" and "dipole" fields (in the sense of the multi-
ple expansion).
The scalar and pseudoscalar vertices (1) and (2) can ap-

pear in one-boson-exchange graphs in three combinations;
this allows the existence of three distinct forces. The
two-fermion potential can be calculated in the inverse
Born approximation,

d q (vertex 1)(vertex 2)e'q''
(2n. ) q +w~

The results are (see Fig. 1)

(monopole),
—Nl l'—gsgse

g, tp(q)p(pf )g(p; )=gstp(q), f(pf )$(p; )

—i " "p(pf )tT~"g(p;); (1)
2M

monopole-dipole,

(dipole),

rA A02r m& 1 —m r

8mM2 r r 2

1 2 VlgI'gI' ~y 1 4~ 3 Iq 3~y 3 —m rV(r) = (&,.&„),+, + 5 (r) —(&, r")(&,.r") + +— e16mMM " r2 „3 3 r2 r3 (6)

Regardless of the assigned parity of the light, spin-0 bo-
son, the (monopole} and (dipole) forces conserve P and
T. However, the monopole-dipole force enjoys a unique
status amongst possible macroscopic interactions, because

&.r violates P and T and of course macroscopic P and T
violation has heretofore not been observed.
A few experimental upper limits exist for the strength

of anomalous (monopole) and (dipole} interactions.
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• New CP violation in the UV can source a scalar axion-nucleon coupling

[Moody, Wilczek PRD30 (1984)]
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FIG. 1. Graphs for the potentials of Eqs. (4), (5), and (6). (a)
(Monopole), (b) monopole-dipole, (c) (dipole).

Spero et a/. performed a Cavendish experiment to test
deviations from the Newtonian 1/r potential over the dis-
tance range 2 to 5 cm. Their experiment established an
upper bound for additional Yukawa-type interactions
given by

V(r) =- 6m ~m2 (1+ac ' );—r/A.
r

at their scale of greatest sensitivity A, -3 cm, a was found
to be less than 10 . Since the dimensionless coupling
constant for the gravitational interaction between two nu-
cleons is (mz/mp~) =10, we see that any anomalous
Yukawa coupling at a scale of 3 cm must have a dimen-
sional magnitude of 10 ' or smaller.
The measured g factor of the electron provides a limit

on nonelectromagnetic electron spin-spin interactions.
Since the experimental findings agree with the predictions
of QED to eight digits for experiments using ferromag-
nets, we get a limit for any nonelectromagnetic spin-spin
coupling at a scale of 1 cm of 10 Xa(A,,/1 cm)
=10 ', where A,, is the electron Cornpton wavelength

1and cx:
A limit on photon spin-spin tensor interactions is pro-

vided by Ramsey, based upon studies of the hydrogen
molecule. Ramsey finds that any nonmagnetic interac-
tion must be 4&10 " smaller than that between proton
magnetic moments. Extrapolated to a distance of 1 cm,
this establishes an upper limit on the dimensionless cou-
pling for an r tensor force of 10
Of these various limits, only the anomalous (mono-

pole) interaction limit of 10 ' obtained by Spero et al.
comes close to testing the range of possible strengths for
axion-mediated forces. Furthermore, we know of no obvi-
ous experimental limit on the macroscopic P- and T-
violating monopole-dipole interaction. Thus, the oppor-
tunity is ripe for pushing past known limits and perhaps
finding something new. We shall shortly discuss some ex-
periments which may do so.
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Under a Peccei-Quinn transformation,
—ig/2 i g/2mq~mqe, ql. ~e qL, , qR~e qg,

the phase of the 't Hooft vertex varies as
r

arg g k, gg
q

hence, e' becomes e' + "', where N = number of quark
flavors. Similarly, under chiral U(1),

and the 't Hooft vertex changes as e'e~e'e+ '. Thus, a
combined Peccei-Quinn and chiral U(1) transformation
with v= —q leaves 0 invariant.
To calculate the mass of the axion, we imagine per-

forming a Peccei-Quinn transformation; this leaves the
quark mass terms unchanged, but changes 0 to 0+60.
We now undo this change of 0 by reabsorbing b,8 into the
quark mass sector by the combined chiral SU(N))&U(1)
transformation which minimizes the energy. This gives

where F is the scale of Peccei-Quinn symmetry breaking.
However, a pure Peccei-Quinn transformation changes

the phase multiplying the 't Hooft vertex. It is energeti-
cally unfavorable to change this phase (which requires en-
ergies of the order of the mass of the g'), so the Peccei-
Quinn transformation is compensated for by a combined
chiral U(1) and chiral SU(N) transformation which leaves
the phase invariant and minimizes the energy. Since the
quark masses are not zero, these combined (Peccei-
Quinn) [U(1)q ] [SU(X)~ j transformations cost energy,
and the axion acquires a small mass. If, in addition, the
effective 8 parameter Hcff is not zero, the axion will also
couple to the quarks with T-violating scalar vertices.
To see how this all works, consider the quark-mass and

T-violating sectors,

AXIONS H „=m„uu cosh'„+ m~dd coshO~+ . (10)

A particularly well-motivated proposal for a very light
spin-0 boson is the axion. It arises in models to explain
the smallness of a potentially large P- and T-violating
coupling in QCD.
The axion is the quasi-Nambu-Goldstone boson of a

spontaneously broken Peccei-Quinn quasisymmetry. If
the Peccei-Quinn symmetry were not broken by the
t Hooft vertex associated with fermion emission in in-
stanton fields, the axion would be massless and would

i&q

mj

subject to the constraint 40„+40~+48, +.. . =60.
Since the quark bilinears acquire the vacuum expectation
value (uu)=(dd)= . =V&0, the minimum is found
to be at
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The forces mediated by spin-0 bosons are described, along with the existing experimental limits.
The mass and couplings of the invisible axion are derived, followed by suggestions for experiments
to detect axions via the macroscopic forces they mediate. In particular, novel tests of the T-
violating axion monopole-dipole forces are proposed.

MACROSCOPIC FORCES

Very light, weakly coupled bosons are occasionally sug-
gested in the literature, for example, axions, ' familons,
majorons, arions„and spin-1 antigravitons. Such parti-
cles must couple very weakly to ordinary matter to have
eluded detection thus far. A boson with small enough
mass (say, 10 eV) would have a macroscopic Compton
wavelength (say, 2 cm) and would mediate a force on lab-
oratory scales. Even if very weakly coupled at the single-
particle level, a macroscopic body with 10 constituents
could produce a measurable, coherent light-boson field.
In the familiar case of gravity, the dimensionless coupling
between two nucleons due to graviton exchange is absurd-
ly small [(m„„,&„„/Mp] g) —10 ], but two 1-g masses
separated by 1 cm experience a measurable force of

(6X10 ) (m~/Mpi) =6.7X10 dyn .
(1 cm)

We shall be interested in the possibility of detecting
very light spin-0 bosons through the macroscopic forces
which they mediate. The possible forces are determined
by the allowed couplings; the spin-0 boson must couple to
an effectively conserved quantity. There are only two
possibilities for couplings to fundamental fermions: the
scalar vertex and the pseudoscalar vertex. The scalar and
pseudoscalar vertices can be analyzed in momentum space
using the Gordon decomposition. For pure spacelike
momentum transfer q, they become

scalar,

pseudoscalar,

qP
gpq(qW'(pf }t YS P(p )gpq'(q} 2M P(pf )t1 s1 tb(p'}

=gptp(q} [gt(pf );&g(p;)] . (2)

Here pf——p +q/2 and p; =p —q/2 are the final and ini-
tial on-shell momenta and M is the fermion mass. The
matrix X is the diagonal spin matrix. In the nonrelativis-
tic limit (small fermion velocity and momentum transfer),
the scalar coupling is spin-independent and depends only

~~
upon the fermion density g&@pe

' q '. The pseudoscalar
coupling is entirely spin-dependent, however. The virtual
boson fields of a fermion in the two cases will thus be
"monopole" and "dipole" fields (in the sense of the multi-
ple expansion).
The scalar and pseudoscalar vertices (1) and (2) can ap-

pear in one-boson-exchange graphs in three combinations;
this allows the existence of three distinct forces. The
two-fermion potential can be calculated in the inverse
Born approximation,

d q (vertex 1)(vertex 2)e'q''
(2n. ) q +w~

The results are (see Fig. 1)

(monopole),
—Nl l'—gsgse

g, tp(q)p(pf )g(p; )=gstp(q), f(pf )$(p; )

—i " "p(pf )tT~"g(p;); (1)
2M

monopole-dipole,

(dipole),

rA A02r m& 1 —m r

8mM2 r r 2

1 2 VlgI'gI' ~y 1 4~ 3 Iq 3~y 3 —m rV(r) = (&,.&„),+, + 5 (r) —(&, r")(&,.r") + +— e16mMM " r2 „3 3 r2 r3 (6)

Regardless of the assigned parity of the light, spin-0 bo-
son, the (monopole} and (dipole) forces conserve P and
T. However, the monopole-dipole force enjoys a unique
status amongst possible macroscopic interactions, because

&.r violates P and T and of course macroscopic P and T
violation has heretofore not been observed.
A few experimental upper limits exist for the strength

of anomalous (monopole) and (dipole} interactions.

30 130

PHYSICAL REVIEW D VOLUME 30, NUMBER 1 1 JULY 1984

New macroscopic forces?

J. E. Moody' and Frank Wilczek
Institute for Theoretical Physics, Uniuersity of California, Santa Barbara, California 93106

(Received 17 January 1984)

The forces mediated by spin-0 bosons are described, along with the existing experimental limits.
The mass and couplings of the invisible axion are derived, followed by suggestions for experiments
to detect axions via the macroscopic forces they mediate. In particular, novel tests of the T-
violating axion monopole-dipole forces are proposed.

MACROSCOPIC FORCES

Very light, weakly coupled bosons are occasionally sug-
gested in the literature, for example, axions, ' familons,
majorons, arions„and spin-1 antigravitons. Such parti-
cles must couple very weakly to ordinary matter to have
eluded detection thus far. A boson with small enough
mass (say, 10 eV) would have a macroscopic Compton
wavelength (say, 2 cm) and would mediate a force on lab-
oratory scales. Even if very weakly coupled at the single-
particle level, a macroscopic body with 10 constituents
could produce a measurable, coherent light-boson field.
In the familiar case of gravity, the dimensionless coupling
between two nucleons due to graviton exchange is absurd-
ly small [(m„„,&„„/Mp] g) —10 ], but two 1-g masses
separated by 1 cm experience a measurable force of
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violation has heretofore not been observed.
A few experimental upper limits exist for the strength
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• New CP violation in the UV can source a scalar axion-nucleon coupling
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FIG. 3. Upper limits on gN
s gN

p . The solid lines are all existing limits on this parameter space, the dashed lines correspond to a
combination of laboratory scalar searches and astrophysical pseudoscalar bounds, and the dotted lines are all projections. The
two projections for ARIADNE [87] aim to have QCD sensitivity for 10µeV–meV axion masses. We also show projected limits for
dark matter experiments: CASPEr-wind [53], and a possible future dark matter comagnetometer [140]. In both of these cases we
have multiplied the expected constraint on gN

p with the astrophysical bound on gN
s . The combined astrophysical and laboratory

bound can be downloaded from this https url.

B. Nucleon-nucleon interactions

Similar to the electron-nucleon interaction, the most
stringent limit on gN

s gN
p can be derived by multiplying

the long-range force limits shown Fig. 1 with the neu-
tron star cooling bound on the pseudoscalar coupling
written in Eq. (11). We show these bounds in Fig. 3.
As in the previous example, we show the combination
of the lab bound on the scalar coupling with the
astrophysical bound on the pseudoscalar coupling with
a green dashed line. The three most stringent purely
experimental bounds are described below.

Figure 3:

• Washington experiment of Venema et
al. (1992) [141] which measures the spin pre-
cession frequencies of two Hg isotopes optically,
using the Earth as a source mass. Note that we
have taken the version of this limit presented in
Fig. 13 of Ref. [79].

• SMILE experiment probing forces between polar-
ized nucleons in a 3He-K comagnetometer, and
unpolarized lead weights spaced 15 cm away [75].

• Mainz experiment [142] using an ultra-sensitive
low-field magnetometer with polarized gaseous
samples of 3He and 129Xe.

We also show highlight two potential dark matter
limits coming from experiments sensitive to (gN

p )2:
the upcoming nuclear magnetic resonance experiment
CASPEr-wind [53], and a concept for a dark matter co-
magnetometer suggested by Ref. [140].

One of the most notable updates since the last com-
pilation of these bounds was presented is the first limit
mentioned above [141]. Although Ref. [86] did not con-
sider bounds at scales larger than 10 m for this inter-
action, extending our scope to larger scales, means this
has improved the constraint at the lightest masses by
around five orders of magnitude. Some experimental
techniques probing around 0.01 eV have also improved
since the last compilation, e.g. from experiments using
ultracold neutrons [143], and hyperpolarized 3He [144].

[O’Hare, Vitagliano 2010.03889]
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We compute the CP-violating (CPV) scalar axion coupling to nucleons in the framework of baryon
chiral perturbation theory and we apply the results to the case of left-right symmetry. The correlated
constraints with other CPV observables show that the predicted axion nucleon coupling is within
the reach of present axion-mediated force experiments for MWR up to 1000 TeV.
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Introduction. The axion experimental program
has received an impressive boost in the last decade.
Novel detection strategies, bridging distant areas of
physics, promise to open for exploration the param-
eter space of the QCD axion in the not-so-far fu-
ture, possibly addressing the issue of strong CP vi-
olation in the Standard Model (SM) via the Peccei-
Quinn (PQ) mechanism [1–4] and the Dark Matter
(DM) puzzle [5–7] (for updated reviews, see [8–10]).
Standard axion searches often rely on highly model-
dependent axion production mechanisms, as in the
case of relic axions (haloscopes) or to a less extent
solar axions (helioscopes); while traditional optical
setups in which the axion is produced in the lab
are still far from probing the standard QCD ax-
ion. A di↵erent experimental approach, as old as
the axion itself [3], consists in searching for axion-
mediated macroscopic forces [11]. Given the typical
axion Compton wavelength �a ⇠ 2 cm (10µeV/ma),
an even tiny scalar axion coupling to matter may
coherently enhance the force between macroscopic
bodies. The sensitivity of these experiments cru-
cially depends on the (pseudo)scalar nature of the
axion field, a matter of ultraviolet (UV) physics.

Within QCD the Vafa-Witten theorem [12] en-
sures that the axion vacuum expectation value
(VEV) relaxes on the ✓e↵ ⌘ hai /fa + ✓ = 0 min-

imum, where ✓ denotes the QCD topological term.
However, extra CP violation in the UV invalidate
the hypotheses of this theorem, and in general one
expects a minimum with ✓e↵ 6= 0. While the CKM
phase in the SM yields ✓e↵ ' 10�18 [13], too tiny to
be experimentally accessible, CPV phases from new
physics can saturate the neutron Electric Dipole Mo-
ment (nEDM) bound |✓e↵ | . 10�10.

Another remarkable consequences of a non-zero
✓e↵ is the generation of CPV scalar axion couplings
to nucleons, gaN , which is probed in axion-mediated
force experiments. In particular, given the nEDM
bound on ✓e↵ the scalar-pseudoscalar combination
(also known as monopole-dipole interaction) o↵ers
the best chance for detecting the QCD axion. Ad-
ditionally, the presence of a spin-dependent inter-
action allows to use Nuclear Magnetic Resonance
(NMR) to enhance the signal. This is the strat-
egy pursued by ARIADNE [14, 15] which aims at
probing the monopole-dipole force via a sample of
nucleon spins. A similar approach is pursued by
QUAX-gpgs [16, 17], using instead electron spins.
ARIADNE will probe |✓e↵ | . 10�10 for axion masses
1 . ma/µeV . 104, a range highly motivated by
DM.

In this Letter, we provide a coherent framework
for computing the CPV scalar axion coupling to nu-
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Introduction. The axion experimental program
has received an impressive boost in the last decade.
Novel detection strategies, bridging distant areas of
physics, promise to open for exploration the param-
eter space of the QCD axion in the not-so-far fu-
ture, possibly addressing the issue of strong CP vi-
olation in the Standard Model (SM) via the Peccei-
Quinn (PQ) mechanism [1–4] and the Dark Matter
(DM) puzzle [5–7] (for updated reviews, see [8–10]).
Standard axion searches often rely on highly model-
dependent axion production mechanisms, as in the
case of relic axions (haloscopes) or to a less extent
solar axions (helioscopes); while traditional optical
setups in which the axion is produced in the lab
are still far from probing the standard QCD ax-
ion. A di↵erent experimental approach, as old as
the axion itself [3], consists in searching for axion-
mediated macroscopic forces [11]. Given the typical
axion Compton wavelength �a ⇠ 2 cm (10µeV/ma),
an even tiny scalar axion coupling to matter may
coherently enhance the force between macroscopic
bodies. The sensitivity of these experiments cru-
cially depends on the (pseudo)scalar nature of the
axion field, a matter of ultraviolet (UV) physics.

