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Abstract
Fluid dynamics simulations are a widely used tool in astrophysics and cosmol-
ogy to study various phenomena from the formation of cosmological structure,
galaxies, stars and planets to planetary collisions and supernovae. One of the
methods used to describe the fluid is Smoothed Particle Hydrodynamic (SPH)
which can be coupled to N-Body gravity codes in a straightforward way. In
this Master thesis, SPH is implemented into the N-Body code pkdgrav3
using a novel approach to the neighbor search which has been a performance
problem in existing implementations. To demonstrate the capabilities of the
new implementation, example simulations for planetary collisions and cosmo-
logical structure formation were performed. We also demonstrate the scaling
capabilities in simulations up to 2× 109 particles and compare performance
with Gasoline which is currently used to run planetary collision simulations
for publications. We show that the new implementation is able to run much
larger simulations in less time than Gasoline.
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1 Introduction

Understanding phenomena in astrophysics and cosmology is not as straightforward as in other dis-
ciplines of physics. Observations with telescopes can only deliver a snapshot of processes that last
decades or millennia or even longer and often do not have the necessary resolution to resolve the inter-
esting features of an object. Due to the large spatial and temporal scale of these objects, studying them
in the laboratory is not possible. Thus, much of scientific work in this area has been focused on running
computer simulations of the system of interest and comparing the results to observations. Many such
systems (stars, galaxies, baryons in cosmological structure formation) consist of some gaseous material,
which can be described by fluid dynamics (in the context of planetary collisions even rock and iron can
be treated as a fluid). As gravity is usually strong enough to significantly influence or dominate the
behavior, the set of equations used to describe the fluid are the Euler equations with self-gravity (see
Section 2.1.1). The Euler equations are continuum equations, and in order to solve them numerically,
they have to be discretized spatially and temporally. The spatial discretization can be done in many
different ways, using differential or integral, as well as Eulerian or Lagrangian approaches. One of
the often used methods is Smoothed Particle Hydrodynamics (SPH) which discretizes the fluid into
packets called particles which move with the flow (Lagrangian) described by the differential form of
the Euler equations.
Until now, the ICS uses a highly modified version of the SPH code Gasoline [1] to run planetary
collision simulations [2, 3, 4, 5, 6]. As the code is dating back to the early 2000s, it has difficulties scaling
on modern hardware. It is thus infeasible to run simulations with the high resolutions necessary to
resolve features like fluid mixing vortices, subsurface structure, oceans or atmospheres of rocky planets.
Earth’s hydrosphere weighs around 2.3× 10−4M⊕ while its atmosphere weighs 8.3× 10−7M⊕. So at
our go-to resolution for collision simulations of 2× 105 particles, this would mean 46 particles for the
hydrosphere and fewer than 1 for the atmosphere, assuming equal mass particles, since all particles
are required to have similar mass to avoid numerical instabilities [7]. Furthermore, a higher number
of particles allows the resolution of details in the flow and shock structure that can not be resolved by
lower resolution simulations. This can be seen in Figure 1 which shows a result of a collision simulation
between two 1MJ ideal gas balls for particle numbers of 2× 105 and 2× 109.

Figure 1: Comparison of the result of a collision simulation between two 1MJ ideal gas balls with
1× 105 particles (left) and 1× 109 particles each (right). Clearly, the low particle number of
2×105 particles is not enough to resolve the details in the structure of the shocks and ejecta.
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1 Introduction Thomas Meier

So, the need for a new higher performance code is clear. As pkdgrav3 (the successor to pkdgrav
on which Gasoline is based) is state of the art in resolution, scalability and performance for gravity
calculation, it is a logical step to extend it with an SPH module.
In this work, we implement the SPH hydro method into the pure gravity code pkdgrav3 and we
show that it vastly outperforms and outscales Gasoline on our main work machine Eiger at CSCS.
In Section 2, a short overview over the theory of fluid dynamics with self-gravity is given, together
with a short introduction on how to solve the equations numerically. This is followed by an in-depth
discussion of SPH and time integration methods. The implementation of SPH into pkdgrav3 is then
described in Section 3. In Section 4 performance results, comparisons with Gasoline and example
simulations are shown. Finally, in Section 5 we conclude the work and give an outlook on future efforts.
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2 Theory

In this section, a short overview of the general concept of computational hydrodynamics with self-
gravity is given. First, the general equations of hydrodynamics with self-gravity and some methods
to discretize them are described. Next, some methods to calculate the acceleration due to self-gravity
are shown. Then, the Smoothed Particle Hydrodynamics (SPH) method is described in detail. Lastly,
some time integration schemes and special aspects of the application in cosmology are discussed.

2.1 Hydrodynamics with self-gravity

Many phenomena in astrophysics and cosmology can be studied with the use of hydrodynamics with
self-gravity. These applications range from cosmological structure formation simulations over galaxy
formation, protoplanetary disks, supernovae and stellar dynamics to planetary collisions. Many of
these applications involve only gaseous material, but even in the cases where more complex materials
(like rock and iron) are involved, hydrodynamics is able to describe the properties, as gravitational
forces dominate over the material strength (see [8] for a detailed explanation).

2.1.1 Euler equations

The behavior of gas is described by the kinetic gas theory using microscopic conservation laws. This
leads to the Boltzmann equation

∂f

∂t
+ u · ∂f

∂x
+ a · ∂f

∂u
=

∫
4π

∫
R3

(f ′1f
′
2 − f1f2)σvdΩd

3u2 (2.1)

where f is the phase space distribution function of the gas particles, u is the velocity and the right
side is called the collision integral. By taking the moments (integrating over the velocity, weighted by
a factor m, mui or 1

2mu
2) we get the macroscopic conservation or fluid equations (for a derivation see

[9])

∂ρ

∂t
+∇ · (ρv) = 0 (2.2)

∂

∂t
(ρv) +∇ · (ρv ⊗ v + P) = ρa (2.3)

∂E

∂t
+∇ · (Ev + P · v +Q) = ρv · a (2.4)