Within QCD the Vafa-Witten theorem [12] en-
sures that the axion vacuum expectation value
(VEV) relaxes on the ✓e↵ ⌘ hai /fa + ✓ = 0 min-

imum, where ✓ denotes the QCD topological term.
However, extra CP violation in the UV invalidate
the hypotheses of this theorem, and in general one
expects a minimum with ✓e↵ 6= 0. While the CKM
phase in the SM yields ✓e↵ ' 10�18 [13], too tiny to
be experimentally accessible, CPV phases from new
physics can saturate the neutron Electric Dipole Mo-
ment (nEDM) bound |✓e↵ | . 10�10.

Another remarkable consequences of a non-zero
✓e↵ is the generation of CPV scalar axion couplings
to nucleons, gaN , which is probed in axion-mediated
force experiments. In particular, given the nEDM
bound on ✓e↵ the scalar-pseudoscalar combination
(also known as monopole-dipole interaction) o↵ers
the best chance for detecting the QCD axion. Ad-
ditionally, the presence of a spin-dependent inter-
action allows to use Nuclear Magnetic Resonance
(NMR) to enhance the signal. This is the strat-
egy pursued by ARIADNE [14, 15] which aims at
probing the monopole-dipole force via a sample of
nucleon spins. A similar approach is pursued by
QUAX-gpgs [16, 17], using instead electron spins.
ARIADNE will probe |✓e↵ | . 10�10 for axion masses
1 . ma/µeV . 104, a range highly motivated by
DM.

In this Letter, we provide a coherent framework
for computing the CPV scalar axion coupling to nu-
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[Bertolini, LDL, Nesti 2006.12508]

• Moody-Wilczek formula [Moody, Wilczek PRD30 (1984)]

2

CPV axion couplings to matter. Including both
CP-conserving and CPV couplings, the axion e↵ec-
tive Lagrangian with matter fields (f = p, n, e) reads

Laf = Caf
@µa

2fa
f�

µ
�5f � gaf aff , (1)

where the first term can be rewritten in terms of
a pseudoscalar density as �gaf afi�5f , with gaf =
Cafmf/fa. For protons and neutrons the adimen-
sional axion coupling coe�cients are [23]

Cap = �0.47(3) + 0.88(3) cu � 0.39(2) cd �Ka (2)

Can = �0.02(3) + 0.88(3) cd � 0.39(2) cu �Ka , (3)

where Ka = 0.038(5) cs +0.012(5) cc +0.009(2) cb +
0.0035(4) ct, and where the (model-dependent)
axion couplings to quarks cq are defined via

the Lagrangian term cq
@µa
2fa

q�
µ
�5q. The axion

mass and decay constant are related by ma =
5.691(51)

�
1012 GeV/fa

�
µeV [24, 25].

The origin of the CPV scalar couplings to nucle-
ons gaN (N = p, n) can be traced back to sources
of either PQ or CP violation. These generically
lead to a remnant ✓e↵ 6= 0 which induces CPV cou-
plings. One finds in the isospin limit of the matrix
element [11]

gaN =
✓e↵

fa

mumd

mu +md

hN |uu+ dd|Ni

2
, (4)

where the 1/2 factor was missed in [11] (see
also [20]). A shortcoming of Eq. (4) is that CPV
physics can induce not only ✓e↵ , but also shifts the
chiral vacuum, inducing tadpoles for the ⇡

0, ⌘0, ⌘8
meson fields. These in turn yield extra contribu-
tions to gaN , as to other CPV observables such as
dn. A derivation of gan,p taking all these e↵ects con-
sistently into account is here obtained in the context
of the baryon chiral Lagrangian with axion field, de-
tailed in [22]. We find

gan, p '
4B0 mumd
fa(mu+md)


± (bD + bF )

h⇡
0
i

F⇡
+ bD�3bFp

3

h⌘8i
F⇡

�

q
2

3
(3b0 + 2bD) h⌘0i

F⇡
�

⇣
b0 + (bD + bF )

mu,d

md+mu

⌘
✓e↵

�
,

where for clarity we neglectedmu,d/ms terms. Here,
B0 = m

2

⇡/(md + mu) while the hadronic La-
grangian parameters bD,F are determined from the
baryon octet mass splittings, bD ' 0.07GeV�1,
bF ' �0.21GeV�1 at LO [26]. The value of b0

is determined from the pion-nucleon sigma-term as
b0 ' ��⇡N/4m2

⇡. From the precise determination
in [27, 28] one obtains b0 ' �0.76 ± 0.04GeV�1 at
90% C.L. Given �⇡N ⌘ hN |uu+dd|Ni (mu+md)/2,
the isospin symmetric b0✓e↵ term reproduces exactly
Eq. (4).
Eq. (5) represents our general result, including

isospin-breaking e↵ects, where ✓e↵ and the meson
VEVs are meant to be computed from a given source
of CPV. In general gaN and dn are not proportional,
as it would follow from Eq. (4). Exact cancellations
among the VEVs can happen, as shown for dn in [22,
29].

Axion coupling and RH currents. We explicitly
compute the above CPV axion-matter coupling in
the case of RH currents, which arise in a wide class
of models beyond the SM. Heavy RH currents lead
generally to four quark operators that violate P and

CP as O
qq0

1
= (qq) (q0i�5q0), q = u, d, s [22, 29–32].

Such operators induce meson tadpoles and allow for
a non-vanishing correlator with the topological GG̃

term, thus shifting both chiral and PQ vacua [19].
By including their chiral representation in the axion-
extended baryon chiral Lagrangian and rotating the
fields to the correct vacuum the CPV meson- and
axion-nucleon couplings are then computed.

In LR e↵ective setups the operator Oud
1

generates
typically the leading contribution to dn. We show in
this work that it also generates the dominant con-
tribution to gap,n. We denote its low scale Wilson

coe�cient as C
ud
1

, and similarly for other flavors.
When O

ud
1

is considered we find [22, 30, 32],

h⇡
0
i

F⇡
'

GF
p
2
C
[ud]
1

c3

B0F
2
⇡

mu +md + 4ms

mumd +mdms +msmu

h⌘8i

F⇡
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GF
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2
C
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1

p
3c3

B0F
2
⇡

md �mu

mumd +mdms +msmu

✓e↵ '
GF
p
2
C
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1

2c3
B0F

2
⇡

md �mu

mumd
, (5)

where C
[ud]
1

⌘ C
ud
1

� C
du
1

and h⌘0i = 0. The axion
VEV no longer cancels the original ✓ term, leaving a
calculable ✓e↵ . As expected, the pion VEV is isospin
odd (u $ d), while the other VEVs are even. The
low-energy constant c3 is estimated in the large N

limit as c3 ⇠ F
4

⇡B
2

0
/4. Another estimate, based on

SU(3) chiral symmetry is given in [29]. For the O
us
1

operator we find

h⇡
0
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. (6)
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CPV axion couplings to matter. Including both
CP-conserving and CPV couplings, the axion e↵ec-
tive Lagrangian with matter fields (f = p, n, e) reads

Laf = Caf
@µa

2fa
f�

µ
�5f � gaf aff , (1)

where the first term can be rewritten in terms of
a pseudoscalar density as �gaf afi�5f , with gaf =
Cafmf/fa. For protons and neutrons the adimen-
sional axion coupling coe�cients are [23]

Cap = �0.47(3) + 0.88(3) cu � 0.39(2) cd �Ka (2)

Can = �0.02(3) + 0.88(3) cd � 0.39(2) cu �Ka , (3)

where Ka = 0.038(5) cs +0.012(5) cc +0.009(2) cb +

0.0035(4) ct, and where the (model-dependent)
axion couplings to quarks cq are defined via

the Lagrangian term cq
@µa
2fa

q�
µ
�5q. The axion

mass and decay constant are related by ma =
5.691(51)

�
1012 GeV/fa

�
µeV [24, 25].

The origin of the CPV scalar couplings to nucle-
ons gaN (N = p, n) can be traced back to sources
of either PQ or CP violation. These generically
lead to a remnant ✓e↵ 6= 0 which induces CPV cou-
plings. One finds in the isospin limit of the matrix
element [11]

gaN =
✓e↵

fa

mumd

mu +md

hN |uu+ dd|Ni

2
, (4)

gaN =
✓e↵

fa

mumd

mu +md
hN |uu+ dd|Ni ' ✓e↵

✓
17 MeV

fa

◆
, (5)

where the 1/2 factor was missed in [11] (see
also [20]). A shortcoming of Eq. (5) is that CPV
physics can induce not only ✓e↵ , but also shifts the
chiral vacuum, inducing tadpoles for the ⇡

0, ⌘0, ⌘8
meson fields. These in turn yield extra contribu-

tions to gaN , as to other CPV observables such as
dn. A derivation of gan,p taking all these e↵ects con-
sistently into account is here obtained in the context
of the baryon chiral Lagrangian with axion field, de-
tailed in [22]. We find

gan, p '
4B0 mumd
fa(mu+md)


± (bD + bF )

h⇡
0
i

F⇡
+ bD�3bFp

3

h⌘8i
F⇡

�

q
2

3
(3b0 + 2bD) h⌘0i
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�

⇣
b0 + (bD + bF )

mu,d

md+mu

⌘
✓e↵

�
,

where for clarity we neglectedmu,d/ms terms. Here,
B0 = m

2

⇡/(md + mu) while the hadronic La-
grangian parameters bD,F are determined from the
baryon octet mass splittings, bD ' 0.07GeV�1,
bF ' �0.21GeV�1 at LO [26]. The value of b0

is determined from the pion-nucleon sigma-term as
b0 ' ��⇡N/4m2

⇡. From the precise determination
in [27, 28] one obtains b0 ' �0.76 ± 0.04GeV�1 at
90% C.L. Given �⇡N ⌘ hN |uu+dd|Ni (mu+md)/2,
the isospin symmetric b0✓e↵ term reproduces exactly
Eq. (5).

Eq. (6) represents our general result, including
isospin-breaking e↵ects, where ✓e↵ and the meson
VEVs are meant to be computed from a given source
of CPV. In general gaN and dn are not proportional,
as it would follow from Eq. (5). Exact cancellations
among the VEVs can happen, as shown for dn in [22,
29].

Axion coupling and RH currents. We explicitly
compute the above CPV axion-matter coupling in
the case of RH currents, which arise in a wide class
of models beyond the SM. Heavy RH currents lead
generally to four quark operators that violate P and

CP as O
qq0

1
= (qq) (q0i�5q0), q = u, d, s [22, 29–32].

Such operators induce meson tadpoles and allow for
a non-vanishing correlator with the topological GG̃

term, thus shifting both chiral and PQ vacua [19].
By including their chiral representation in the axion-
extended baryon chiral Lagrangian and rotating the
fields to the correct vacuum the CPV meson- and
axion-nucleon couplings are then computed.

In LR e↵ective setups the operator Oud
1

generates
typically the leading contribution to dn. We show in
this work that it also generates the dominant con-
tribution to gap,n. We denote its low scale Wilson

coe�cient as C
ud
1

, and similarly for other flavors.
When O

ud
1

is considered we find [22, 30, 32],

h⇡
0
i

F⇡
'

GF
p
2
C
[ud]
1

c3

B0F
2
⇡

mu +md + 4ms

mumd +mdms +msmu
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2
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mumd
, (6)

where C
[ud]
1

⌘ C
ud
1

� C
du
1

and h⌘0i = 0. The axion
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CPV axion couplings to matter. Including both
CP-conserving and CPV couplings, the axion e↵ec-
tive Lagrangian with matter fields (f = p, n, e) reads

Laf = Caf
@µa

2fa
f�

µ
�5f � gaf aff , (1)

where the first term can be rewritten in terms of
a pseudoscalar density as �gaf afi�5f , with gaf =
Cafmf/fa. For protons and neutrons the adimen-
sional axion coupling coe�cients are [23]

Cap = �0.47(3) + 0.88(3) cu � 0.39(2) cd �Ka (2)

Can = �0.02(3) + 0.88(3) cd � 0.39(2) cu �Ka , (3)

where Ka = 0.038(5) cs +0.012(5) cc +0.009(2) cb +
0.0035(4) ct, and where the (model-dependent)
axion couplings to quarks cq are defined via

the Lagrangian term cq
@µa
2fa

q�
µ
�5q. The axion

mass and decay constant are related by ma =
5.691(51)

�
1012 GeV/fa

�
µeV [24, 25].

The origin of the CPV scalar couplings to nucle-
ons gaN (N = p, n) can be traced back to sources
of either PQ or CP violation. These generically
lead to a remnant ✓e↵ 6= 0 which induces CPV cou-
plings. One finds in the isospin limit of the matrix
element [11]

gaN =
✓e↵

fa

mumd

mu +md

hN |uu+ dd|Ni

2
, (4)

where the 1/2 factor was missed in [11] (see
also [20]). A shortcoming of Eq. (4) is that CPV
physics can induce not only ✓e↵ , but also shifts the
chiral vacuum, inducing tadpoles for the ⇡

0, ⌘0, ⌘8
meson fields. These in turn yield extra contribu-
tions to gaN , as to other CPV observables such as
dn. A derivation of gan,p taking all these e↵ects con-
sistently into account is here obtained in the context
of the baryon chiral Lagrangian with axion field, de-
tailed in [22]. We find

gan, p '
4B0 mumd
fa(mu+md)


± (bD + bF )

h⇡
0
i

F⇡
+ bD�3bFp

3

h⌘8i
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�

q
2

3
(3b0 + 2bD) h⌘0i
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�
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b0 + (bD + bF )

mu,d

md+mu

⌘
✓e↵

�
,

where for clarity we neglectedmu,d/ms terms. Here,
B0 = m

2

⇡/(md + mu) while the hadronic La-
grangian parameters bD,F are determined from the
baryon octet mass splittings, bD ' 0.07GeV�1,
bF ' �0.21GeV�1 at LO [26]. The value of b0

is determined from the pion-nucleon sigma-term as
b0 ' ��⇡N/4m2

⇡. From the precise determination
in [27, 28] one obtains b0 ' �0.76 ± 0.04GeV�1 at
90% C.L. Given �⇡N ⌘ hN |uu+dd|Ni (mu+md)/2,
the isospin symmetric b0✓e↵ term reproduces exactly
Eq. (4).
Eq. (5) represents our general result, including

isospin-breaking e↵ects, where ✓e↵ and the meson
VEVs are meant to be computed from a given source
of CPV. In general gaN and dn are not proportional,
as it would follow from Eq. (4). Exact cancellations
among the VEVs can happen, as shown for dn in [22,
29].

Axion coupling and RH currents. We explicitly
compute the above CPV axion-matter coupling in
the case of RH currents, which arise in a wide class
of models beyond the SM. Heavy RH currents lead
generally to four quark operators that violate P and

CP as O
qq0

1
= (qq) (q0i�5q0), q = u, d, s [22, 29–32].

Such operators induce meson tadpoles and allow for
a non-vanishing correlator with the topological GG̃

term, thus shifting both chiral and PQ vacua [19].
By including their chiral representation in the axion-
extended baryon chiral Lagrangian and rotating the
fields to the correct vacuum the CPV meson- and
axion-nucleon couplings are then computed.

In LR e↵ective setups the operator Oud
1

generates
typically the leading contribution to dn. We show in
this work that it also generates the dominant con-
tribution to gap,n. We denote its low scale Wilson

coe�cient as C
ud
1

, and similarly for other flavors.
When O

ud
1

is considered we find [22, 30, 32],

h⇡
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, (5)

where C
[ud]
1

⌘ C
ud
1

� C
du
1

and h⌘0i = 0. The axion
VEV no longer cancels the original ✓ term, leaving a
calculable ✓e↵ . As expected, the pion VEV is isospin
odd (u $ d), while the other VEVs are even. The
low-energy constant c3 is estimated in the large N

limit as c3 ⇠ F
4

⇡B
2

0
/4. Another estimate, based on

SU(3) chiral symmetry is given in [29]. For the O
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operator we find
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• From LO bary-meson chiral Lagrangian
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A new master formula
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cleons in terms of new sources of CP violation be-
yond the SM. This is done in the framework of the
baryon chiral Lagrangian that allows us to compute
all contributions of meson tadpoles and ✓e↵ at once,
as well as isospin-breaking e↵ects. In comparison to
previous works [11, 18–20], the contributions of the
pion tadpole induced by the QCD dipole operator
was estimated in [18] by naive dimensional analysis
and in [19] using current algebra techniques, while
isospin breaking was considered in [20] for ✓e↵ with-
out meson tadpoles. Our result is general and can be
systematically applied to any bosonic representation
of P and CP violating e↵ective operators induced in
extensions of the SM.