By assuming local thermodynamical equilibrium, the distribution functions take the form of the
Maxwell-Boltzmann distribution and the off-diagonal elements of the pressure tensor P and the heat
flux Q vanish. This simplifies the macroscopic conservation equations to the Euler equations in con-
servative or Eulerian formulation (where we replace the external acceleration a by the gravitational
acceleration g):

Conservation equation:
∂ρ

∂t
+∇ · (ρv) = 0 (2.5)

Momentum equation:
∂

∂t
(ρv) +∇ · (ρv ⊗ v + P I) = ρg (2.6)

Energy equation:
∂E

∂t
+∇ · ((E + P )v) = ρv · g (2.7)

By replacing the total energy with

E =
1

2
ρv2 + e =

1

2
ρv2 + ρϵ (2.8)
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where ϵ is the specific internal (or thermal) energy (the specific internal energy is also often denoted
as u) and using the Lagrangian time derivative

D

Dt
=

∂

∂t
+ v ·∇ (2.9)

we can write the Euler equations in Lagrangian form (or the time derivative following the fluid motion):

Dρ

Dt
= −ρ∇ · v (2.10)

ρ
Dv

Dt
= −∇P + ρg (2.11)

ρ
Dϵ

Dt
= −P∇ · v (2.12)

2.1.2 Discretization of the Euler equations

In order to solve the Euler equations numerically with a computer, we need to discretize them. There
are many different ways to approach this, and we can differentiate them into four groups by the way
the frame is chosen (Eulerian static or Lagrangian moving) and the form of the equation that is solved
(differential or integral). In Table 1, the four groups are shown.

Eulerian Lagrangian
Differential Finite Difference SPH

The Pencil Code [10] Gasoline [1], gadget-4 [11]
Integral Finite Volume Moving Mesh/Meshless

PLUTO [12], Athena [13] Arepo [14], TESS [15]
RAMSES [16], ENZO [17] MFM/MFV [18]

Table 1: Four different ways to discretize the Euler equations with example codes.

Each of these approaches has its own advantages and disadvantages that make it suitable for certain
applications. In general, Eulerian formulations share a common disadvantage in that they are not
Galilean invariant by construction. This means that adding a global velocity increases advection errors
and can require prohibitively small time steps to be stable. Lagrangian formulations do not have
these flaws, as the discretization elements follow the fluid motion. The main differences between the
differential and integral formulation is the mixing behavior and the form of numerical dissipation. While
differential methods underestimate, integral formulations overestimate mixing between different fluids
[19]. Differential methods use artificial viscosity to treat discontinuities, while integral methods use a
Riemann solver with a slope limiter. Both ways introduce excess unphysical dissipation. The different
methods also differ in the way an adaptive dynamic resolution can be achieved. Eulerian methods
have to rely on adaptive mesh refinement (AMR), whereas in Lagrangian methods, the comoving
discretization leads to an increase in discretization element density (particles, sampling points or mesh
elements) in high density regions. While particle-based methods have excellent conservation properties,
mesh-based methods usually do not conserve angular momentum and finite difference methods not even
conserve mass and linear momentum [18]. There also exist methods that combine multiple aspects,
or do not fit in these categories, like for example Phurbas [20, 21] which uses interpolation on moving
sample points that do not represent fluid packets.

2.1.3 Including additional physics

Various codes include other physics either on resolution scale (e.g. physical viscosity [22], diffusion
of species [23], heat conduction [24], magnetohydrodynamics (MHD) [25]) or on sub-resolution scale
(e.g. turbulence modeling [26], feedback in cosmological structure formation by galaxy and black hole
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formation [27], supernovae [28] and AGN [29], galaxy formation sub-grid models [30], more accurate
equations of state [6]).

2.2 Gravity

In many applications in theoretical astrophysics and cosmology, self-gravity is crucial and has to be
included in the calculation. The gravitational acceleration g that enters the Euler equations via the
momentum equations (2.6) and (2.11) is given as

g = −∇ϕ (2.13)

The gravitational potential ϕ is the solution of Poisson’s equation

∆ϕ = 4πGρ (2.14)

where ρ is the density and G is the gravitational constant. Some commonly used methods to calculate
the self-gravity are described below.

2.2.1 Direct method

In the case of N point masses, the gravitational potential given by the Poisson equation (2.14) and
the gravitational acceleration are given by

ϕ(x) = −
N∑
i=1

Gmi

|x− xi|
g(x) = −

N∑
i=1

Gmi(x− xi)

|x− xi|3
(2.15)

The direct gravity method calculates this sum for all particles. This involves O(N2) calculations,
which is infeasible for large N and it is thus rarely used except for special cases where N is not too
large. One method to improve performance is to use special purpose hardware such as the GRAPE
[31], where the gravitational interaction is calculated using FPGA hardware.

2.2.2 Tree methods

The potential due to distant groups of particles can be approximated by multipole expansions, usually
about the groups center of mass but other points can be chosen. Only the closest particles have to
be treated directly (usually the direct force is also softened to lower the impact of close encounters
or model continua like fluids [32]). The multipole expansion introduces errors in the force, which
are controlled by a single parameter (the opening angle) that determines how small and distant a
group must be to use the multipole expansion. Codes that use this method expand the potentials to
quadrupole or higher order and construct a tree hierarchy of the particles. The classic Barnes-Hutt
tree-code [33] uses an oct-tree, but other trees are also possible, like binary trees. Tree methods can
reduce the computational complexity to O(N logN). The Fast Multipole Method (FMM) [34] uses the
idea that nearby particles are subject to a similar acceleration due to distant groups of particles. The
potential generated by the source cell at the position of the sink cell is multipole expanded to give the
potential for all particles in the sink cell. This reduces the computational complexity to nearly O(N)
[35]. pkdgrav3 uses this method [36].

2.2.3 Particle-mesh methods

In the classic P-M method, the gravitational potential is calculated on a grid, by solving the Poisson
equation

∆ϕ = 4πGρ (2.16)

With this, gravitational interactions at small scales, below the cell length, are smoothed. The density
field ρ is constructed from the particles by using a kernel to split the mass of the particles to the grid
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cells around the particle position. The simplest choice is to assign the full mass to the cell in which
the particle is, but this leads to large force fluctuations. Better results can be obtained by using a
cloud-in-cell (CIC) or triangular shape cloud (TSC) kernel. The Poisson equation is typically solved
using the Fast Fourier Transform, but standard grid methods can also be used. The force derived from
the potential on the grid is then assigned back to the particles using the same kernel as in the density
field construction. The method is of order O(Np) for the particle number Np and O(Ng logNg) for
the number of grid cells Ng when using the FFT method. The dynamic range of the particle-mesh
method can be increased by using an adaptive instead of a fixed grid to solve the Poisson equation.
Similar to the AMR method for the hydrodynamic equations, the grid cells are concentrated in the
regions where higher resolution is necessary, for example in high-density regions. Codes that use this
method are RAMSES [16] and ENZO [17]. Another way to increase the force resolution of particle
mesh codes is to couple a mean field description on large scales with a direct, softened, treatment of the
gravitational interactions on distances of order of a few grid spacings [37]. This method is called P 3M
(particle-particle-particle-mesh) and can efficiently increase the resolution of PM methods, but in the
presence of strong clustering, large numbers of particles interact directly with each other, increasing
the computational complexity to O(N2). This can be resolved by using adaptive meshes, refining the
grid in high-density regions. Adaptive P 3M codes can bring the computational cost to O(N logN),
like a tree code. Another possibility is to use a tree code for the short range force calculation, leading
to a hybrid PM-Tree method. An example for a code that uses this method is gadget-2 [38] (the
newest version in the gadget series, gadget-4 can also use the fast multipole method).

2.3 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method that discretizes the fluid into parti-
cles and uses a kernel function to smooth their distribution and calculate the differential operators in
the differential form of the Euler equations. The particle positions are evolved with the fluid motion,
such that we can rewrite the Lagrangian time derivative for the derivatives of the quantities on the
sampling points as the normal time derivative:

D

Dt
=

∂

∂t
+ v ·∇ → d

dt
(2.17)

This makes SPH intrinsically Galilean invariant which means that it does not suffer from one of the main
disadvantages of Eulerian methods, the velocity dependent advection errors and timestep conditions
only depend on local velocity differences, not the velocity relative to the reference frame. SPH provides
exact mass, energy, linear and angular momentum conservation. When handled correctly (see Section
2.3.2.1) SPH also provides continuous adaptive resolution. In Section 2.3.1, traditional SPH is derived
and some more detailed aspects are described. In Section 2.3.2 the SPH method is derived directly
from the Lagrangian and some of the drawbacks of SPH are addressed with suggested solutions for
them.

2.3.1 Traditional SPH

Smoothed Particle Hydrodynamics (SPH) was developed in the late 1970s for astrophysical applications
simultaneously by Gingold and Monaghan [39] and Lucy [40]. The following description of traditional
SPH is similar to the one in my Bachelor thesis [41].

2.3.1.1 The Kernel In SPH, the fluid is discretized using particles that interact via a kernel function
W (d, h) with a characteristic radius called the smoothing length h. Physical properties (e.g. ρ, P, u) at
a given position (e.g. a particle position) can be determined by integration of the respective quantity
over the kernel volume, weighted by the kernel function:

f(r) =

∫
f(r′)W (r − r′, h)dr′ (2.18)

9



2 Theory Thomas Meier

The integral is then discretized by a Riemann summation over the particles in the kernel

f(ri) =
∑
j

mj
fj
ρj
W (ri − rj , hi) (2.19)

The kernel can be any function that satisfies the following properties:

lim
h→0

W (r − r′, h) = δ(r − r′) (2.20)∫
W (r − r′, h)dr′ = 1 (2.21)

Commonly used kernel functions are the Gaussian, B-splines [42] or Wendland functions [43]. The
latter two are compact kernels, which means that they have a finite interaction length, while the
Gaussian kernel includes contributions of all particles. Compact kernels greatly improve computational
performance, as the Riemann sums have to be performed only over a small set of particles and not over
all. To handle the large range of changing length scales in cosmological and astrophysical simulations,
the kernel smoothing length is usually variable and determined on a particle-by-particle basis such
that the kernel always contains a certain number of particles [44]. This allows SPH to adapt its
resolution to changing local conditions and makes it ideal for simulating problems that cover large
spatial dimensions and have large density contrasts. Typically, the kernel is symmetrized to conserve
momentum and energy in the equations of motion

Wij =
1

2
W (|ri − rj |, hi) +

1

2
W (|ri − rj |, hj) (2.22)

As SPH consists of two approximations, the kernel weighted integral and the discretization with Rie-
mann sums, true convergence needs not only h→ 0 and N → ∞, but also NKernel → ∞.

2.3.1.2 Density The continuity Equation (2.10) that describes the rate of change of density can be
discretized to

dρi
dt

=
∑
j

mjvij ·∇iWij (2.23)

but in SPH, the density of a particle is usually calculated by the interpolant

ρi =
∑
j

mjWi (2.24)

If the masses of the particles are fixed, which is usually the case, mass is exactly conserved.

2.3.1.3 The momentum equation The positions of the particles that represent the fluid are evolved
by integrating their velocity. The straightforward discretization of the momentum equation (2.11)
yields

dvi
dt

= − 1

ρi

∑
j

Pj

ρj
∇iWij (2.25)

but this does not conserve linear and angular momentum because the forces acting between two particles
are not symmetric. By writing

∇P

ρ
= ∇

(
P

ρ

)
+
P

ρ2
∇ρ (2.26)
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we get a discretization that conserves linear and angular momentum [42]

dvi
dt

= −
∑
j

mj

(
Pi

ρ2i
+
Pj

ρ2j

)
∇iWij (2.27)

The term ∇P
ρ can be written in different ways, some of which are described in Section 2.3.2.7.