We detail our approach in the case of e↵ective
operators from RH currents, and then apply the re-
sults in the minimal Left-Right symmetric model
(LRSM) endowed with a PQ symmetry and P-parity
as LR symmetry. This is an extremely predictive
and motivated case for neutrino masses and addi-
tional CP violation, with an active collider physics
program [21]. We build on the approach detailed in
Ref. [22], which presented a study of the kaon CPV
observables ", "0 and the nEDM (dn) in minimal LR
scenarios. It was found there that the embedding
of a PQ symmetry relaxes the lower bound on the
LR scale just at the upper reach of the LHC. In this
work we show that the present search for the scalar
axion coupling to nucleons provides correlated and
complementary constraints, with a sensitivity to the
LR scale stronger than other CPV observables. Re-
markably, for a non-decoupled LR-scale we obtain

a lower-bound on the gaN coupling, thus setting a
target for present axion-mediated force experiments.

CPV axion couplings to matter. Including both
CP-conserving and CPV couplings, the axion e↵ec-
tive Lagrangian with matter fields (f = p, n, e) reads

Laf = Caf
@µa

2fa
f�

µ
�5f � gaf aff , (5)

where the first term can be rewritten in terms of
a pseudoscalar density as �gaf afi�5f , with gaf =
Cafmf/fa. For protons and neutrons the adimen-
sional axion coupling coe�cients are [23]

Cap = �0.47(3) + 0.88(3) cu � 0.39(2) cd �Ka (6)

Can = �0.02(3) + 0.88(3) cd � 0.39(2) cu �Ka , (7)

where Ka = 0.038(5) cs +0.012(5) cc +0.009(2) cb +
0.0035(4) ct, and where the (model-dependent)
axion couplings to quarks cq are defined via

the Lagrangian term cq
@µa
2fa

q�
µ
�5q. The axion

mass and decay constant are related by ma =
5.691(51)

�
1012 GeV/fa

�
µeV [24, 25].

The origin of the CPV scalar couplings to nucle-
ons gaN (N = p, n) can be traced back to sources
of either PQ or CP violation. These generically
lead to a remnant ✓e↵ 6= 0 which induces CPV cou-
plings. One finds in the isospin limit of the matrix
element [11]

gaN =
✓e↵

fa

mumd

mu +md

hN |uu+ dd|Ni

2
, (8)

gaN =
✓e↵

fa

mumd

mu +md
hN |uu+ dd|Ni ' ✓e↵

✓
17 MeV

fa

◆
, (9)

gaN =
1

2

✓e↵

fa

mumd

mu +md
hN |uu+ dd|Ni '

1

2
✓e↵

✓
17 MeV

fa

◆
(10)

where the 1/2 factor was missed in [11] (see
also [20]). A shortcoming of Eq. (10) is that CPV
physics can induce not only ✓e↵ , but also shifts the
chiral vacuum, inducing tadpoles for the ⇡

0, ⌘0, ⌘8
meson fields. These in turn yield extra contribu-

tions to gaN , as to other CPV observables such as
dn. A derivation of gan,p taking all these e↵ects con-
sistently into account is here obtained in the context
of the baryon chiral Lagrangian with axion field, de-
tailed in [22]. We find

gan, p '
4B0 mumd
fa(mu+md)


± (bD + bF )

h⇡
0
i

F⇡
+ bD�3bFp

3

h⌘8i

F⇡
�

q
2

3
(3b0 + 2bD) h⌘0i

F⇡
�

⇣
b0 + (bD + bF )

mu,d

md+mu

⌘
✓e↵

�
,

where for clarity we neglectedmu,d/ms terms. Here,
B0 = m

2

⇡/(md + mu) while the hadronic La-
grangian parameters bD,F are determined from the
baryon octet mass splittings, bD ' 0.07GeV�1,
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4

that absorbed the topological term). Within the
range of values of the hadronic parameters here con-
sidered it leads to a gap coupling about 60% larger
than gan. Finally, the results in Eqs. (5)–(10) are
general enough to apply to any PQ completion of
the e↵ective LR scenario, since the model-dependent
derivative axion couplings do not enter.

Axion-mediated forces. Monopole-dipole forces
turn out to be the best combination to test the
QCD axion. In fact, monopole-monopole interac-
tions are doubly suppressed in ✓e↵ , while dipole-
dipole forces have large backgrounds from ordinary
magnetic forces. State of the art limits on monopole-
dipole forces can be found in Ref. [50]. The re-
sulting lower bounds are at most at the level of

fa &
p

✓e↵ 1013 GeV. Better constraints are ac-
tually obtained by combining limits on monopole-
monopole interactions with astrophysical limits of
pseudoscalar couplings [51].
A new detection concept, by the ARIADNE col-

laboration [14, 15], plans to use NMR techniques to
probe the axion field sourced by unpolarized Tung-
sten 184W and detected by laser-polarized 3He. In
its current version, the experiment is sensitive to
ga184W ga3He. The CPV coupling axion coupling
to Tungsten is approximated by ga184W ' 74(gap +
gae)+110gan [10], where for the QCD axion gae = 0.
It is convenient to define an average coupling to nu-
cleons (weighting isospin breaking) as

gaN ⌘
74gap + 110gan

184
. (11)

The CP-conserving term, ga3He = gan, is only sen-
sitive to neutrons because protons and electrons are
paired in the detection sample. Thanks to NMR,
ARIADNE can improve the sensitivity of previous
searches and astrophysical limits by up to two orders
of magnitude in (gaNgan)1/2 (for ma 2 [1, 104]µeV
depending on the spin relaxation time), before pass-
ing to a scaled-up version with a larger 3He cell
reaching liquid density.

CPV probes of LR scale. To analyze the pre-
dicted (gaNgan)1/2 as a function of MWR , we study
the four CPV observables (", "

0, dn, gaN ), while
marginalizing on tan�, the CP phase ↵, and the
sign combinations. As in Refs. [21, 52], we in-
troduce a parameter hi for each observable, nor-
malizing the LR contributions to the experimen-
tal central value (", "0) or upper bound (dn). For
the latter we take the updated 90% C.L. result
dn < 1.8⇥ 10�26 e cm [53]. The LR contributions to
the indirect CPV parameter " in kaon mixing was
thoroughly analyzed in [52] to which we refer for de-
tails. As for the direct CPV parameter "0, the latest
lattice result [54] for the K ! ⇡⇡ matrix element
of the leading QCD penguin operator supports the
early chiral quark model prediction [55, 56], con-
firmed by the resummation of the pion rescatter-
ing [57], as well as more recent chiral Lagrangian
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FIG. 1. Regions in the LR-DFSZ model of the CPV
axion nucleon coupling probed by ARIADNE.

reassessments [58, 59], including a detailed analysis
of isospin breaking. All of the above point to a SM
prediction in the ballpark of the experimental value,
albeit with a large error [60]. We consider below two
benchmark cases: 50% and 15% of "0 accounted for
by LR physics [61, 62]. The model-dependent pseu-
doscalar coupling gan in the monopole-dipole inter-
action is taken for the case of the LR-DFSZ setup.
Similar results are obtained for LR-KSVZ, for which
however gan is compatible with zero, Eq. (3).

The average nucleon coupling in Eq. (11) is com-
puted using Eq. (10). With the updated dn bound
and including the strange quark contributions, we
obtain

gaN =
|⇣|

10�5

h
6.4 sin↵ud + 0.7 sin↵us

i
ma

100µeV
10�12

hdn =
|⇣|

10�5

h
7.1 sin↵ud � 3.4 sin↵us

i

h"0 =
|⇣|

10�5

h
9.2 sin↵ud + 9.2 sin↵us

i
, (12)

where ↵qq0 = ↵� ✓q � ✓q0 . We recall that all phases
✓q depend on a single parameter. Also, ↵ud ' ↵us

modulo ⇡ for MWR . 30TeV from the h" con-
straint [52]. There is clearly a tight correlation be-
tween the above observables.

The allowed regions of (gaNgan)1/2 as a function
of MWR are shown in Fig. 1, together with the reach
of three di↵erent phases of ARIADNE (1s, 1000s,
projected) [14, 15] and the SQUID sensitivity limit.
We scale the coupling combination by fa ⇠ 1/ma,
making the prediction independent from it. With
this normalization the experiment sensitivities vary
mildly with ma. In the plot we show their best
reach, attained for ma ⇠ 102÷3

µeV. Present limits
from astrophysics [51] and monopole-dipole experi-
ments [50] lie above the plot and are hence ine↵ec-
tive to probe the LR scale.

The predicted regions depend on the constraints
on h", h"0 and hdn . In the colored area the LR con-
tribution to "

0 is allowed up to 15%, while in light
gray one it is extended to 50%, given the present the-
oretical uncertainties. In both cases, a lower bound
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depending on the spin relaxation time), before pass-
ing to a scaled-up version with a larger 3He cell
reaching liquid density.
To provide an example of the testing power of

these future experiments, as a definite model of RH
currents we consider the paradigmatic case of the
LR symmetric model (LRSM), with a PQ symmetry.

Application to Left Right models. In the min-
imal LRSM [35–39], the gauge group SU(3)C ⇥

SU(2)L ⇥ SU(2)R ⇥ U(1)B�L is spontaneously bro-
ken by a scalar triplet VEV

⌦
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= vR and even-

tually by the VEVs of a bidoublet field h�i =
diag {v1, ei↵v2}, where v

2 = v
2

1
+ v

2

2
⌧ v

2

R sets the
electroweak scale and tan� ⌘ t� = v2/v1. The
single phase ↵ is the source of the new CP vio-
lation. An important phenomenological parameter
is the mixing between left and right gauge bosons,
⇣ ' �e

i↵ sin 2�M
2
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/M

2

WR
, bound to |⇣| < 4⇥10�4

from direct search limits on WR.
Born in order to feature the spontaneous origin

of the SM parity breaking, the model is endowed
with the discrete parity P, assumed exact at high
scale and broken spontaneously by vR. P exchanges
the gauge groups, the fermion representations QL

$ QR, and conjugates the bidoublet � $ �†. As
a result, the Yukawa Lagrangian LY = QL(Y � +
Ỹ �̃)QR + h.c. requires hermitean Y , Ỹ . The di-
agonalization of quark masses gives rise to a new
CKM matrix VR in the WR charged currents. Only
for nonzero ↵ the masses are non-hermitean and VR

departs from the standard VL. An analytical form
for VR is found perturbatively in the small param-
eter y = |s↵ t2� | . 2mb/mt ' 0.05 [40, 41]. While
the left and right mixing angles can be considered
equal for our aims, VR has new external CP phases.
For later convenience we denote them as ✓q, with
VR = diag{ei✓u, ei✓c, ei✓t}VL diag{ei✓d, ei✓s, ei✓b}. All
✓q are small deviations of O(y) around 0 or ⇡, cor-
responding to 32 physically di↵erent sign combina-
tions of the quark mass eigenvalues [22, 41]. For
details on the relevant features of the minimal LR
model we refer to [21, 22] and references therein.
There are two qualitatively di↵erent ways of im-

plementing a U(1)PQ symmetry in LR models, fol-
lowing either the KSVZ [42, 43] or the DFSZ [44, 45]
variant. In the former, the field content of the mini-
mal LRSM remains uncharged under U(1)PQ, and
the pseudoscalar axion couplings to nucleons are
given by Eqs. (4)–(5) with cq = 0.
On the other hand, the construction of a LR-

DFSZ model, with SM quarks carrying PQ charges,
turns out to be less trivial. This is due mainly to
the fact that chiral PQ charges XQL 6= XQR forbid
one of the Yukawa terms in LY , implying unphysical
mass matrices. Hence, either the LR field content
must be extended [46, 47] (e.g. with a second bidou-
blet) or e↵ective operators must be invoked in the
Yukawa sector [48, 49]. Finally, a complex singlet S
to decouple the PQ scale from vR and v is needed.

A complete ultraviolet LR-DFSZ model description
is not needed here [50], it is enough to report the
axion couplings to quarks and charged-leptons,

cu, c, t =
1

3
sin2 � , cd, s, b = ce, µ, ⌧ =

1

3
cos2 � .

(14)
While the minimal LR model with P is a predic-

tive theory even in the strong CP sector [51, 52],
the axion hypothesis can relax predictivity in the
fermion as well as in the strong CP sector, if other
fields as a second bidoublet are introduced. We stick
below to the LR-KSVZ or the LR-DFSZ case with
a single bidoublet and a nonrenormalizable Yukawa
term. The axion washes out ✓ (and renormaliza-
tions [51, 53]), and observables such as e.g. dn and
gan,p, are tightly predicted.

With this choice, quark masses set as usual a per-
turbativity limit on t� , mainly due to mt/mb: one
finds t� . 0.5 [54] or & 2. The two ranges are
equivalent in the minimal model (swapping Y and
Ỹ ) but they become physically di↵erent when the
PQ symmetry acts on �. Within this perturbative
domain the pseudoscalar axion coupling to nucleons
Eqs. (4)–(5) can never vanish.

Axion and CPV probes of LR scale. The RH
currents in the LRSM induce the axion couplings
described above. For details on the LRSM short-
distance and the extended chiral Lagrangian we re-
fer to [22]. We just recall that the short-distance

coe�cients C
qq0

i depend on the relevant CKM en-
tries, carrying the additional CP phases of VR, and

on the LR gauge mixing ⇣. The C
qq0

i are renormal-
ized at the 1GeV hadronic scale and matched with
the chiral low energy constants.

To analyze the predicted (gangaN )1/2 as a func-
tion of MWR , we study together the four CPV ob-
servables (", "

0, dn, gaN ), while marginalizing on
tan�, the CP phase ↵, and the 32 signs. As in
Refs. [22, 55], we introduce a parameter hi for each
observable, normalizing the LR contributions to the
experimental central value (", "

0) or upper bound
(dn). For the latter we take the updated 90%
C.L. result dn < 1.8⇥ 10�26 e cm [56]. The LR con-
tributions to the indirect CPV parameter " in kaon
mixing was thoroughly analyzed in [55] to which
we refer for details. For the direct CPV parame-
ter "

0 the latest lattice result [57] for the K ! ⇡⇡

matrix element of the leading QCD penguin oper-
ator supports the early chiral quark model predic-
tion [58, 59], confirmed by the resummation of the
pion rescattering [60], as well as more recent chiral
Lagrangian reassessments [61, 62], including a de-
tailed analysis of isospin breaking. All of the above
point to a SM prediction in the ballpark of the ex-
perimental value, albeit with a large error [63]. We
consider below two benchmark cases: 50% and 15%
of "0 induced by LR physics [64, 65].

The average CPV nucleon coupling in Eq. (11)
is computed using Eq. (10). With the updated dn
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one of the Yukawa terms in LY , implying unphysical
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must be extended [46, 47] (e.g. with a second bidou-
blet) or e↵ective operators must be invoked in the
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term. The axion washes out ✓ (and renormaliza-
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domain the pseudoscalar axion coupling to nucleons
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Towards a PQ theory
• U(1)PQ often imposed ‘by hand’, while a proper PQ theory should: 

1. realise the PQ as an accidental symmetry

2. protect the U(1)PQ against UV sources of PQ breaking (PQ-quality problem)

3 Peccei-Quinn quality

After having obtained the U(1)PQ to arise accidentally in the renormalizable Lagrangian,
one should worry about possible sources of PQ breaking in the UV, which are often
parametrized via e↵ective operators suppressed by a cut-o↵ scale ⇤UV. A simple estimate
shows that U(1)PQ should be preserved by operators up to dimension d & 9, assuming
for instance ⇤UV ⇠ MPl and an axion decay constant fa ⇠ 109 GeV. This is obtained by
requiring that the energy density from UV sources of PQ breaking is about 10�10 times
smaller than the energy density of the QCD axion potential

✓
fa

⇤UV

◆d�4

f
4

a . 10�10⇤4

QCD, (3.1)

so that the induced axion VEV displacement from zero is hai /fa . 10�10, within the
bound from the neutron electric dipole moment (nEDM).

Interestingly, the gauging of SU(3)f provides some protection also beyond the renor-
malizable level. Given the field content in Table 1, we proceed to identify at which
operator level the U(1)PQ gets broken in the scalar potential. The lowest-dimensional
PQ-breaking operators are found to be:

�
6

10 (d = 6) , (3.2)

�
6

126
(d = 6) , (3.3)

�
6

16�
3

10 (d = 9) , (3.4)

�
6

16�
3

126
(d = 9) , (3.5)

�
12

16 (d = 12) . (3.6)

This classification can be easily understood in terms of the action of the Z4 ⇥ Z3 center
as displayed in Table 1: invariance under Z3 requires a number of fields that is a multiple
of 3 and after that one has to compensate powers in order to get a Z4 singlet. Of
course, it can be checked explicitly that such operators can be written in terms of lengthy
SO(10)⇥SU(3)f contractions.5 Note that the d = 9 operators �6

16�
?3

10 and �
6

16�
?3

126
are also

allowed by gauge invariance, but they preserve U(1)PQ.
Some comments are in order, regarding the impact of those operators on the PQ

quality problem:

• �10 can only develop electroweak scale VEVs, hence the Planck-suppressed operators
�
6

10 and �
6

16�
3

10 do not pose a problem regarding the PQ quality issue. Hence, we only
need to worry about operators containing “large” VEVs compared to the electroweak
scale, i.e. �16 and �

126
.