2.3.1.4 The energy equation For compressible flow, the internal energy u of the particles has to
be considered. The non-dissipative rate of change of the internal energy (Equation (2.12)) can be
expressed as

du

dt
=
P

ρ2
dρ

dt
= −P

ρ
∇ · v (2.28)

where Equation (2.10) was used. This can then be discretized into

dui
dt

=
Pi

ρ2i

∑
j

mjvij ·∇iWij (2.29)

2.3.1.5 Equation of state The Euler equations now contain 6 unknowns for each particle

v = (vx, vy, vz) ρ P u (2.30)

but only 5 equations. Therefore, an equation of state (EOS) is needed to complete the description of
the system by relating ρ, u and P . One commonly used EOS to describe gas is the ideal gas equation
of state

P = (γ − 1)ρu c =
√
γ(γ − 1)u (2.31)

with the adiabatic index γ. The ideal gas equation of state is the simplest EOS that considers tem-
perature changes, but ignores interactions between gas molecules. It is thus a good approximation
for very low density fluids like in cosmology simulations. The isothermal gas is an even simpler EOS,
where the temperature is fixed T = const and we get for the pressure

P = ρa2 a =

√
kBT0
m

(2.32)

with a the isothermal sound speed. This EOS removes the need for the energy equation.

2.3.1.6 Artificial viscosity Dissipative processes occur in flows due to viscosity as described by the
Navier-Stokes equation or in the form of high Mach number flows in shocks. To deal with discontinuities
like shocks, an artificial viscosity Πij is introduced and added to Equation (2.27) [42]

dvi
dt

= −
∑
j

mj

(
Pi

ρ2i
+
Pj

ρ2j
+Πij

)
∇iWij (2.33)

The artificial viscosity has the form

Πij =

{−αc̄ijµij+βµ2
ij

ρ̄ij
for vij · rij < 0

0 otherwise
(2.34)

where

c̄ij =
ci + cj

2
ρ̄ij =

ρi + ρj
2

hij =
hi + hj

2
(2.35)
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and µij is given as

µij =
hij(vij · rij)
r2ij + ϵh2ij

(2.36)

α and β are the shear and Von Neumann-Richtmyer viscosities and are usually set to α = 1.0 − 1.5
and β = 2α = 2.0− 3.0, and the softening is ϵ = 0.01 [45]. The artificial viscosity also adds a term to
the internal energy

duΠ
dt

=
1

2

∑
j

mjΠijvij ·∇iWij (2.37)

to account for the increase in entropy due to shock heating.

2.3.2 Modern SPH

Traditional SPH has many shortcomings. One of the main arguments agains the use of SPH is that it
suppresses fluid-mixing instabilities like the Kelvin-Hemholtz instability [19] and subsonic turbulence
[46]. The artificial viscosity needed to capture discontinuities, both in the initial conditions and in
shocks, leads to unwanted artificial angular momentum transfer and suppression of subsonic turbulence.
Compared to the excellent shock capturing capabilities of methods with Riemann solver, SPH smooths
shocks over multiple smoothing lengths. Many modifications, improvements and tweaks were proposed
over time to solve some of these drawbacks, but the dust has not yet settled to reveal a consensus
on a new standard method. In Section 2.3.2.1 we first derive the SPH equations directly from the
Lagrangian, and show how to add correction terms due to a spatially varying smoothing length to
the equations of motion. In Section 2.3.2.3 we prove that the derived equations actually conserve
all advertised quantities. In Sections 2.3.2.4 - 2.3.2.7 some of the solutions for the shortcomings are
discussed and in Section 2.3.2.8 a way to make SPH also conserve entropy for the ideal gas is described.

2.3.2.1 Derivation from the Lagrangian The SPH formulation described in Section 2.3.1 is derived
by discretizing integrals. But the SPH equations can also be derived from the Lagrangian of an ideal
fluid (closely following [25])

L =

∫ [
ρv2 − ρu(ρ, s)

]
dV (2.38)

where the internal energy per unit mass u is a function of the thermodynamic variables ρ (density)
and s (entropy). We can now discretize this expression

L =
∑
i

mi

[
1

2
v2i − ui(ρi, si)

]
(2.39)

and we can consider the system as a discrete Hamiltonian system, without explicit reference to the
continuum system. So all associated symmetries and equations of motion apply. We can thus use
the least action principle and the Euler-Lagrange equations to derive the equations of motion. By
minimizing the action

S =

∫
Ldt δS =

∫
δLdt = 0 (2.40)

we get

δS =

∫ (
∂L

∂v
· δv +

∂L

∂r
· δr
)
dt = 0 (2.41)

We integrate by parts and use that δv = d(δr)
dt with d

dt =
∂
∂t + v ·∇ and we get

δS =

∫ {[
− d

dt

(
∂L

∂v

)
+
∂L

∂r

]
· δr
}
dt+

[
∂L

∂v
· δr
]t
t0

= 0 (2.42)
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We assume that the variation δr vanishes at the start and the end and is arbitrary elsewhere. Thus,
we get that the equations of motion are given by the Euler-Lagrange equations (here for particle i):

d

dt

(
∂L

∂vi

)
− ∂L

∂ri
= 0 (2.43)

Until here, we assumed that the time integral is not discrete, so when we later discuss exact conserva-
tion, it is always meant to be solely governed by errors in the time integration scheme. We also assumed
that the Lagrangian is differentiable (this has meaning in reference to discontinuities for example in
the initial conditions which have to be smoothed using dissipative terms). To calculate the equations
of motion we need

∂L

∂vi
= mivi

∂L

∂ri
= −

∑
j

mj
∂uj
∂ρj

∣∣∣∣
s

∂ρj
∂ri

(2.44)

since u is a function of ρ and s but we assume s constant. From the first law of thermodynamics, we
have

dU = TdS − PdV (2.45)

and per unit mass, where we use dV = −m
ρ2
dρ, we get

du = Tds+
P

ρ2
dρ (2.46)

such that at constant entropy, the change in thermal energy is given as

∂uj
∂ρj

∣∣∣∣
s

=
Pj

ρ2j
(2.47)

If we differentiate the density estimate (Equation (2.24)) we get

∂ρj
∂ri

=
1

Ωj

∑
k

mk
∂Wjk(hj)