5For example:

�6
126 ⌘ ✏i1...i10(10) ✏j1...j10(10) ✏k1...k10

(10) ✏a1a2a3

(3) ✏b1b2b3(3) ✏c1c2c3(3) ✏d1d2d3

(3) (3.7)

⇥ (�126)
i1i2i2i4i5
a1b1

(�126)
i6i7i8i9i10
a2b2

(�126)
j1j2j2j4j5
a3b3

(�126)
j6j7j8j9j10
c1d1

(�126)
k1k2k2k4k5
c2d2

(�126)
k6k7k8k9k10
c3d3

.
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Accidental SO(10) axion
• Automatic U(1)PQ in SO(10), upon gauging the flavour group SU(3)f
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• Automatic U(1)PQ in SO(10), upon gauging the flavour group SU(3)f
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(born as a PQ symmetry, due to chiral SO(10) embedding)
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Accidental SO(10) axion
• Automatic U(1)PQ in SO(10), upon gauging the flavour group SU(3)f

Field Lorentz SO(10) Z4 SU(3)f Z3 U(1)PQ
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Table 1: Field content of the model and relative transformation properties under SO(10)⇥
SU(3)f , its Z4⇥Z3 center and the accidental U(1)PQ. In light gray, mirror fermions which
ensure SU(3)3f anomaly cancellation (cf. Sect. 5.1).
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2 -terms stands for quartics obtained by “squaring” V2 (including all possible lin-
early independent invariants made by the same amount of fields). Note that the operator
�
2
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?
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(�45) is not allowed by SO(10) invariance, but due to the interplay with the �10

there is a su�cient amount of terms not invariant under U(1) re-phasings so that a sin-
gle abelian global symmetry survives accidentally in the scalar potential. This can be
identified with the U(1)PQ, with transformation properties

�16 ! e
�i↵

�16 , �45 ! �45 , (2.7)

while those of �10 and �
126

are given in Eq. (2.3). To appreciate the role of the SU(3)f
symmetry in constraining the form of the scalar potential, note that in absence of the
latter the following PQ-breaking operators would be allowed by SO(10) invariance:
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The origin of the accidental U(1)PQ can be neatly understood in terms of the action of
the centers4 of SO(10) and SU(3)f , which are respectively Z4 and Z3. The transformation
properties of the model fields under the gauge and accidental symmetries are summarized
in Table 1. Note that for consistency we have introduced 16 (SO(10)-singlet) mirror
fermions in the 3 of SU(3)f , to ensure SU(3)3f anomaly cancellation. Their spectrum will
be discussed in Sect. 5, together with SU(3)f breaking.

4The center Z(G) of a group G is the set of elements that commute with every element of G.

Z(SU(3)) = Z3, which is generated by e2⇡i/3 3; Z(SO(10)) = Z4, which is generated by i�0, with
�0 denoting the “chirality” operator in SO(10).
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Figure 1: Axion-photon coupling (Eq. (A.26) with E/N = 8/3) and sensitivity of present
(full lines) and future (dashed lines) axion experiments. The accidental SO(10) axion mass
window (in the pre-inflationary PQ breaking scenario) corresponds toma 2 [7⇥10�8

, 10�3]
eV. A high-quality PQ symmetry is obtained for ma & 0.02 eV (in the post-inflationary
PQ breaking scenario). Axion limits from [41].

lighter and they might eventually contribute to dark radiation if once in thermal contact
with the SM via SU(3)f interactions.

Of course, it would be interesting to study whether the above flavour dynamics could
be predictive for reproducing SM fermion masses and mixings. Here, we stress that the
present approach to flavour di↵ers from more standard ones (such as e.g. the one of
Ref. [39]), in which the Yukawas transform under SU(3)f , being themselves flavon fields
interacting with SM fields via e↵ective operators. In our case instead it is crucial, in order
to obtain an automatic U(1)PQ, that the flavour dynamics acts at the renormalizable level
and that a single Higgs representation breaks both SO(10) and SU(3)f . Apart for Ref. [40],
we are not aware of quantitative analyses of fermion masses and mixings following such
an approach and a detailed investigation of this question is left for future studies.

6 Axion phenomenology

In this Section we describe the phenomenological profile of the accidental SO(10) axion.
Axion couplings to photons and SM matter fields have been computed in App. A (respec-
tively Eq. (A.26) and Eqs. (A.30)–(A.31)). For the present scenario, the axion coupling
to photons represents the main experimental probe (as shown in Fig. 1). The mass range
of the accidental SO(10) axion is constrained by various considerations, depending on
whether the PQ symmetry is broken before or after inflation.

14

a PQ theory could tell us where to search in an otherwise huge param. space !

[LDL, 2008.09119]
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Conclusions
• QCD axion: 2 birds with 1 stone

1. Strong CP problem 

2. Dark Matter

• Experimentally driven phase 

we are entering now the preferred window for the QCD axion 

• Take home message

axion couplings are UV dependent (enhanced couplings, flavour, CPV, etc.)

if an “axion-like particle” will be ever discovered, 
it would be tempting to think that it had something to do with the strong CP problem  
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XENON1TXENON1T anomaly as a hint of solar axions

We will focus on the coupling with electrons and photons!

Theoretically motivated to explain 
dinamically the origin of the 

strong CP problem

ABC emission, controlled by gae, is the main component

Primakoff emission, controlled by ga , is a non negligible componentγ

57Fe emission, controlled by gaN, is a negligible component
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We argue that the interpretation in terms of solar axions of the recent XENON1T excess is not
tenable when confronted with astrophysical observations of stellar evolution. We discuss the reasons
why the emission of a flux of solar axions su�ciently intense to explain the anomalous data would
radically alter the distribution of certain type of stars in the color-magnitude diagram in first place,
and would also clash with a certain number of other astrophysical observables. Quantitatively, the
significance of the discrepancy ranges from 3.3� for the rate of period change of pulsating white
dwarfs, and exceeds 19� for the R-parameter and for MI,TRGB.

Introduction. The XENON1T collaboration [1] has re-
ported an excess in low-energy electronic recoil data be-
low 7 keV and peaking around 2-3 keV. The collaboration
cautions that the excess could be due to an unaccounted
background from � decays due to a trace amount of tri-
tium, but they also explore the possibility that the signal
is due to di↵erent types of new physics. The most intrigu-
ing interpretation, which also provides the best fit to the
data, is given in terms of solar axions, favoured over the
background-only hypothesis at the 3.5� level.

Three production mechanisms contribute to the solar
axion flux: i) Atomic recombination and deexcitation,
Bremsstrahlung, and Compton (ABC) interactions [2]
that are controlled by the axion-electron coupling gae,
ii) Primako↵ conversion of photons into axions [3] in-
duced by the axion-photon coupling ga� , iii) axion emis-
sion in the M1 nuclear transition of 57Fe [4] that pro-
duces mono-energetic 14.4 keV axions, and is controlled
by and e↵ective axion-nucleon coupling ge↵an. Since this
last process cannot play any role in producing events be-
low 10 keV, we will not include in our analysis astrophys-
ical observables sensitive to ge↵an. Conversely, axions pro-
duced through i) and ii) feature a wide spectrum peaking
around a few keV. The production rates are independent
of the axion mass for ma

<
⇠ 100 eV. As regards detection,

electron recoils occur via the axio-electric e↵ect which is
controlled by gae. Because of this, and because the loca-
tion of the peak around 2-3 keV corresponds roughly to
the maximum of the axion energy spectrum for the ABC
processes, the Primako↵ and 57Fe components are both
allowed to be absent as long as there is a nonzero ABC
component. This selects gae as the crucial coupling to at-
tempt to explain the data in terms of the QCD axion [5–
8].1 Taken at face value the strength of the XENON1T

1 Our results apply also to explanations based on generic axion-
like particles, for which there is no theoretical relation between
ma and the coupling strengths, and that are unrelated to the
strong CP problem.

excess requires gae >
⇠ 10�12, corresponding to an axion

decay constant fa <
⇠ 108 GeV, and in turn to an axion

mass ma >
⇠ 0.06 eV. However, astrophysical considera-

tions indicate that such a large value of gae is not tenable,
as stellar evolution would be drastically a↵ected by the
exceedingly large energy losses via axion emission. The
strategy that we will follow consists in assuming that
gae and ga� lie in the 90% C.L. regions resulting from
the XENON1T fit [1]. We will then estimate the e↵ects
of extra energy losses on a set of astrophysical observ-
ables related to Red Giants Branch (RGB) and Horizon-
tal Branch (HB) stars, and to White Dwarfs (WDs).

Astrophysical observables and axion couplings.

The axion interactions with photons and electrons read

Lint =
1

4
ga�aFµ⌫ F̃

µ⌫ + gae
@µa

2me
e�µ�5e , (1)

where the couplings can be related to model-dependent
dimensionless coe�cients as ga� = ↵

2⇡
Ca�

fa
and gae =

Cae
me
fa

. In benchmark axion models Ca� and

Cae are typically of O(1), although strong enhance-
ments/suppressions are possible in specific cases [9–13].
In the following, we will adopt the notation g�10 ⌘

ga� ⇥
�
1010 GeV

�
and ge13 ⌘ gae ⇥ 1013. Axions with

couplings as large as ge13 ⇠ 10, g�10 ⇠ 1 would be abun-
dantly produced in several types of stars without being
trapped, and thus would e�ciently drain energy from the
star cores
Astrophysical considerations have been systematically

used to place severe bounds on light, weakly interacting
particles, such as neutrinos and axions [14]. Noticeably,
a set of anomalous observations have recently led to spec-
ulations that new physics is at play [13, 15, 16], and the
axion case appears especially compelling [17, 18]. The
most e↵ective observables to constrain gae and ga� are
described below.
• Tip of RGB stars in globular cluster. We denote by

MI,TRGB the luminosity of the tip of the RGB in globu-
lar clusters. RG stars are characterized by a He core and
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Solar axion hypoth. favoured at 3.5σ
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XENON1T
Solar axion hypoth. favoured at 3.5σ

Untenable, when confronted with 
astrophysics !

[LDL, Fedele, Giannotti, Mescia, Nardi 2006.12487 (Phys. Rev. Lett.)]
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FIG. 2. XENON1T 90% C.L. fit (blue region). 3� exclu-
sion limit from solar data (grey hatched region). 2� LUX
limit (grey dashed line) and CAST limits for ma < 20meV
and ma < 0.7 eV (green lines). Individual 2� limits from R-
parameter, TRGB, WDLF, WDVs (grey lines) and 2� global
bound from astrophysics (red region).

Observable Measured Expected Tension

R-parameter 1.39± 0.03  0.83 (ge13 = 9) 19�?

MLMC
I,TRGB [mag] �4.047± 0.045  �4.92 (ge13 = 9) 19�?

gWDLF
e13  2.8 (3�) 29.7± 4.8 5.6�

⇧̇
(113)
L19�2 3.0± 0.6 57± 16 3.4�

⇧̇
(192)
L19�2 3.0± 0.6 95± 27 3.4�

⇧̇PG1351+489 200± 90 19620± 5730 3.4�

⇧̇G117�B15A 4.2± 0.7 113± 33 3.3�

⇧̇R548 3.3± 1.1 87± 25 3.3�

TABLE I. Measured values of astrophysic observables and
expected ranges, for gae, ga� falling within the 1� region of
the XENON1T fit (ge13 2 [28, 35]). ⇧̇WDi are in units of
[10�15s/s]. For R and MI,TRGB the expected regions and
tensions correspond to ge13 = ge13(ga� = 0) � 9 (see text).

parametrized by means of an e↵ective coupling [13]

g4e13 = g2e13(g
2

e13 + 200g2�10) . (5)

The 90% C.L. (68% C.L.) region of XENON1T is then
well represented by the range ge13 2 [26, 37] (ge13 2

[28, 35]). Varying gae and ga� with the constraint that
ge13 remains within this range, we estimate the range of
values for the astrophysical observables implied by the
XENON1T data, and we confront them with the mea-
sured values. Our results are collected in Table I. For
each observable, the tension given in the fourth column

is evaluated by dividing the di↵erence between the value
implied by the XENON1T data and the astrophysical
determination, by the total uncertainty. Given that the
statistical distributions are at best only approximately
known, these results are only indicative, and have no rig-
orous Gaussian meaning. It is apparent that the large gae
required to fit the XENON1T excess are in strong conflict
with all the astrophysical observables. The discrepancy is
at the level of⇠ 3.4� for the WDVs cooling rates (last five
rows in the Table), and reaches ⇠ 6� for the WDLF in
the third row. As regards the first two rows, the expected
values of Rtheo and of M theo

I,TRGB
reported in the table are

obtained respectively from Eq. (3) and Eq. (2) by setting
ge13 = 9, rather than by inserting the much larger values
ge13 ⇠ 30 needed to account for the XENON1T data.
This is a precautionary procedure that we have adopted
to avoid estrapolating Eqs. (2) and (3) to values of gae
for which the quantitative accuracy of these parametriza-
tions cannot be easily assessed. We have then marked
with a ? the corresponding tensions. We expect that val-
ues of the observables in agreement with the XENON1T
solar axion fit would result in much larger tensions. For
example, already for ge13 ⇡ 15 Eq. (3) would yield R ⇡ 0,
corresponding to a complete depopulation of the HB, and
46� away from observations.

Conclusions. In this work, we have explained why as-
trophysical observations firmly exclude that solar axions
could account for the XENON1T excess. Other explana-
tions based on solar production of new light particles or
on modifications of neutrino properties (such as a neu-
trino magnetic moment) are also prone to severe astro-
physical constraints, and as long as the corresponding
new physics processes would also occur in RG, HB and
WD stellar cores, they can likewise be excluded.3

If it will be eventually found that the tritium back-
ground or other systematic e↵ects [42, 43] are not respon-
sible for the excess, other mechanisms involving either
absorption or scattering of new particles of non-solar ori-
gin o↵ target electrons [44–48], although less compelling
than the QCD axion, might still provide viable explana-
tions for the XENON1T data.

Note added. After completing this letter, Refs. [49, 50]
appeared claiming that besides the axio-electric e↵ect,
also the inverse Primako↵ process can contribute to the
detection of solar axions by XENON1T. This would re-
lax the best fit region towards lower values of gae at
the cost of increasing ga� . This can relax the tension
with astrophysical bounds, however, using the results of
Ref. [49, 50] we have verified that the discrepancy with
the R-parameter remains at least at the level of 8�.

3 Astrophysical constraints could only be evaded in exotic models
in which the couplings strongly depend on the stellar environ-
ment, like the core density and temperature, see e.g. [41].
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trophysical observations firmly exclude that solar axions
could account for the XENON1T excess. Other explana-
tions based on solar production of new light particles or
on modifications of neutrino properties (such as a neu-
trino magnetic moment) are also prone to severe astro-
physical constraints, and as long as the corresponding
new physics processes would also occur in RG, HB and
WD stellar cores, they can likewise be excluded.3

If it will be eventually found that the tritium back-
ground or other systematic e↵ects [42, 43] are not respon-
sible for the excess, other mechanisms involving either
absorption or scattering of new particles of non-solar ori-
gin o↵ target electrons [44–48], although less compelling
than the QCD axion, might still provide viable explana-
tions for the XENON1T data.

Note added. After completing this letter, Refs. [49, 50]
appeared claiming that besides the axio-electric e↵ect,
also the inverse Primako↵ process can contribute to the
detection of solar axions by XENON1T. This would re-
lax the best fit region towards lower values of gae at
the cost of increasing ga� . This can relax the tension
with astrophysical bounds, however, using the results of
Ref. [49, 50] we have verified that the discrepancy with
the R-parameter remains at least at the level of 8�.

3 Astrophysical constraints could only be evaded in exotic models
in which the couplings strongly depend on the stellar environ-
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• Rate of period change of WD variables. WD variables
(WDV) are WDs whose luminosity varies periodically,
with a period ⇧ ranging from a few to several minutes.
Because the oscillation period depends on the luminosity,
a secular change of the period ⇧̇ tracks the rate of de-
crease of the star luminosity. To a very good approxima-
tion ⇧̇/⇧ is proportional to the cooling rate Ṫ /T , hence
a measurement of ⇧̇ allows to constrain possible sources
of extra cooling (see Ref. [30] for a review). Here we
consider four WDVs: G117-B15A [31], R548 [32], L19-
2 [33] (for two pulsation modes), and PG1351+489 [34].
We list in Table I the corresponding measured values of
⇧̇/⇧. Theoretically, the rate of change in the WD pul-
sating period as a function of ge13 can be parametrized
as [17]: ⇧̇theo

WDi
= ai + bi g2e13, where ai and bi are param-

eters specific for each WD.