∂ri
(δji − δki) (2.48)

where Wjk(hj) = W (|rj − rk|, hj) and δji is a Dirac delta function. Ωj is a correction factor that
accounts for the fact that h is itself a function of ρ and it is given by

Ωi =

1− ∂hi
∂ρi

∑
j

mj
∂Wij(hi)

∂hi

 = 1 +
hi
3ρi

∑
j

mj
∂Wi(hi)

∂hi
(2.49)

where we used

∂h

∂ρ
= − h

ρd
(2.50)

with the dimensionality d = 3. Ωi is also called the grad-h or ∇h term. We can now calculate the
equation of motion for the velocity from

∂L

∂ri
= −

∑
j

mj
Pj

Ωjρ2j

∑
k

mk
∂Wjk(hj)

∂ri
(δji − δki) (2.51)

which we can simplify to give the equation of motion

dvi
dt

= −
∑
j

mj

[
Pi

Ωiρ2i

∂Wij(hi)

∂ri
+

Pj

Ωjρ2j

∂Wij(hj)

∂ri

]
(2.52)
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which simplifies for a constant smoothing length to Equation (2.27). For the internal energy equation
we start from

dui
dt

=
Pi

ρ2i

dρi
dt

(2.53)

Using the density derivative, we get

dui
dt

=
Pi

Ωiρ2i

∑
j

mj(vi − vj) ·∇iWij(hi) (2.54)

2.3.2.2 Calculating the smoothing length In classic SPH, the smoothing length h is defined such
that the number of particles inside the kernel is constant. But this leads to a discontinuous h-field,
which makes it impossible to correct for a variable smoothing length in the SPH equations. Thus, when
one wants to include these so-called grad-h terms (see Equation (2.49)), the smoothing length has to
be determined in a way such that the resulting h-field is continuous. For this, one has to iteratively
solve the relation

ρi =
∑
j

mjWi(ri − rj , hi) M i
tot =

∫
Vi

ρdV =
4

3
πR3

kern(hi)ρi = const. (2.55)

simultaneously for hi and ρi. If the mass m is not the same for all particles, this relation has to be
modified to use the particle density instead of the mass density:

ni =
∑
j

Wi(ri − rj , hi) N i
tot =

∫
Vi

ρdV =
4

3
πR3

kern(hi)ni = const. (2.56)

Solving this set of equations is usually done using Newton-Raphson iterations.

2.3.2.3 Conservation properties As the particles represent fluid packets, mass is exactly conserved,
if the particle masses are constant. By deriving the equations of motion directly from the Lagrangian,
we already know that they should conserve linear and angular momentum as well as total energy. But
we can also show these properties. From Equation (2.52), we can directly derive the conservation of
linear momentum:

d

dt

∑
i

mivi =
∑
i

mi
dvi
dt

= −
∑
i

∑
j

mimj

(
Pi

Ωiρ2i
∇iWij(hi) +

Pj

Ωjρ2j
∇iWij(hj)

)
= 0 (2.57)

where the double sum is zero due to the antisymmetry of the kernel gradient. The total angular
momentum is also conserved:

d

dt

∑
i

ri ×mivi =
∑
i

mi

(
ri ×

dvi
dt

)
(2.58)

= −
∑
i

∑
j

mimj

(
Pi

Ωiρ2i
Fij +

Pj

Ωjρ2j
F̃ij

)
ri × (ri − rj) = 0 (2.59)

where we wrote ∇iWij(hi) = rijFij and ∇iWij(hj) = rijF̃ij and the last term in the double summation
is zero due to ri × rj = −rj × ri. We can now consider the conservation of total energy from the
Hamiltonian

H =
∑
i

vi ·
∂L

∂vi
− L =

∑
i

mi

(
1

2
v2i + ui

)
(2.60)
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which is the total energy of the SPH particles E since the Lagrangian has no explicit time dependence.
We get the time derivative

dE

dt
=
∑
i

mi

(
vi ·

dvi
dt

+
dui
dt

)
(2.61)

Substituting in the Equations (2.52) and (2.54), we get

dE

dt
=

∑
i

mi
dei
dt

(2.62)

=
∑
i

mi

vi ·

−
∑
j

mj

[
Pi

Ωiρ2i
∇iWij(hi) +

Pj

Ωjρ2j
∇iWij(hj)

] (2.63)

+
Pi

Ωiρ2i

∑
j

mj(vi − vj) ·∇iWij(hi)

 (2.64)

= −
∑
i

∑
j

mimj

[
Pi

Ωiρ2i
vj ·∇iWij(hi) +

Pj

Ωjρ2j
vi ·∇iWij(hi)

]
= 0 (2.65)

where we get again zero due to the antisymmetry of the kernel derivative. So, we get exact conservation
(up to the precision of the time integration) for linear and angular momentum and total energy.

2.3.2.4 Viscosity switches To avoid the effects of excess artificial viscosity in converging or shearing
flows, different viscosity switches can be applied to limit the artificial viscosity outside of shocks.
Standard SPH has a very simple switch, that applies the artificial viscosity only on particle pairs that
approach each other (see Equation (2.34)). To reduce the artificial viscosity in differentially rotating
systems, the Balsara switch [47] can be applied, which reduces the artificial viscosity by a factor of

fij =
|fi + fj |

2
(2.66)

where

fi =
|∇ · vi|

|∇ · vi|+ |∇× vi|+ 0.0001 ci
hi

(2.67)

A different way to reduce artificial viscosity was proposed by Morris and Monaghan [48], in the form
of an evolving viscosity α:

dα

dt
= −α− α⋆

τ
+ S (2.68)

where τ is an e-folding timescale, S is a source term and α⋆ is the minimum viscosity. For the timescale
they propose

τ =
h

lc
(2.69)

with l = 0.1− 0.2 and for the source term they use

S = max(−∇ · v, 0) (2.70)

Cullen and Dehnen [49] find that even though this is better than the Balsara switch, it still inadequately
models low-viscosity flows. They propose the following modification:

Ai = ξimax(−∇̇ · vi, 0) (2.71)
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with the limiter