XENON1T vs. Astrophysics. Fig. 1 shows contours
of the axion energy-loss rates per unit mass in a temper-
ature vs. density plane, for a pure He plasma. Contour
iso-lines for energy-loss due to Compton (dashed blue)
and Bremsstrahlung (solid red) processes, which are con-
trolled by gae, are also shown. For reference, we have
fixed ge13 = 4.3, which corresponds to the RGB bound
from M5 [19]. Energy loss rates for di↵erent values of gae
can be easily obtained recalling that they scale as g2ae.
The labelled disks in the figure show the position of the
RGB tip and of a typical HB star (of mass 0.8M�) and
a range of WDs with luminosities varying from 5⇥ 10�4

to 5 ⇥ 10�1 L� (dashed gray rectangle). The blue disk
indicates the temperature/density of a typical WD vari-
able [30]. The location of the Sun is marked with a yellow
disk on top of the broken gray line which locates Main
Sequence (MS) stars of di↵erent masses. Note that since
MS stars, including the Sun, are supported by H burn-
ing cores, their position with respect to the energy loss
iso-lines for the He plasma is approximate, and slightly
shifted towards larger rates. The picture shows clearly
that the Sun is a relatively faint axion emitter with re-
spect to other stellar objects, so that values ge13 >

⇠ 10 as
required to account for the XENON1T excess would un-
avoidably turn other stars into bright ‘axion lighthouses’.
The RGB would extend to higher luminosities than the
ones observed, and the decreased duration of the He
burning phase would depopulate the HB, to the point
that for smaller clusters with relatively few stars, already
for ge13 ⇠ 15 we would expect R ⇡ 0. In short, regard-
less of other details, a value ge13 ⇠ 30 would definitely
destroy the agreement between stellar evolution models
and the observed CMD.

Quantifying the tension. The projections of the
XENON1T 90% C.L. best fit region onto the (gae, ga�),
(gae, ge↵an) and (gaega� , gaege↵an) planes are given in Fig. 8
of Ref. [1]. Since only gae and ga� can be responsible
for the anomalous XENON1T data below 7 keV, we fo-
cus on the best fit region for these two couplings, that
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FIG. 1. Contours of the axion energy-loss rates per unit mass,
in erg g�1s�1, for a pure He plasma and ge13 = 4.3.

corresponds the blue band in Fig. 2. In the figure we also
show the 2� limits on gae, ga� obtained from each single
astrophysical observable, as well as the result of a global
fit to the entire set of stellar cooling data. The curve
depicting the CAST [35] limit in the (gae, ga�) plane in
Ref. [1] was taken from Ref. [36]. We update this bound
with the most recent CAST results [37] which, in the
gae ' 0 limit, and for ma

<
⇠ 20meV (ma

<
⇠ 0.7 eV),

correspond to ga� < 0.66 (2.0) ⇥ 10�10 GeV�1. These
limits are represented in Fig. 2 by the two green lines,
in which we have folded in the e↵ects of a non-zero gae
that would increase the production of solar axions and
strengthen the bounds. The vertical dashed line is LUX
limit [38]. The grey horizontal line at g�10 = 4.1 corre-
sponds to the limit from a global fit to solar data, which
includes the measured flux of 8B and 7Be neutrinos as
well as additional data inferred from helioseismology ob-
servations [39]. This is about a factor of two stronger
than the bound labeled “solar ⌫” in the upper panel of
Fig. 8 in Ref. [1] which is taken from Ref. [40].2 To assess
quantitatively the discrepancy between the values of gae
and ga� needed to reproduce the XENON1T excess we
proceed as follows: we first extract the allowed ranges
from the 90% C.L. region of Ref. [1] not excluded by so-
lar data (the blue area in Fig. 2). This region can be

2 For values of the couplings allowed by astrophysics the solar ax-
ion luminosity La is a negligible fraction of the total luminosity,
for example La ⇡ 1.85⇥10�3g2�10L� for Primako↵ emission [40].
Hence, e↵ects on the Sun lifetime are also negligible.

[LDL, Fedele, Giannotti, Mescia, Nardi 2006.12487 (Phys. Rev. Lett.)]
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Ec/Nc = 122/3 (37)

CQ 6= I (38)

Va � vEW (39)

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put

 PQ charges carried by a vector-like quark Q = QL + QR  

 [original KSVZ model assumes Q ~ (3,1,0)]
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the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@
µ
J
PQ

µ
=

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (39) anomaly coeff.

5

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (40)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (41)

E =
X

Q

(XL � XR) Q
2
Q
, (42)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

Q
T

b

Q
= T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)em charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1
p
2
[⇢(x) + Va] e

ia(x)/Va , (43)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = LSM + LPQ � VH� + LQq , (44)

where LSM is the SM Lagrangian,

LPQ = |@µ�|
2 +Qi /DQ� (yQ Q

L
QR�+H.c.) (45)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH� contains the new scalar couplings:

VH� = �µ
2
�|�|

2 + ��|�|
4 + �H�|H|

2
|�|2 . (46)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q

decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in LPQ possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)� symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! e

i�
QL,R and � ! �. If U(1)Q were an exact symmetry,

the newe quarks would be absolutely stability, a possibility which is preferable to avoid. For the few RQ

for which LQq 6= 0 is allowed, U(1)Q ⇥ U(1)B is further broken to U(1)B0 , a generalized baryon number
extended to the Q, which can then decay with unsuppressed rates. However, whether LQq is allowed at
the renormalizable level, does not depend solely on RQ: apparently it seems also to depend on the specific
PQ charges. For example, independently of RQ, the common assignment XL = �XR = 1

2 would forbid all
PQ invariant decay operators, e↵ectively protecting Q-baryon number. U(1)Q violating decays could then
occur only via PQ-violating e↵ective operators of dimension d > 4. Of course it is physically sensible to
expect that U(1)PQ and U(1)Q are both broken at least by Planck-scale e↵ects. This would generate PQ
violating contributions to the axion potential V d>4

� as well as an e↵ective Lagrangian L
d>4
Qq

. However, it is

well known that to preserve ✓ < 10�10, operators in V
d>4
� must be of dimension d � 11 [11–13]. Clearly, if

L
d>4
Qq

had to respect the PQ symmetry to a similar level of accuracy, the Q’s would beheave as e↵ectively
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@
µ
J
PQ

µ
=

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (85)

[Kim ’79, 
Shifman, Vainshtein, Zakharov ’80]
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forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
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where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

Q
T

b

Q
= T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)em charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1
p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = LSM + LPQ � VH� + LQq , (45)

where LSM is the SM Lagrangian,

LPQ = |@µ�|
2 +Qi /DQ� (yQ Q

L
QR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH� contains the new scalar couplings:

VH� = �µ
2
�|�|

2 + ��|�|
4 + �H�|H|

2
|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
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PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in LPQ possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)� symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
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of the new quarks [17], under which QL,R ! e
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2
a
(T )fa sin

✓
a

fa

◆
= 0 (13)
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
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symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@
µ
J
PQ

µ
=

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (40)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (42)

E =
X

Q

(XL � XR) Q
2
Q
, (43)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

Q
T

b

Q
= T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)em charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1
p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = LSM + LPQ � VH� + LQq , (45)

where LSM is the SM Lagrangian,

LPQ = |@µ�|
2 +Qi /DQ� (yQ Q

L
QR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH� contains the new scalar couplings:

VH� = �µ
2
�|�|

2 + ��|�|
4 + �H�|H|

2
|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q

decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in LPQ possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)� symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! e

i�
QL,R and � ! �. If U(1)Q were an exact symmetry,

• Field content KSVZ 

 E. Nardi (INFN-LNF) - The window for preferred axion models            17/30  

KSVZ axions
• Field content 

4

ga�� =
ma

eV

2.0

1010 GeV

✓
Ec

Nc

� 1.92(4)

◆
(33)

R
1
Q
+R

2
Q

(34)

Ec

Nc

=
E1 + E2

N1 + E2
(35)

(3, 2, 1/6)� (3, 3,�4/3) (36)

Ec/Nc = 122/3 (37)

CQ 6= I (38)

Va � vEW (39)

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
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forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@
µ
J
PQ

µ
=

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (40)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (42)

E =
X

Q

(XL � XR) Q
2
Q
, (43)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

Q
T

b

Q
= T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)em charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1
p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = LSM + LPQ � VH� + LQq , (45)

where LSM is the SM Lagrangian,

LPQ = |@µ�|
2 +Qi /DQ� (yQ Q

L
QR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH� contains the new scalar couplings:

VH� = �µ
2
�|�|

2 + ��|�|
4 + �H�|H|

2
|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q

decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in LPQ possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)� symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! e

i�
QL,R and � ! �. If U(1)Q were an exact symmetry,
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Ec
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◆
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R
1
Q
+R

2
Q

(34)

Ec

Nc

=
E1 + E2

N1 + E2
(35)

(3, 2, 1/6)� (3, 3,�4/3) (36)

Ec/Nc = 122/3 (37)

CQ 6= I (38)

Va � vEW (39)

U(1)PQ ⇥ U(1)Q (40)

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.
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explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
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We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
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where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a
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b

Q
= T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)em charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1
p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = LSM + LPQ � VH� + LQq , (45)

where LSM is the SM Lagrangian,

LPQ = |@µ�|
2 +Qi /DQ� (yQ Q

L
QR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH� contains the new scalar couplings:

VH� = �µ
2
�|�|

2 + ��|�|
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2
|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q

decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in LPQ possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)� symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! e

i�
QL,R and � ! �. If U(1)Q were an exact symmetry,
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of the new quarks [17], under which QL,R ! e

i�
QL,R and � ! �. If U(1)Q were an exact symmetry,
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(3, 2, 1/6)� (3, 3,�4/3) (36)

Ec/Nc = 122/3 (37)

CQ 6= I (38)

Va � vEW (39)

U(1)PQ ⇥ U(1)Q (40)

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical

5

forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@
µ
J
PQ

µ
=

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (40)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (42)

E =
X

Q

(XL � XR) Q
2
Q
, (43)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

Q
T

b

Q
= T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)em charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1
p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = LSM + LPQ � VH� + LQq , (45)

where LSM is the SM Lagrangian,

LPQ = |@µ�|
2 +Qi /DQ� (yQ Q

L
QR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH� contains the new scalar couplings:

VH� = �µ
2
�|�|

2 + ��|�|
4 + �H�|H|

2
|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q

decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in LPQ possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)� symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! e

i�
QL,R and � ! �. If U(1)Q were an exact symmetry,

- if             U(1)Q is further broken and Q-decay is possible
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Ec/Nc = 122/3 (37)

CQ 6= I (38)

Va � vEW (39)

U(1)PQ ⇥ U(1)Q (40)

LQq 6= 0 (41)

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).

- decay also possible via d>4 operators (e.g. Planck-induced)

stability depends on Q representations

[Ringwald, Saikawa, 1512.06436]

- U(1)Q is the Q-baryon number: if exact, Q would be stable

• Symmetry of the kinetic term 

Q stability
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Selection criteria
• We require: [for  Treheating > mQ ~ fa  (post-inflat. PQ breaking)]

- decays via d=4 operators are fast enough 

- decays via effective operators 

“safe” Q must allow for d=4 or 5 decay op.

7

RQ OQq ⇤2�loop
Landau[GeV] E/N NDW

(3, 1,�1/3) QLdR 9.3 · 1038(g1) 2/3 1

(3, 1, 2/3) QLuR 5.4 · 1034(g1) 8/3 1

(3, 2, 1/6) QRqL 6.5 · 1039(g1) 5/3 2

(3, 2,�5/6) QLdRH
† 4.3 · 1027(g1) 17/3 2

(3, 2, 7/6) QLuRH 5.6 · 1022(g1) 29/3 2

(3, 3,�1/3) QRqLH
† 5.1 · 1030(g2) 14/3 3

(3, 3, 2/3) QRqLH 6.6 · 1027(g2) 20/3 3

(3, 3,�4/3) QLdRH
†2 3.5 · 1018(g1) 44/3 3

(6, 1,�1/3) QL�µ⌫dRG
µ⌫ 2.3 · 1037(g1) 4/15 5

(6, 1, 2/3) QL�µ⌫uRG
µ⌫ 5.1 · 1030(g1) 16/15 5

(6, 2, 1/6) QR�µ⌫qLG
µ⌫ 7.3 · 1038(g1) 2/3 10

(8, 1,�1) QL�µ⌫eRG
µ⌫ 7.6 · 1022(g1) 8/3 6

(8, 2,�1/2) QR�µ⌫`LG
µ⌫ 6.7 · 1027(g1) 4/3 12

(15, 1,�1/3) QL�µ⌫dRG
µ⌫ 8.3 · 1021(g3) 1/6 20

(15, 1, 2/3) QL�µ⌫uRG
µ⌫ 7.6 · 1021(g3) 2/3 20

TABLE II. RQ irreps which allow for renormalizable Q-decay operators (first seven rows above the bold horizontal
line) or d = 5 ones (next eight rows below the bold horizontal line), and leading to LPs above, or within one order of
magnitude below, the Planck scale. The second column list a sample operator OQq which can be responsible for the
decay of Q, while in the third one we report the value of the LP estimated at two loops by setting the threshold of
the vectorlike quarks at 5 · 1011 GeV (the gauge coupling which triggers the Landau pole is specified in parenthesis).
The next column gives the value of the E/N term contributing to the axion-photon coupling (cf. Eq. (22)), and the
last one is the DW number (cf. Eq. (??)).

massless nf final states, the phase space factor can be integrated analytically, thus yielding (see e.g. [? ])

�NDA =
1

4(4⇡)2nf�3(nf � 1)!(nf � 2)!

m
2d�7
Q

M
2(d�4)
Planck

, (17)

where we neglected the possibility of scalar field condensations in the e↵ective operator.
Since Q-decay operators of d = 5, 6, 7 will at least involve nf = 2, 3, 4 particles in the final state, we have

⌧
NDA
d=5, nf=2 = 3.9 · 10�20 s

✓
5 · 1011 GeV

mQ

◆3

, (18)

⌧
NDA
d=6, nf=3 = 7.4 · 10�3 s

✓
5 · 1011 GeV

mQ

◆5

, (19)

⌧
NDA
d=7, nf=4 = 4.2 · 1015 s

✓
5 · 1011 GeV

mQ

◆7

. (20)

In order to be completely safe from a cosmological point of view the decay must happen before the time of
BBN, namely ⇠ 0.01 s [? ]. This is always the case for d = 5 operators if mQ & 106 GeV. On the other
hand, if the decay happens via d = 6 operators a much higher mass scale mQ & 1011÷12 GeV is needed. In
the post-inflationary PQ symmetry breaking scenario this is in tension with the bounds from axion DM via
the misalignment mechanism, leading to fa . 5 · 1011 GeV (see Refs. [? ? ] for some recent Lattice QCD
analyses). Finally, operators of d � 7 require an even higher mQ in the ballpark of the GUT or Planck
scale, which is clearly in the cosmological dangerous region.

Landau Poles. The presence of large matter multiplets drives the gauge couplings of the SM towards a
nonperturbative regime, eventually leading to Landau poles (LPs). We require the KSVZ axion model to
be a perturbatively calculable and UV complete framework up to the Planck scale, and hence reject those
irreps which lead to LPs below the Planck scale. To be conservative, and to retain the largest number of
RQ, we set the threshold of the heavy quark at mQ = 5 · 1011 GeV (at the boundary of compatibility with
post-inflationary axion-DM limits) and also keep those irreps with a LP within an order of magnitude below
the Planck scale. In fact, gravitational corrections on the running of the gauge couplings, that are under

6

quote the nonperturbative estimate of Kang, Luty and Nasri (KLN) [? ]

�
⌦Qh

2
�KLN

= 3 · 10�7
⇣
mQ

TeV

⌘3/2
, (14)

where Rhad denotes the typical hadronic size when the bound state is formed.

�
⌦Qh

2
�KLN

= 8.7 · 10�12

✓
Rhad

GeV�1

◆�2

⇥

✓
TC

180 MeV

◆�3/2 ⇣
mQ

GeV

⌘3/2
, (15)

where Rhad denotes the typical hadronic size when the bound state is formed.
The comparison between the relic densities computed according to Eq. (13) and Eq. (15) is shown in

Fig. 1. What can be concluded for sure is that the true relic density must lie between these two limits. For
further details we refer to Ref. [? ].

FIG. 1. Heavy quark’s relic density as a function of its mass. The full line corresponds to the nonperturbative
estimate in Eq. (15), with Rhad = 1 GeV and TC = 180 MeV, while the dotted/dashed lines denote the perturbative
QCD expression in Eq. (13) with xfo = 25, g⇤ = 106.75 and ↵s(µ = mQ), evaluated by employing a color triplet
(dotted) and octet (dashed) Q irrep. ⌦Qh

2
 0.1124 is the bound from the overclosure of the Universe (blue region),

while mQ & 1 TeV is the approximate bound from LHC (red region).

IV. Selection criteria.

The list of Q ⇠ (C, I,Y) irreps with nontrivial color quantum numbers, characterizing the most general
KSVZ axion model, is in principle infinite. However, in the relevant mQ < Treheating case, cosmological
constraints are particularly severe and can be exploited in order to reduce the list viable cases. By further
requiring that the KSVZ model remains weakly coupled up to the Planck scale, we arrive to a finite list of
phenomenologically preferred Q irreps, which are collected in Table II. In the following, we discuss the two
selection criteria which leads to it.

Cosmologically safe lifetimes. The lifetime of the metastable heavy quark is a crucial information for
cosmology. While the case of renormalizable interactions between Q and light SM quarks clearly leads to fast
enough decays of the heavy Q on a cosmological timescale, we provide here a quantitative estimate based
on naive dimensional analysis (NDA) of the Q lifetimes when the decay proceeds via Planck suppressed
e↵ective operators. We write the e↵ective Lagrangian responsible for the heavy quarks’ decay as

L
d>4
Qq

=
1

M
(d�4)
Planck

O
d>4
Qq

+ h.c. , (16)

where d is the canonical dimension of the operator O
d>4
Qq

. By assuming a constant matrix element and

1.  Q sufficiently short lived                 

3

✓0 = O(1) (17)

fa � HI (18)

fa ⌧ HI (19)

fa � 1012 GeV (20)

✓0 ⌧ 1 (21)
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(22)

⌧Q <
⇠ 10�2 s (23)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@
µ
J
PQ

µ
=

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (24)
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2.  No Landau poles below 1018 GeV

- bound on Q multiplet dimensionality
Landau Poles!

• Extra matter changes the running of the gauge couplings
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Figure 4: Same as in Fig. 3 for di↵erent extensions of the SM featuring a Majorana isospin-J fermion
of dimensionality n = 2J + 1. Notice that in ref. [6] only Majorana fermions with n  5 are allowed,
based on a one-loop analysis. However, at two loops only n � 4 survives, thus excluding the minimal
dark matter case.
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• We have to avoid the appearance of Landau poles 
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Accidental matter at the LHC 07.04.2015 7/16

LANDAU POLES

N.B. two-loop effects crucial if 1-loop b.f. 
is accidentally small

[LDL, Gröber, Kamenik, Nardecchia, 1504.00359]
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@
µ
J
PQ

µ
=

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (24)

Selection criteria
• We require: [for  Treheating > mQ ~ fa  (post-inflat. PQ breaking)]
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Pheno preferred KSVZ fermions
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RQ OQq ⇤2�loop
Landau[GeV] E/N NDW

(3, 1,�1/3) QLdR 9.3 · 1038(g1) 2/3 1

(3, 1, 2/3) QLuR 5.4 · 1034(g1) 8/3 1

(3, 2, 1/6) QRqL 6.5 · 1039(g1) 5/3 2

(3, 2,�5/6) QLdRH
† 4.3 · 1027(g1) 17/3 2

(3, 2, 7/6) QLuRH 5.6 · 1022(g1) 29/3 2

(3, 3,�1/3) QRqLH
† 5.1 · 1030(g2) 14/3 3

(3, 3, 2/3) QRqLH 6.6 · 1027(g2) 20/3 3

(3, 3,�4/3) QLdRH
†2 3.5 · 1018(g1) 44/3 3

(6, 1,�1/3) QL�µ⌫dRG
µ⌫ 2.3 · 1037(g1) 4/15 5

(6, 1, 2/3) QL�µ⌫uRG
µ⌫ 5.1 · 1030(g1) 16/15 5

(6, 2, 1/6) QR�µ⌫qLG
µ⌫ 7.3 · 1038(g1) 2/3 10

(8, 1,�1) QL�µ⌫eRG
µ⌫ 7.6 · 1022(g1) 8/3 6

(8, 2,�1/2) QR�µ⌫`LG
µ⌫ 6.7 · 1027(g1) 4/3 12

(15, 1,�1/3) QL�µ⌫dRG
µ⌫ 8.3 · 1021(g3) 1/6 20

(15, 1, 2/3) QL�µ⌫uRG
µ⌫ 7.6 · 1021(g3) 2/3 20

TABLE II. RQ irreps which allow for renormalizable Q-decay operators (first seven rows above the bold horizontal
line) or d = 5 ones (next eight rows below the bold horizontal line), and leading to LPs above, or within one order of
magnitude below, the Planck scale. The second column list a sample operator OQq which can be responsible for the
decay of Q, while in the third one we report the value of the LP estimated at two loops by setting the threshold of
the vectorlike quarks at 5 · 1011 GeV (the gauge coupling which triggers the Landau pole is specified in parenthesis).
The next column gives the value of the E/N term contributing to the axion-photon coupling (cf. Eq. (22)), and the
last one is the DW number (cf. Eq. (??)).

massless nf final states, the phase space factor can be integrated analytically, thus yielding (see e.g. [? ])

�NDA =
1

4(4⇡)2nf�3(nf � 1)!(nf � 2)!

m
2d�7
Q

M
2(d�4)
Planck

, (17)

where we neglected the possibility of scalar field condensations in the e↵ective operator.
Since Q-decay operators of d = 5, 6, 7 will at least involve nf = 2, 3, 4 particles in the final state, we have

⌧
NDA
d=5, nf=2 = 3.9 · 10�20 s

✓
5 · 1011 GeV

mQ

◆3

, (18)

⌧
NDA
d=6, nf=3 = 7.4 · 10�3 s

✓
5 · 1011 GeV

mQ

◆5

, (19)

⌧
NDA
d=7, nf=4 = 4.2 · 1015 s

✓
5 · 1011 GeV

mQ

◆7

. (20)

In order to be completely safe from a cosmological point of view the decay must happen before the time of
BBN, namely ⇠ 0.01 s [? ]. This is always the case for d = 5 operators if mQ & 106 GeV. On the other
hand, if the decay happens via d = 6 operators a much higher mass scale mQ & 1011÷12 GeV is needed. In
the post-inflationary PQ symmetry breaking scenario this is in tension with the bounds from axion DM via
the misalignment mechanism, leading to fa . 5 · 1011 GeV (see Refs. [? ? ] for some recent Lattice QCD
analyses). Finally, operators of d � 7 require an even higher mQ in the ballpark of the GUT or Planck
scale, which is clearly in the cosmological dangerous region.

Landau Poles. The presence of large matter multiplets drives the gauge couplings of the SM towards a
nonperturbative regime, eventually leading to Landau poles (LPs). We require the KSVZ axion model to
be a perturbatively calculable and UV complete framework up to the Planck scale, and hence reject those
irreps which lead to LPs below the Planck scale. To be conservative, and to retain the largest number of
RQ, we set the threshold of the heavy quark at mQ = 5 · 1011 GeV (at the boundary of compatibility with
post-inflationary axion-DM limits) and also keep those irreps with a LP within an order of magnitude below
the Planck scale. In fact, gravitational corrections on the running of the gauge couplings, that are under

7

FIG. 1. Axion contribution to the cosmological energy density as a function of mQ. The broken lines correspond
to free Q annihilation for color triplets (dotted) and octets (dashed). The solid line to annihilation via bound state
formation. The horizontal and vertical lines ⌦Q = ⌦DM and mQ = 1TeV limit the allowed region.

some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g1, g2, g3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·

F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (25) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(38)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for R

s

Q
=

(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q
= (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger

than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
preferred hadronic axion models fall within the band delimited by 5/3  E/N  44/3, as depicted in Fig. 2.
In the figure we have drawn with dashed lines the boundary of the usual axion window and, to compare
theoretical predictions with the experimental situation, we have also plotted the current exclusion bounds
and projected sensitivities.

VI. More RQ and axion-photon decoupling. Let us now study to which extent the previous results
can be changed by the presence of more RQ’s. It would be quite interesting if, for example, ga�� could get
enhanced. However, we can easily see that, as long as the sign of �X = XL � XR is the same for all RQ’s,

3

✓0 = O(1) (17)

fa � HI (18)

fa ⌧ HI (19)

fa � 1012 GeV (20)

✓0 ⌧ 1 (21)

⌦
✓
2
0

↵
=

1

2⇡

Z
⇡

�⇡

✓
2
d✓ =

⇡
2

3
(22)

⌧Q <
⇠ 10�2 s (23)

MP = 1.22 · 1019 GeV (24)

E

N
=

P
Q
(XL � XR) Q2

QP
Q
(XL � XR) T (CQ)

(25)

E

N
=

P
Q
Q

2
QP

Q
T (CQ)

(26)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical

• Q short lived + no Landau poles < Planck
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by eq. (44). Finally, even in case ⌦Q is eventually close to the estimate eq. (44), the relative concentration

of Q-hadrons nQ/nb ⇠ 10�8 (mQ/TeV)1/2 would still be quite large, and if the Q’s could accumulate with
similar concentrations within the galactic disk, existing limits from searches of anomalously heavy isotopes
in terrestrial, lunar, and meteoritic materials [41] would be able to exclude them for most of the allowed
range of masses. Many other arguments have been put forth disfavoring the possibility of heavy stable Q’s:
their capture in neutron stars would form black holes on a time scale of a few years [42] and, more generically,
they could endanger stellar stability [43] (? check this ref.), their annihilation in the Earth interior would
result in an anomalously large heat flow [44], etc.

IV. Selection criteria. All in all, although no uncircumventable argument seems to exist forbidding
completely heavy strongly interacting relics, the first discriminating criterium we adopt is that: (i) Models

that allow for su�ciently short lifetimes ⌧Q <
⇠ 10�2

s are phenomenologically preferred with respect to models

containing long lived or cosmologically stable Q’s. All RQ allowing for decays via renormalizable operators
satisfy this requirement. Decays can also occur via operators of higher dimensions. To avoid introducing
(unnecessary) new scales, we assume that the cuto↵ scale is mP , and we write O

d>4
Qq

= m
4�d

P
Pd(Q,'

n)
where Pd is a d-dimensional Lorentz and gauge invariant monomial linear in Q and containing n SM fields
'. For d = 5, 6, 7 the final states always contain n � d � 3 particles. Taking conservatively n = d � 3 we
obtain:

�d
<
⇠

⇡gfmQ

(d� 4)!(d� 5)!

 
m

2
Q

16⇡2m2
P

!d�4

, (45)

where gf accounts for final states degrees of freedom, and we have integrated analytically the n-body phase
space neglecting ' masses and assuming momentum independent matrix elements (see e.g. [45]). Requiring

mQ  fa we obtain respectively for d = 5, 6, 7, ⌧ (d)
Q

>
⇠

�
4 · 10�20

, 7 · 10�3
, 4 · 1015

�
⇥ (fa/mQ)2d�7 s. For

d = 5, as long as mQ
>
⇠ 800TeV decays occur with safe lifetimes ⌧

(5)
Q

<
⇠ 10�2 s. For d = 6, even for the

largest values mQ ⇠ fa decays occur dangerously close to BBN [46]. Operators of d = 7 and higher are
always excluded. The RQ selected by this first criterium are the first seven listed in Table II which allow
for LQq 6= 0, plus other thirteen which allow for d = 5 decay operators. Some of these representations
are, however, rather large, and could induce Landau poles (LP) in the SM gauge couplings g1, g2, g3 at
some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g1, g2, g3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·

F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (33) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(46)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for R

s

Q
=

(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q
= (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger

than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
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by eq. (44). Finally, even in case ⌦Q is eventually close to the estimate eq. (44), the relative concentration

of Q-hadrons nQ/nb ⇠ 10�8 (mQ/TeV)1/2 would still be quite large, and if the Q’s could accumulate with
similar concentrations within the galactic disk, existing limits from searches of anomalously heavy isotopes
in terrestrial, lunar, and meteoritic materials [41] would be able to exclude them for most of the allowed
range of masses. Many other arguments have been put forth disfavoring the possibility of heavy stable Q’s:
their capture in neutron stars would form black holes on a time scale of a few years [42] and, more generically,
they could endanger stellar stability [43] (? check this ref.), their annihilation in the Earth interior would
result in an anomalously large heat flow [44], etc.

IV. Selection criteria. All in all, although no uncircumventable argument seems to exist forbidding
completely heavy strongly interacting relics, the first discriminating criterium we adopt is that: (i) Models

that allow for su�ciently short lifetimes ⌧Q <
⇠ 10�2

s are phenomenologically preferred with respect to models

containing long lived or cosmologically stable Q’s. All RQ allowing for decays via renormalizable operators
satisfy this requirement. Decays can also occur via operators of higher dimensions. To avoid introducing
(unnecessary) new scales, we assume that the cuto↵ scale is mP , and we write O

d>4
Qq

= m
4�d

P
Pd(Q,'

n)
where Pd is a d-dimensional Lorentz and gauge invariant monomial linear in Q and containing n SM fields
'. For d = 5, 6, 7 the final states always contain n � d � 3 particles. Taking conservatively n = d � 3 we
obtain:

�d
<
⇠

⇡gfmQ
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, (45)

where gf accounts for final states degrees of freedom, and we have integrated analytically the n-body phase
space neglecting ' masses and assuming momentum independent matrix elements (see e.g. [45]). Requiring

mQ  fa we obtain respectively for d = 5, 6, 7, ⌧ (d)
Q

>
⇠

�
4 · 10�20

, 7 · 10�3
, 4 · 1015

�
⇥ (fa/mQ)2d�7 s. For

d = 5, as long as mQ
>
⇠ 800TeV decays occur with safe lifetimes ⌧

(5)
Q

<
⇠ 10�2 s. For d = 6, even for the

largest values mQ ⇠ fa decays occur dangerously close to BBN [46]. Operators of d = 7 and higher are
always excluded. The RQ selected by this first criterium are the first seven listed in Table II which allow
for LQq 6= 0, plus other thirteen which allow for d = 5 decay operators. Some of these representations
are, however, rather large, and could induce Landau poles (LP) in the SM gauge couplings g1, g2, g3 at
some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g1, g2, g3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·

F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (33) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(46)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for R

s

Q
=

(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q
= (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger

than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
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RQ OQq ⇤2�loop
Landau[GeV] E/N NDW

(3, 1,�1/3) QLdR 9.3 · 1038(g1) 2/3 1

(3, 1, 2/3) QLuR 5.4 · 1034(g1) 8/3 1

(3, 2, 1/6) QRqL 6.5 · 1039(g1) 5/3 2

(3, 2,�5/6) QLdRH
† 4.3 · 1027(g1) 17/3 2

(3, 2, 7/6) QLuRH 5.6 · 1022(g1) 29/3 2

(3, 3,�1/3) QRqLH
† 5.1 · 1030(g2) 14/3 3

(3, 3, 2/3) QRqLH 6.6 · 1027(g2) 20/3 3

(3, 3,�4/3) QLdRH
†2 3.5 · 1018(g1) 44/3 3

(6, 1,�1/3) QL�µ⌫dRG
µ⌫ 2.3 · 1037(g1) 4/15 5

(6, 1, 2/3) QL�µ⌫uRG
µ⌫ 5.1 · 1030(g1) 16/15 5

(6, 2, 1/6) QR�µ⌫qLG
µ⌫ 7.3 · 1038(g1) 2/3 10

(8, 1,�1) QL�µ⌫eRG
µ⌫ 7.6 · 1022(g1) 8/3 6

(8, 2,�1/2) QR�µ⌫`LG
µ⌫ 6.7 · 1027(g1) 4/3 12

(15, 1,�1/3) QL�µ⌫dRG
µ⌫ 8.3 · 1021(g3) 1/6 20

(15, 1, 2/3) QL�µ⌫uRG
µ⌫ 7.6 · 1021(g3) 2/3 20

TABLE II. RQ irreps which allow for renormalizable Q-decay operators (first seven rows above the bold horizontal
line) or d = 5 ones (next eight rows below the bold horizontal line), and leading to LPs above, or within one order of
magnitude below, the Planck scale. The second column list a sample operator OQq which can be responsible for the
decay of Q, while in the third one we report the value of the LP estimated at two loops by setting the threshold of
the vectorlike quarks at 5 · 1011 GeV (the gauge coupling which triggers the Landau pole is specified in parenthesis).
The next column gives the value of the E/N term contributing to the axion-photon coupling (cf. Eq. (22)), and the
last one is the DW number (cf. Eq. (??)).

massless nf final states, the phase space factor can be integrated analytically, thus yielding (see e.g. [? ])
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M
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where we neglected the possibility of scalar field condensations in the e↵ective operator.
Since Q-decay operators of d = 5, 6, 7 will at least involve nf = 2, 3, 4 particles in the final state, we have
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⌧
NDA
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mQ

◆5

, (19)

⌧
NDA
d=7, nf=4 = 4.2 · 1015 s

✓
5 · 1011 GeV

mQ

◆7

. (20)

In order to be completely safe from a cosmological point of view the decay must happen before the time of
BBN, namely ⇠ 0.01 s [? ]. This is always the case for d = 5 operators if mQ & 106 GeV. On the other
hand, if the decay happens via d = 6 operators a much higher mass scale mQ & 1011÷12 GeV is needed. In
the post-inflationary PQ symmetry breaking scenario this is in tension with the bounds from axion DM via
the misalignment mechanism, leading to fa . 5 · 1011 GeV (see Refs. [? ? ] for some recent Lattice QCD
analyses). Finally, operators of d � 7 require an even higher mQ in the ballpark of the GUT or Planck
scale, which is clearly in the cosmological dangerous region.