ξi =

∣∣2(1−Ri)
4∇ · vi

∣∣2
|2(1−Ri)4∇ · vi|2 + tr(Si · St

i)
(2.72)

where S is the traceless symmetric part of the velocity gradient matrix and Ri is the shock detector

− 1 ≈ Ri =
1

ρi

∑
j

sign(∇ · vj)mjW (2.73)

With this, the viscosity is set to

αloc,i = αmax
h2iAi

v2sig,i + h2iAi
(2.74)

with the signal velocity

vsig,i = max(cij −min(0,vij · r̂ij)) (2.75)

2.3.2.5 Pressure-SPH As said in the beginning of Section 2.3.2, SPH has problems with fluid mixing
and instabilities like the Kelvin-Helmholtz instability [19]. One method to improve SPH in this regard
was proposed by Hopkins [50]. Generally, the fluid equations do not necessarily have to be formulated
in the variables ρ and u, but other combinations can be used, like (P, u) or (P, s). By smoothing the
pressure instead of the density, the pressure ’blip’ at the discontinuity which acts as a ’surface tension’
that suppresses the instability can be removed [19, 51, 52]. So instead of Equation (2.24), one would
use

Pi =
∑
j

(γ − 1)mjujWij(hi) (2.76)

to smooth the pressure. This results in the correction factors

Ωi = 1 +
hi
3Pi

∂Pi

∂hi
(2.77)

and the equation of motion for the velocity is then

dvi
dt

= −
∑
j

(γ − 1)2mjuiuj

[
1

ΩiPi
∇iWij(hi) +

1

ΩjPj
∇iWij(hj)

]
(2.78)

and for the internal energy we get

dui
dt

=
∑
j

(γ − 1)2mjuiuj
1

ΩiPi
(vi − vj) ·∇iWij(hi) (2.79)

This form of pressure-SPH was derived using a very general formulation of SPH derived directly from
the Lagrangian by constructing a weighted volume element

Vi =
Xi∑

j
XjWij

(2.80)

for any choice of Xi. The density can then be calculated as

ρi =
mi

Vi
(2.81)

The choice Xi = (γ− 1)miui leads to the pressure-SPH implemented in SPHYNX [53], while Xi = mi

leads to the formulation from Section 2.3.2.1.
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2.3.2.6 Artificial thermal conductivity A different approach to improve the handling of instabilities
was proposed by Price [54]. By adding a term to the internal energy derivative, representing an
artificial thermal conductivity, the discontinuity is smoothed and this enables the formulation to resolve
discontinuities. (

du

dt

)
cond

= −
∑
j

m

ρij
αu

√
|Pi − Pj |
ρij

(ui − uj)r̂ij ·∇iWij (2.82)

The parameter αu is handled in the same way as the viscosity in the Morris and Monaghan viscosity
switch:

dαi,u

dt
= −αi,u − αmin,u

τi
+ Si,u (2.83)

with the source term

Si,u =
hi|∇2u|i√
ui + ϵ

(2.84)

and αmin,u = 0.

2.3.2.7 Pressure symmetrization The pressure symmetrization used in Equation (2.26) is not the
only possibility. In general, we can write [42]

∇P

ρ
=
P

ρσ
∇
(

1

ρ1−σ

)
+

1

ρ2−σ
∇
(

P

ρσ−1

)
(2.85)

which results in the following equation of motion

dvi
dt

= −
∑
j

mj

(
Pj

ρ2−σ
i ρσj

+
Pi

ρσi ρ
2−σ
j

)
∇iWij (2.86)

Setting σ = 2 yields the expression in Equation (2.27), while σ = 1 gives the geometric density average
used in Gasoline2 [55]

dvi
dt

= −
∑
j

mj

(
Pi + Pj

ρiρj

)
∇iWij (2.87)

and shows very promising results in the box test, which is usually extremely challenging for SPH
implementations. Another symmetric combination is

∇P = 2
√
P∇

√
P (2.88)

which results in the equation of motion

dvi
dt

= −
∑
j

mj

(
2

√
PiPj

ρiρj

)
∇iWij (2.89)

described in [56].

2.3.2.8 Entropic formulation For the ideal gas equation of state, instead of using the internal energy,
a different formulation can be used where the internal energy is replaced by an entropic function A(s)
which is evolved. In this way, not only energy (and linear and angular momentum) but also entropy
is conserved when adaptive smoothing lengths are used and properly accounted for [56]. The entropic
function is defined as

P = A(s)ργ u =
A(s)

γ − 1
ργ−1 (2.90)
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In adiabatic flows, the value of A is conserved, and so the time derivative of Ai is given by

dAi

dt
=

1

2

γ − 1

ργ−1
i

∑
j

mjΠijvij ·∇iWij (2.91)

and contains only the dissipative terms from the artificial viscosity. This is much more difficult for
complex EOS, as not every EOS is thermodynamically complete and provides entropy information
(see [2] for an entropy conserving SPH formulation for the Tillotson EOS that does not need entropy
information). But if the EOS provides entropy, this can be used directly to implement an entropy
conserving formulation.

2.4 Time integration

Generally, the hydrodynamics and gravity methods discussed above transform the continuous Euler
equations from a system of coupled partial differential equations to a system of coupled ordinary
differential equations (ODE). This system of ODEs then has to be integrated over time, using a time
integration scheme. To numerically solve the initial value problem

y′(t) = f(t, y(t)) y(t0) = y0 (2.92)

different schemes can be used. We define the time step as h = ti+1 − ti.

2.4.1 Euler and trapezoidal method

The simplest time integration scheme to solve the initial value problem is the Euler method

yi+1 = yi + hf(ti, yi) +O(h2) (2.93)

The Euler method is first order accurate O(h) and explicit. The implicit Euler method can be written
as

yi+1 = yi + hf(ti+1, yi+1) +O(h2) (2.94)

which has to be iteratively solved for yi+1. It is also first order accurate. By combining these two
methods, we get the trapezoidal method

yi+1 = yi +
h

2
[f(ti, yi) + f(ti+1, yi+1)] +O(h3) (2.95)

which is also implicit and second order accurate O(h2).