Landau Poles. The presence of large matter multiplets drives the gauge couplings of the SM towards a
nonperturbative regime, eventually leading to Landau poles (LPs). We require the KSVZ axion model to
be a perturbatively calculable and UV complete framework up to the Planck scale, and hence reject those
irreps which lead to LPs below the Planck scale. To be conservative, and to retain the largest number of
RQ, we set the threshold of the heavy quark at mQ = 5 · 1011 GeV (at the boundary of compatibility with
post-inflationary axion-DM limits) and also keep those irreps with a LP within an order of magnitude below
the Planck scale. In fact, gravitational corrections on the running of the gauge couplings, that are under
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FIG. 1. Axion contribution to the cosmological energy density as a function of mQ. The broken lines correspond
to free Q annihilation for color triplets (dotted) and octets (dashed). The solid line to annihilation via bound state
formation. The horizontal and vertical lines ⌦Q = ⌦DM and mQ = 1TeV limit the allowed region.

some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g1, g2, g3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·

F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (25) by [14]:
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where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for R

s

Q
=

(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q
= (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger

than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
preferred hadronic axion models fall within the band delimited by 5/3  E/N  44/3, as depicted in Fig. 2.
In the figure we have drawn with dashed lines the boundary of the usual axion window and, to compare
theoretical predictions with the experimental situation, we have also plotted the current exclusion bounds
and projected sensitivities.

VI. More RQ and axion-photon decoupling. Let us now study to which extent the previous results
can be changed by the presence of more RQ’s. It would be quite interesting if, for example, ga�� could get
enhanced. However, we can easily see that, as long as the sign of �X = XL � XR is the same for all RQ’s,
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
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It is well known that the standard model (SM) of particle physics does not explain some well established
experimental facts like dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it
also contains fundamental parameters with highly unnatural values, like the coe�cient µ2

⇠ O((100 GeV)2)
of the quadratic term in the Higgs potential, the Yukawa couplings of the first family fermions he,u,d ⇠

10�6
�10�5 and the strong CP violating angle |✓| < 10�10. This last quantity is somewhat special: its value

is stable with respect to higher order corrections [1] (unlike µ2) and (unlike he,u,d [2]) it evades explanations
based on environmental selection [3]. Thus, seeking explanations for the smallness of ✓ independently of other
“small values” problems is theoretically motivated. While most of the problems of the SM can be addressed
with a large variety of mechanisms, basically only three types of solutions to the strong CP problem have
been put forth so far. The simplest possibility, a massless up-quark, is now ruled out (mu 6= 0 by 20 standard
deviations [4, 5]). The so-called Nelson-Barr (NB) type of models [6, 7] either require a high degree of fine
tuning, often comparable to setting |✓| <⇠ 10�10 by hand, or additional and rather elaborated theoretical
structures to keep ✓ su�ciently small at all orders [8, 9]. The Peccei-Quinn (PQ) solution [10, 11] arguably
stands on better theoretical grounds, and from the experimental point of view it also has the advantage of
predicting an unmistakable signature: the existence of a new light scalar particle, universally known as the
axion [12, 13]. Therefore, the issue if the PQ solution is the correct one, could be set experimentally by
detecting the axion. In contrast, no similar unambiguous signature exists for NB models.
A crucial challenge for axion models is to explain through which mechanism the global U(1)PQ symmetry,

on which the solution relies (and that presumably arises as an accident), remains protected from explicit
breaking to the required level of accuracy [14–16], and it seems fair to state that only constructions that
embed such an explanation can be considered theoretically satisfactory. A wide variety of proposals to
generate a high quality U(1)PQ have been put forth based, for example, on discrete gauge symmetries [17–
20], supersymmetry [15, 21, 22], compositeness [23–26], flavour symmetries [27] or new continuous gauge
symmetries [28, 29]. Regardless of the details of the di↵erent theoretical constructions, many properties of
the axion remain remarkably independent from specific model realizations. It is then very important, in
order to focus axion searches, to identify as well as possible the region in parameter space where realistic
axion models live. The vast majority of axion search techniques are sensitive to the axion-photon coupling
ga�� which is inversely proportional to the axion decay constant fa. Since the axion mass ma has the same
dependence, the experimental exclusion limits, as well as the theoretical predictions for specific models,
can be conveniently presented in the ma-ga�� plane (see Fig. 3). The commonly adopted “axion band”
corresponds roughly to

ga�� ⇠
↵

2⇡

ma

f⇡m⇡

⇠
10�10

GeV

⇣ma

eV

⌘
, (3)

with a somewhat arbitrary width chosen to include representative models as e.g. those of Refs. [30–32].
Recently, in Ref. [33] we have put forth a definition of a phenomenologically preferred axion window as
the region encompassing hadronic axion models which i) do not contain cosmologically dangerous strongly
interacting relics; ii) do not induce Landau poles (LP) below a scale ⇤LP of the order of the Planck scale.
In this paper we will first present a more detailed analysis of the phenomenological constraints on hadronic
axion models (to which we will often refer also as Kim-Shifman-Vainshtein-Zakharov (KSVZ) [34, 35] type
of axion models) on which the study of Ref. [33] was based. Since the first condition i) is relevant only when
the heavy quarks Q have an initial thermal abundance, the validity of the analysis in Ref. [33] is restricted
to the case when Treheating & mQ. The Q acquire their mass via a Yukawa coupling with the complex
axion field so that, for Yukawa couplings not exceeding unity, this translates into Treheating & fa (where fa
is the axion decay constant) a condition that can be only realized when the PQ symmetry is broken after
inflation, and will be referred as post-inflationary scenario. However, astrophysical considerations imply
a lower bound fa & 109 GeV, while the only firm limit on the scale of inflation is provided by big bang
nucleosynthesis (BBN) to merely lie above a few MeV. Since this leaves ample space for axion models to be
realized in pre-inflationary scenarios, in which the initial Q abundance is completely negligible, it would be
interesting to generalize the analysis of [33] by dropping condition i). Such a generalization will be carried
out in section VI, subject to the only condition that fa  5⇥1011 GeV, which restricts the class of models to
those which do not require any ad hoc tuning (or anthropic selection arguments) to justify particularly small

post-inflationary PQ breaking pre-inflationary PQ breaking
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is stable with respect to higher order corrections [1] (unlike µ2) and (unlike he,u,d [2]) it evades explanations
based on environmental selection [3]. Thus, seeking explanations for the smallness of ✓ independently of other
“small values” problems is theoretically motivated. While most of the problems of the SM can be addressed
with a large variety of mechanisms, basically only three types of solutions to the strong CP problem have
been put forth so far. The simplest possibility, a massless up-quark, is now ruled out (mu 6= 0 by 20 standard
deviations [4, 5]). The so-called Nelson-Barr (NB) type of models [6, 7] either require a high degree of fine
tuning, often comparable to setting |✓| <⇠ 10�10 by hand, or additional and rather elaborated theoretical
structures to keep ✓ su�ciently small at all orders [8, 9]. The Peccei-Quinn (PQ) solution [10, 11] arguably
stands on better theoretical grounds, and from the experimental point of view it also has the advantage of
predicting an unmistakable signature: the existence of a new light scalar particle, universally known as the
axion [12, 13]. Therefore, the issue if the PQ solution is the correct one, could be set experimentally by
detecting the axion. In contrast, no similar unambiguous signature exists for NB models.
A crucial challenge for axion models is to explain through which mechanism the global U(1)PQ symmetry,

on which the solution relies (and that presumably arises as an accident), remains protected from explicit
breaking to the required level of accuracy [14–16], and it seems fair to state that only constructions that
embed such an explanation can be considered theoretically satisfactory. A wide variety of proposals to
generate a high quality U(1)PQ have been put forth based, for example, on discrete gauge symmetries [17–
20], supersymmetry [15, 21, 22], compositeness [23–26], flavour symmetries [27] or new continuous gauge
symmetries [28, 29]. Regardless of the details of the di↵erent theoretical constructions, many properties of
the axion remain remarkably independent from specific model realizations. It is then very important, in
order to focus axion searches, to identify as well as possible the region in parameter space where realistic
axion models live. The vast majority of axion search techniques are sensitive to the axion-photon coupling
ga�� which is inversely proportional to the axion decay constant fa. Since the axion mass ma has the same
dependence, the experimental exclusion limits, as well as the theoretical predictions for specific models,
can be conveniently presented in the ma-ga�� plane (see Fig. 3). The commonly adopted “axion band”
corresponds roughly to
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with a somewhat arbitrary width chosen to include representative models as e.g. those of Refs. [30–32].
Recently, in Ref. [33] we have put forth a definition of a phenomenologically preferred axion window as
the region encompassing hadronic axion models which i) do not contain cosmologically dangerous strongly
interacting relics; ii) do not induce Landau poles (LP) below a scale ⇤LP of the order of the Planck scale.
In this paper we will first present a more detailed analysis of the phenomenological constraints on hadronic
axion models (to which we will often refer also as Kim-Shifman-Vainshtein-Zakharov (KSVZ) [34, 35] type
of axion models) on which the study of Ref. [33] was based. Since the first condition i) is relevant only when
the heavy quarks Q have an initial thermal abundance, the validity of the analysis in Ref. [33] is restricted
to the case when Treheating & mQ. The Q acquire their mass via a Yukawa coupling with the complex
axion field so that, for Yukawa couplings not exceeding unity, this translates into Treheating & fa (where fa
is the axion decay constant) a condition that can be only realized when the PQ symmetry is broken after
inflation, and will be referred as post-inflationary scenario. However, astrophysical considerations imply
a lower bound fa & 109 GeV, while the only firm limit on the scale of inflation is provided by big bang
nucleosynthesis (BBN) to merely lie above a few MeV. Since this leaves ample space for axion models to be
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It is well known that the standard model (SM) of particle physics does not explain some well established
experimental facts like dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it
also contains fundamental parameters with highly unnatural values, like the coe�cient µ2

⇠ O((100 GeV)2)
of the quadratic term in the Higgs potential, the Yukawa couplings of the first family fermions he,u,d ⇠

10�6
�10�5 and the strong CP violating angle |✓| < 10�10. This last quantity is somewhat special: its value

is stable with respect to higher order corrections [1] (unlike µ2) and (unlike he,u,d [2]) it evades explanations
based on environmental selection [3]. Thus, seeking explanations for the smallness of ✓ independently of other
“small values” problems is theoretically motivated. While most of the problems of the SM can be addressed
with a large variety of mechanisms, basically only three types of solutions to the strong CP problem have
been put forth so far. The simplest possibility, a massless up-quark, is now ruled out (mu 6= 0 by 20 standard
deviations [4, 5]). The so-called Nelson-Barr (NB) type of models [6, 7] either require a high degree of fine
tuning, often comparable to setting |✓| <⇠ 10�10 by hand, or additional and rather elaborated theoretical
structures to keep ✓ su�ciently small at all orders [8, 9]. The Peccei-Quinn (PQ) solution [10, 11] arguably
stands on better theoretical grounds, and from the experimental point of view it also has the advantage of
predicting an unmistakable signature: the existence of a new light scalar particle, universally known as the
axion [12, 13]. Therefore, the issue if the PQ solution is the correct one, could be set experimentally by
detecting the axion. In contrast, no similar unambiguous signature exists for NB models.
A crucial challenge for axion models is to explain through which mechanism the global U(1)PQ symmetry,

on which the solution relies (and that presumably arises as an accident), remains protected from explicit
breaking to the required level of accuracy [14–16], and it seems fair to state that only constructions that
embed such an explanation can be considered theoretically satisfactory. A wide variety of proposals to
generate a high quality U(1)PQ have been put forth based, for example, on discrete gauge symmetries [17–
20], supersymmetry [15, 21, 22], compositeness [23–26], flavour symmetries [27] or new continuous gauge
symmetries [28, 29]. Regardless of the details of the di↵erent theoretical constructions, many properties of
the axion remain remarkably independent from specific model realizations. It is then very important, in
order to focus axion searches, to identify as well as possible the region in parameter space where realistic
axion models live. The vast majority of axion search techniques are sensitive to the axion-photon coupling
ga�� which is inversely proportional to the axion decay constant fa. Since the axion mass ma has the same
dependence, the experimental exclusion limits, as well as the theoretical predictions for specific models,
can be conveniently presented in the ma-ga�� plane (see Fig. 3). The commonly adopted “axion band”
corresponds roughly to
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↵
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⇠
10�10
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⇣ma

eV

⌘
, (5)

with a somewhat arbitrary width chosen to include representative models as e.g. those of Refs. [30–32].
Recently, in Ref. [33] we have put forth a definition of a phenomenologically preferred axion window as
the region encompassing hadronic axion models which i) do not contain cosmologically dangerous strongly
interacting relics; ii) do not induce Landau poles (LP) below a scale ⇤LP of the order of the Planck scale.
In this paper we will first present a more detailed analysis of the phenomenological constraints on hadronic
axion models (to which we will often refer also as Kim-Shifman-Vainshtein-Zakharov (KSVZ) [34, 35] type
of axion models) on which the study of Ref. [33] was based. Since the first condition i) is relevant only when
the heavy quarks Q have an initial thermal abundance, the validity of the analysis in Ref. [33] is restricted
to the case when Treheating & mQ. The Q acquire their mass via a Yukawa coupling with the complex
axion field so that, for Yukawa couplings not exceeding unity, this translates into Treheating & fa (where fa
is the axion decay constant) a condition that can be only realized when the PQ symmetry is broken after
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is stable with respect to higher order corrections [1] (unlike µ2) and (unlike he,u,d [2]) it evades explanations
based on environmental selection [3]. Thus, seeking explanations for the smallness of ✓ independently of other
“small values” problems is theoretically motivated. While most of the problems of the SM can be addressed
with a large variety of mechanisms, basically only three types of solutions to the strong CP problem have
been put forth so far. The simplest possibility, a massless up-quark, is now ruled out (mu 6= 0 by 20 standard
deviations [4, 5]). The so-called Nelson-Barr (NB) type of models [6, 7] either require a high degree of fine
tuning, often comparable to setting |✓| <⇠ 10�10 by hand, or additional and rather elaborated theoretical
structures to keep ✓ su�ciently small at all orders [8, 9]. The Peccei-Quinn (PQ) solution [10, 11] arguably
stands on better theoretical grounds, and from the experimental point of view it also has the advantage of
predicting an unmistakable signature: the existence of a new light scalar particle, universally known as the
axion [12, 13]. Therefore, the issue if the PQ solution is the correct one, could be set experimentally by
detecting the axion. In contrast, no similar unambiguous signature exists for NB models.
A crucial challenge for axion models is to explain through which mechanism the global U(1)PQ symmetry,

on which the solution relies (and that presumably arises as an accident), remains protected from explicit
breaking to the required level of accuracy [14–16], and it seems fair to state that only constructions that
embed such an explanation can be considered theoretically satisfactory. A wide variety of proposals to
generate a high quality U(1)PQ have been put forth based, for example, on discrete gauge symmetries [17–
20], supersymmetry [15, 21, 22], compositeness [23–26], flavour symmetries [27] or new continuous gauge
symmetries [28, 29]. Regardless of the details of the di↵erent theoretical constructions, many properties of
the axion remain remarkably independent from specific model realizations. It is then very important, in
order to focus axion searches, to identify as well as possible the region in parameter space where realistic
axion models live. The vast majority of axion search techniques are sensitive to the axion-photon coupling
ga�� which is inversely proportional to the axion decay constant fa. Since the axion mass ma has the same
dependence, the experimental exclusion limits, as well as the theoretical predictions for specific models,
can be conveniently presented in the ma-ga�� plane (see Fig. 3). The commonly adopted “axion band”
corresponds roughly to
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with a somewhat arbitrary width chosen to include representative models as e.g. those of Refs. [30–32].
Recently, in Ref. [33] we have put forth a definition of a phenomenologically preferred axion window as
the region encompassing hadronic axion models which i) do not contain cosmologically dangerous strongly
interacting relics; ii) do not induce Landau poles (LP) below a scale ⇤LP of the order of the Planck scale.
In this paper we will first present a more detailed analysis of the phenomenological constraints on hadronic
axion models (to which we will often refer also as Kim-Shifman-Vainshtein-Zakharov (KSVZ) [34, 35] type
of axion models) on which the study of Ref. [33] was based. Since the first condition i) is relevant only when
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ

2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6

� 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ

2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <

⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@
µ
J
PQ

µ
=

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (18)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (19)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (20)

E =
X

Q

(XL � XR) Q
2
Q
, (21)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

Q
T

b

Q
= T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)em charge. Di↵erent RQ imply di↵erent
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Keeping X (Hd) 6= 0, and repeating the steps above, one finds X (Hk) = �2kX� � X (Hd) and hence
X (He) = 2n+1

X� + X (Hd). However, we still need to impose the orthogonality condition between the
PQ and Y currents. For phenomenological reasons (fermion masses), Hu,d,e need to pick-up a VEV, and
consequently also Hk (k = 2, 3, . . . , n) do because of the tadpole structure of the clockwork chain. The
orthogonality condition then reads:

0 = �X (Hu)v
2

u
+ X (Hd)v
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(where we also used vu = v1) so that
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and
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X� + X (Hd) = X�
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The axion-electron coupling is hence

gae =
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where in the last step we used N = 3 1

2
(X (Hu) + X (Hd)) = �3X� So in order to get the enhancement for

gae we need the physical VEV v ' 246 GeV to be oriented mainly in the direction of vd, v1, v2, etc. and in
particular ve/v ⌧ 1, vn/v ⌧ 1, vn�1/v ⌧ 1, etc. Alternatively, one can suppress gae a bit... [LDL: Here
we could use a more geometrical approach parametrizing the vacuum manifold in spherical
coordinates, in terms of n+ 1 angles, and study min and max of this function]

On the other hand, the E/N factor is
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(129)

which does not depend on the vacuum angles (as it should due to the fact that the E/N part of the axion-
photon coupling is quantized). For n = 1 it gives E/N = �4/3, compatibly with Eq. (29) in [98]. [LDL:
Note that in Eq. (124) there was a typo]
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naively, a large PQ charge for He would make the job… but, enhanced global symmetry

non-trivial constraints on PQ charges

must be explicitly broken in the scalar potential via non-trivial invariants (e.g.              )

15

violet vertical line labeled fa > 5 ⇥ 1011 GeV. On the left of this line only pre-inflationary models with
progressively larger values of fa are allowed. In this case the heavy quark threshold can be correspondingly
increased, thus weakening the constraints from the LP condition. Therefore for KSVZ models larger values
of the axion-photon coupling become allowed within this region. However, this goes at the expense of a
progressively larger amount of fine tuning in the initial value of ✓, which might well be considered as an
unwanted feature in phenomenologically preferred axion models.

VII. DFSZ-TYPE OF AXION MODELS

In DFSZ-type of models [36, 37] two or more Higgs doublets Hi, carrying PQ charges, together with
the SM singlet axion field � are introduced. The SM fermion content is not enlarged, but in general both
quarks and leptons carry PQ charges. The electromagnetic and color U(1)PQ anomalies then depend on
the known fermions assignments under the SM gauge group, but also on their model dependent PQ charge
assignments. Hence, several variants of DFSZ axion models are possible, some of which have been discussed,
for instance, in Refs. [31, 32]. Here we argue that for most of these variants the axion-photon coupling falls
within the regions highlighted in Fig. 3. Only in some specific cases the KSVZ upper limit E/N = 170/3
can be exceeded. We will point out under which conditions this can occur.
Let us start with some general considerations: we assume nH � 2 Higgs doublets Hi which are coupled

to quarks and leptons via Yukawa interactions, and to the axion field � through scalar potential terms.
The kinetic term for the scalars carries a U(1)nH+1 rephasing symmetry that must be explicitly broken to
U(1)PQ⇥U(1)Y in order that the PQ current in Eq. (12) is unambiguously defined, and to avoid additional
Goldstone bosons with couplings only suppressed as the inverse of the electroweak scale. By considering
from the start only gauge invariant operators, the relevant explicit breaking U(1)nH+1

! U(1)PQ must be
provided by non-Hermitian renormalizable terms in the scalar potential involving Hi and �. This implies
that the PQ charges of all the fermions and Higgs doublets are interrelated and cannot be chosen arbitrarily.
In the most general scenario, each SM fermion field carries a specific PQ charge. However, given that the
anomalies of the PQ current depend on the di↵erence between the PQ charges of L- and R-handed fermions,
without loss of generality we can set the PQ charges of the L-handed fermions to zero, and only consider
the charges of the R-handed fermions Xuj

, Xdj
, Xej

, where j is a generation index. The ratio of anomaly
coe�cients E/N reads

E

N
=

P
j

�
4
3Xuj

+ 1
3Xdj

+ Xej

�
P

j

�
1
2Xuj

+ 1
2Xdj

�

=
2

3
+ 2

P
j

�
Xuj

+ Xej

�
P

j

�
Xuj

+ Xdj

� , (37)

and it is particularly convenient to write it as in the second equality. Note that in order to have a non-
vanishing PQ-color anomaly, the denominator must be non-vanishing. The original DFSZ model [36, 37]
includes two Higgs doublets, Hu,d, coupled to the singlet scalar field via the quartic termHuHd�2, and family
independent PQ charges for the SM fermions. Then the factor E/N is fixed up to the two-fold possibility
of coupling the leptons either to Hd or to H⇤

u
. Eq. (36) shows that these two cases yield, respectively

DFSZ-I : Xe = Xd , E/N = 8/3 ,

DFSZ-II : Xe = �Xu , E/N = 2/3 , (38)

which in both cases give axion-photon couplings that fall inside the KSVZ band in Fig. 3.
Let us now consider the so called DFSZ-III variant [31] in which the scalar sector is enlarged to contain

nH = 3 Higgs doublets He,d,u coupled respectively to leptons, down-type and up-type quarks. Although
here we have some more freedom in choosing the values of the charges Xe, in order to enforce the breaking
U(1)4 = U(1)e ⇥ U(1)u ⇥ U(1)d ⇥ U(1)� ! U(1)PQ, He must couple to Hu, Hd and/or �2, so that
Xe cannot be completely arbitrary. To find the maximum allowed value, let us consider the bilinear mixed
scalar monomials (HeHu) , (H⇤

e
Hd), (HuHd) together with their Hermitian conjugates, responsible for U(1)4

breaking. It is easy to verify that the bilinear terms alone yield the same two possibilities listed in Eq. (37).
Let us then consider quadrilinear couplings. Since �2 has the same PQ charge than (HuHd)†, the four cases
below exhaust all the possible relations between Xe and the other PQ charges:

(HeHu) · (HuHd) =) Xe = �(2Xu + Xd) ,

(HeHu) · (HuHd)
† =) Xe = Xd ,

(H⇤
e
Hd) · (HuHd) =) Xe = Xu + 2Xd ,

(H⇤
e
Hd) · (HuHd)

† =) Xe = �Xu . (39)

• Consider a DFSZ-like construction with 2 + n Higgs doublets + a SM singlet  
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 clockwork-like scenarios allow to consistently boost E/N

[See also Farina et al. 1611.09855, 
for KSVZ clockwork]

⇤ ⇤N = qN
⇤

Figure 1: A schematic representation of the clockwork mechanism increasing the interac-

tion scale of a non-renormalisable operator.

case, the association between the interaction scale and the energy at which new particles
must enter, although not formally correct, works in practice. The situation is very di↵erent
in presence of couplings which are small, in natural units, as the dynamics associated with
an interaction scale could occur at much smaller energies.

These considerations open the possibility that dynamics, usually associated with very
high-energy phenomena may lie much closer to, and possibly within, accessible energies. If
this were to be the case, a new puzzle arises: why would nature choose extremely small
coupling constants? Since long ago [1, 2] physicists have been reluctant to accept small (or
large) numbers without an underlying dynamical explanation, even when the smallness of a
parameter is technically natural in the sense of ’t Hooft [3]. One reason for this reluctance
is the belief that all physical quantities must eventually be calculable in a final theory with
no free parameters. It would be strange for small numbers to pop up accidentally from the
final theory without a reason that can be inferred from a low-energy perspective.

In this work we propose a general mechanism to generate small numbers out of a the-
ory with only O(1) parameters, and thus large e↵ective interaction scales out of dynamics
occurring at much lower energies. In all of these theories the full UV completion enters at
energies exponentially smaller than suggested by a given interaction strength. The mech-
anism is fairly flexible and can produce exponentially large interaction scales for light or
massless scalars, fermions, vectors, and even gravitons. It provides an interesting theoretical
tool which opens new model-building avenues for axion, neutrino, flavour, weak scale, and
gravitational physics.

The underlying structure is a generalisation of the clockwork models [4, 5], which were
originally used to construct axion (or relaxion [6]) setups in which the e↵ective axion decay
constant f is much larger than the Planck mass MP , without any explicit mass parameter
in the fundamental theory exceeding MP . In this way, one could circumvent the need for
transplanckian field excursions in models which, for di↵erent phenomenological reasons, re-
quire f > MP . These constructions can be viewed as extensions of an original proposal for
subplanckian completions of natural inflation [7–9]. The name clockwork follows from the
field phase rotations with periods that get successively larger from one field to the next (see
fig. 1 for a pictorial interpretation).

The general framework is the following: Consider a system involving a particle P , which
remains massless because of a symmetry S. At this stage neither the nature of P or S, nor
whether the description is renormalisable or not, is crucial. We will give plenty of specific
examples in our paper, but we want to stress that the general mechanism is insensitive to
the details of the model implementation.
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E/N(gmax
a�� ) E/N(gmin

a��)

KSVZ (NQ = 1) 44/3 5/3

KSVZ (NQ > 1) 170/3 23/12

DFSZ (nH = 2) 2/3 8/3

DFSZ (nH = 3) �4/3 8/3

DFSZ (nH > 3) 74/3 23/12

TABLE V. E/N values which give for a given any model the maximun and the decoupling values of ga�� . In the
case of KSVZ, bounds have been worked out under our selection rules. For DFSZ case instead, no conditions have
been considered for the viability of the model.
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The decoupling setup can be obtained by the following PQ charges assignment

Xdj = Xu1 = 1, Xu2 = Xu3 = 2, Xej = 0 (66)

which gives E/N = 23/12

E. Clockwork scenarios

In all the models we have so far considered some implicit assumption regarding their scalar content was
made. In KSVZ-type of models we have assumed that there is only one SM scalar singlet � carrying a PQ
charge, while in DFSZ-type of models we have allowed, as a maximum number, for one scalar doublet for
each SM fermion mass, for a total of nine EW doublets.
However, many more EW scalar doublets can be introduced in the SM without violating the LP condition,

up to about fifty. By adding scalar doublets that do not couple directly to the fermions, it is possible to
obtain very large PQ charges for the leptons, with huge enhancements of the numerator in the second term
in eq. (46). To see how this can work let us start with X� = q and the quadrilinear scalar coupling HuHd�2,
and let us set by using a charge redefinition proportional to hypercharge Xu = �2q and Xd = 0. Let us
Define H1 = Hu and next let us add a whole set of up-type Higgs doublets Hn with n = 2, 3, . . . ,m coupled
as (HnH

⇤
n�1)(H

⇤
n�1H

⇤
d
) and with charges Xn = �2nq. Finally let us couple (HeHm)(HmHd). We then

obtain Xe = 2m+1
q. Given that the number of doublets m can be as large as 50 before a LP is hit, lepton

charges exponentially large ⇠ 250 become possible.
In steps (for the talk):

1. Consider (HuHd�2) and normalize X� ⌘ q; =) Xu = �2q; Xd = 0

2. Define H1 = Hu. Add m up-type doublets: (HkH
⇤
k�1)(H

⇤
k�1H

⇤
d
), i.e. Xk = �2k q

3. Finally couple also the lepton Higgs He: (HeHm)(HmHd), i.e. Xe = 2m+1
q
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up to about fifty. By adding scalar doublets that do not couple directly to the fermions, it is possible to
obtain very large PQ charges for the leptons, with huge enhancements of the numerator in the second term
in eq. (46). To see how this can work let us start with X� = q and the quadrilinear scalar coupling HuHd�2,
and let us set by using a charge redefinition proportional to hypercharge Xu = �2q and Xd = 0. Let us
Define H1 = Hu and next let us add a whole set of up-type Higgs doublets Hn with n = 2, 3, . . . ,m coupled
as (HnH

⇤
n�1)(H

⇤
n�1H

⇤
d
) and with charges Xn = �2nq. Finally let us couple (HeHm)(HmHd). We then

obtain Xe = 2m+1
q. Given that the number of doublets m can be as large as 50 before a LP is hit, lepton

charges exponentially large ⇠ 250 become possible.
In steps (for the talk):

1. Consider (HuHd�2) and normalize X� ⌘ q; =) Xu = �2q; Xd = 0

2. Define H1 = Hu. Add m up-type doublets: (HkH
⇤
k�1)(H

⇤
k�1H

⇤
d
), i.e. Xk = �2k q

3. Finally couple also the lepton Higgs He: (HeHm)(HmHd), i.e. Xe = 2m+1
q
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(HeHn)(HnHd), i.e. Xe = 2n+1
q

E

N
=

2

3
+ 2

Xu + Xe

Xu + Xd

⇠ 2m+1 (67)

E/N ⇠ 2n (68)

A similar construction is possible also in KSVZ models by adding additional PQ charged singlets �k.
This possibility was put forth in [72] and we refer to this reference for details.

VI. CONCLUSIONS

In conclusion, nobody wants to write the conclusions . . .
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Appendix A: Q-decay operators � integrally charged hadrons

In this Appendix we examine the close connection between the existence of Q-decay operators and the
absence of fractionally charged hadrons containing the heavy quark Q. Heavy colored particles with exotic
electric charges (e.g. Q = 1/5,⇡, etc.) cannot decay into SM particles (by electric charge conservation)
and hence are absolutely stable. They also will not get confined into hadrons of integer charge, and this
implies that they cannot get bounded into neutral hadrons, atoms or molecules. Limits on the abundance
of fractionally charged particles are very strong, while exotic hadrons with integer charges can “hide” more
easily (strong limits exist, but they also depend on the exotic hadron charge).
Remarkably, if the quantum numbers of Q are such that one can build a Q-decay operator the heavy quark

Q can only hadronize into integrally charged hadrons. The reverse statement is true as well. Namely, if the
heavy quark Q is such that it gives rise to hadrons with integer charges then it is always possible to write
operators that will let them decay into SM particles. On general grounds, one expect such operators to be
generated at latest by Planck-scale physics and this can have profound consequences on the phenomenological
studies of these exotics.
The rest of the Appendix is devoted to a constructive proof of the statement above both in the direct and

reverse direction.

1. Proof of direct statement

Let us start by proving the direct statement: Exotic heavy Q quarks that are allowed to decay into SM

particles, can only hadronize in integrally charged baryons or mesons.
The possibility of decays requires operators linear in the field Q. In the following, we explicitly write the

Q and the SM quarks q, and denote with [SM ] any string of other SM particles not containing quarks. Note
that in all cases [SM ] has integer or vanishing electric charge, and can transform either in the 1 or 8 of
color.5 In the following g denotes gluons, Q denotes the electric charge, and n 2 Z denotes a generic integer
or vanishing number. Here we will not be concerned with identifying the lowest mass exotic hadron within

5
For simplicity we only consider decay operators involving at most one color field strength tensor, but the generalization is

straightforward. Note that two or more Gµ⌫ imply operators of D � 7, and with respect to them Q is cosmologically stable.
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Keeping X (Hd) 6= 0, and repeating the steps above, one finds X (Hk) = �2kX� � X (Hd) and hence
X (He) = 2n+1

X� + X (Hd). However, we still need to impose the orthogonality condition between the
PQ and Y currents. For phenomenological reasons (fermion masses), Hu,d,e need to pick-up a VEV, and
consequently also Hk (k = 2, 3, . . . , n) do because of the tadpole structure of the clockwork chain. The
orthogonality condition then reads:
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(where we also used vu = v1) so that
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and
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The axion-electron coupling is hence
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where in the last step we used N = 3 1

2
(X (Hu) + X (Hd)) = �3X� So in order to get the enhancement for

gae we need the physical VEV v ' 246 GeV to be oriented mainly in the direction of vd, v1, v2, etc. and in
particular ve/v ⌧ 1, vn/v ⌧ 1, vn�1/v ⌧ 1, etc. Alternatively, one can suppress gae a bit... [LDL: Here
we could use a more geometrical approach parametrizing the vacuum manifold in spherical
coordinates, in terms of n+ 1 angles, and study min and max of this function]

On the other hand, the E/N factor is
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which does not depend on the vacuum angles (as it should due to the fact that the E/N part of the axion-
photon coupling is quantized). For n = 1 it gives E/N = �4/3, compatibly with Eq. (29) in [98]. [LDL:
Note that in Eq. (124) there was a typo]
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