2.4.2 Runge-Kutta

Runge-Kutta methods combine the information of several Euler-style steps to match a Taylor series
expansion of higher order. The simplest example is

k1 = hf(ti, yi) (2.96)

k2 = hf

(
ti +

1

2
h, yi +

1

2
k1

)
(2.97)

yi+1 = yi + k2 +O(h3) (2.98)
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which uses two function evaluations to get the second-order Runge-Kutta or midpoint method. The
most common variant of Runge-Kutta methods is the following fourth-order scheme

k1 = hf(ti, yi) (2.99)

k2 = hf

(
ti +

1

2
h, yi +

1

2
k1

)
(2.100)

k3 = hf

(
ti +

1

2
h, yi +

1

2
k2

)
(2.101)

k3 = hf(ti + h, yi + k3) (2.102)

yi+1 = yi +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 +O(h5) (2.103)

which is often called ’The Runge-Kutta method’. Embedded Runge-Kutta methods allow to use the
same function evaluations done for the main step to be used to calculate an error estimation that can
be used for adaptive time step control. Runge-Kutta methods can be constructed with arbitrary order,
but for orders n > 4, more than n function evaluations are required and for n ≥ 8 at least n + 3
function evaluations are required.

2.4.3 Leapfrog

The Leapfrog integrator is a second-order symplectic integrator that is widely used to integrate the
second-order ODEs that occur in N -Body simulations

ẍ = v̇ = a(x) (2.104)

where x is the position, v the velocity and a(x) the acceleration due to gravity. As the accelerations
do not depend on the velocity, one can split the positions and the velocities and save the latter with
half a step offset

xi+1 = xi + vi+ 1
2
h (2.105)

vi+ 3
2

= vi+ 1
2
+ a(xi+1)h (2.106)

Symplectic integrators can be seen as canonical transformations of the system and thus conserve the
energy of the system. Neither of the methods described before (explicit/implicit Euler, trapezoidal and
Runge-Kutta methods) are symplectic. For an actual implementation in an N -body code, the formal
notation above is split, resulting in either the Drift-Kick-Drift scheme

xi+ 1
2

= xi + vi
h

2
(2.107)

vi+1 = vi + a
(
xi+ 1

2

)
h (2.108)

xi+1 = xi+ 1
2
+ vi+1

h

2
(2.109)

or the Kick-Drift-Kick scheme

vi+ 1
2

= vi + a(xi)
h

2
(2.110)

xi+1 = xi + vi+ 1
2
h (2.111)

vi+1 = vi+ 1
2
+ a(xi+1)

h

2
(2.112)
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The KDK scheme is preferable, as accelerations and potentials are known at the second-order-accurate
positions and not at the auxiliary intermediate position allowing them to be used for time-step control.
When a block time-stepping scheme is used, KDK also results in synchronized force computations for
all active particles [57].

2.4.4 Predictor-Corrector Scheme

The leapfrog scheme is well suited, when the force does not depend on the velocity, as in pure gravity,
but hydrodynamic forces depend on the velocity and the thermodynamical variable. So in order to
calculate the force, we need predicted values at the time of the force evaluation. Usually a predictor-
corrector method is woven into the leapfrog to get the predicted values. The predictor-corrector scheme
to solve the initial value problem uses the following two steps

ỹi+1 = yi + hf(ti, yi) (2.113)

yi+1 = yi +
1

2
h [f(ti, yi) + f(ti+1, ỹi+1)] +O(h3) (2.114)

which consists of an Euler prediction with a trapezoidal correction called PECE mode. One can also
skip the second evaluation to get

ỹi+1 = yi + hf(ti, ỹi) (2.115)

yi+1 = yi +
1

2
h [f(ti, ỹi) + f(ti+1, ỹi+1)] +O(h3) (2.116)

where the value f(ti, ỹi) is reused from the last step. This is called PEC mode. The PEC mode fits
perfectly in the KDK leapfrog as it can also be split into the kick-drift-kick steps

vi+ 1
2

= vi + a(ti, ṽi)
h

2
(2.117)

ṽi+1 = vi + a(ti, ṽi)h (2.118)

vi+1 = vi+ 1
2
+ a(ti+1, ṽi+1)

h

2
(2.119)

2.4.5 Symplectic integration in comoving coordinates

In cosmological simulations, we also have to consider the Hubble parameter H and the scale factor a,
described by the Friedmann equation

H =
ȧ

a
= H0

[
ΩMa

−3 + (1− ΩM − ΩΛ)a
−2 +ΩΛ

] 1
2 (2.120)

where ΩM and ΩΛ are the density parameters for matter (dark and baryonic) and dark energy. The
comoving frame complicates the integration, as H and a enter the equations of motion (for details see
[58]), and so to derive a symplectic integrator, we start from the Lagrangian for the particle motion in
the comoving frame (where the position is denoted as r′ and the velocity as v′)

L =
1

2
(av′ + ȧr′)2 − ϕ (2.121)

By introducing the time dependent generating function ψ = 1
2aȧr

′2, we can transform this into

L =
1

2
a2v′2 − ϕ′

a
ϕ′ = aϕ+

1

2
äa2r′2 (2.122)
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We can switch to the Hamiltonian formalism, with the canonical momentum to r′ given as p′ = a2v′,
to get the Hamiltonian

H =
p′2

2a2
+
ϕ′

a
(2.123)

This Hamiltonian is separable and we can write the drift and kick operators as

D(τ) = r′t+τ = r′t + p

t+τ∫
t

dt

a2
(2.124)

K(τ) = p′
t+τ = p′

t −∇′ϕ′
t+τ∫
t

dt

a
(2.125)

and the KDK leapfrog operator as K
(
h
2

)
D (h)K

(
h
2

)
.
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3 Implementing SPH in pkdgrav3

In this section, the implementation of SPH into pkdgrav3 is described.

3.1 The gravity code pkdgrav3

Here, a short description of the relevant aspects of pkdgrav3 is given. A more in-depth description
can be found in [36] and [59]. pkdgrav3 is the latest version in the line of gravity tree codes initially
developed by Joachim Stadel [58]. It was developed to be able to perform cosmology dark matter
simulations with trillions of particles on hundreds of super-computer nodes in parallel. The force
evaluation uses a fast multipole tree code with a binary tree (it used to use a k-D tree in the first
version, hence the name pkdgrav). During domain decomposition, the domain is decomposed into
sub-volumes which are local to each processor. Each processor then builds its own local tree. The
smallest tree node is called a bucket with a default bucket size of 16 particles.
For the force calculation, the tree is ’walked’ starting with the sink cell being the root of the local
tree of a processor while the checklist contains the global root cell as the source cell. Tree cells are
then recursively opened and interactions are calculated depending on an opening criterion (described
in Section 3.4) with one of four different interaction types:

• PP: Direct softened particle-particle interaction

• PC: Multipole expansion of the mass in a distant cell

• CP: Multipole expansion of the potential inside the sink cell induced by a single source particle

• CC: Approximating the potential landscape inside the sink cell induced by the source cell

On the sink side, the tree walk does not proceed down to bucket level, but is stopped at the first cell
that contains fewer particles than the group size. The group size is 64 by default. The group and
bucket sizes are chosen to maximize performance, and choosing a bucket size larger than one also saves
memory by decreasing the size of the tree.
In cosmological simulations, the size of the simulation domain should be infinite, because otherwise the
lack of mass outside will affect the force acting on the particles and result in a collapsing solution. The
most common approach to solve this problem is to duplicate the simulation volume in all directions
infinitely to generate a periodic boundary. Spectral methods can handle this perfectly by the nature
of the fast Fourier transform, but for tree methods like pkdgrav3, this has to be done explicitly using
Ewald summation [60].
The PP interactions for a group of particles are calculated by adding all particles with which these
particles directly interact to the interaction list PP (ILP). At the end of the walk for a sink group, the
ILP and the particle information of the group are then bundled in an object called a workParticle.
The interactions between the sink particles and the source particles in the workParticle are then
calculated in a loop using CPU SIMD (single instruction multiple data) vector instructions (or GPU
instructions if available). PC interactions are handled similarly with an interaction list PC (ILC),
while CC and CP interactions use a second instance of the ILC to calculate the multipoles during the
tree walk. The multipole expansions are generally done to 4th order (hexadecapole), but the local
expansion in the CP and CC, as well as the Ewald summation use a 5th order expansion.
The time integration is a leapfrog scheme based on a power-of-two rung structure, where particles are
placed on a rung depending on their time step size. Forces are calculated for all particles on the current
or higher rung, whereas particles on lower rungs only act as sources. With the new force, the opening
kick for the particle velocities of active particles is performed, while the closing kick is performed at
the beginning of the next step. With the new velocities, positions are drifted for all particles to the
next smallest step.
Parallelization is implemented with a hybrid pthreads/MPI model, where each group of threads has a
dedicated MPI thread that handles inter-group communication over MPI, while threads in the same
group exchange data using shared memory. On low thread count nodes (like Daint), one such group
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would be a node, while on larger thread count nodes (like Eiger) there have to be multiple groups
per node to decrease the load on the MPI thread (see discussion in Section 4.3). If the machine has
NVIDIA GPUs, they can be used to offload the floating point operations of the PP, PC and Ewald
interactions, but not the tree walk. The machine Eiger at CSCS does not have GPU nodes, so only
the CPU capability of the code is used there.

3.2 General concept

In Gasoline and the existing SPH implementation in pkdgrav3, SPH related calculations are done
using so-called smooths, which means that each processor loops over its active particles, searches for the
closest param.nSmooth particles to that particle and then executes the necessary operations to calculate
the result of the respective smooth (density, intermediate values like v ·x or SPH forces). The process
of neighbor finding is slow and can take longer than the whole gravity calculation (see Section 4.2).
Thus in this work, the neighbor finding is included into the tree walk process of the gravity calculation.
All the particles that are needed (and some more) are added to the PP list by modifying the opening
criterion (described in Section 3.4). This increases the gravity work as is discussed in Section 4.2, but
the increase is of the order of 50%. The density calculation is done in an additional walk, that has
all the gravity related operations disabled, before the force walk, in an operation similar to the PP
interaction using the ILP. The SPH accelerations are then calculated in the second walk together with
the gravitational accelerations, also as a PP operation. All parameters and flags necessary to control
the different types of the tree walk by enabling or disabling certain operations (like the calculation
of density, gravity forces or SPH forces) are contained in a structure called SPHOptions that is made
available at all levels of the code where it is needed.

3.3 The Kernel

The kernel is split into 4 functions defined in SPHOptions.h as preprocessor macros. Each contains a
switch-case structure to switch between kernel types at run-time (even though only one kernel, the M4
cubic spline kernel, is implemented at this time). Usually, SPH kernels are defined as a function of r

h
where h is called the smoothing length. Kernels with compact support have a support of n · h where
n is a number of order 1. In this work, the kernel is defined as a function of q = r

fBall
where fBall is

such that the kernel has a support of q ∈ [0, 1]. We thus define

W (q) = Cw(q) q =
r

fBall
(3.1)

where C is a normalization factor (that depends on the kernel), such that the kernel satisfies∫
W (q)d3r = 1 (3.2)

The kernel base function of the M4 cubic spline kernel in this formulation is given as

w =


1− 6q2 + 6q3 0 ≤ q ≤ 1

2

−2(p− 1)3 1
2 < q ≤ 1

0 q > 1

C =
8

f3Ballπ
(3.3)

The gradient of the kernel which is needed in the force calculation is given as

∇W =
r

rfBall
C
dw

dq
(3.4)

where the derivative of the kernel base function for the M4 kernel with respect to q is given as

dw(q)

dq
=


18q2 − 12q 0 ≤ q ≤ 1

2

−6(q − 1)2 1
2 < q ≤ 1

0 q > 1

(3.5)
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The derivative of the kernel with respect to fBall that is needed in the Newton-Raphson iterations of
the density calculation (see below) is then calculated using the chain rule as

dW (q)

dfBall
= − C

fBall

(
3w(q) +

dw(q)

dq
q

)
(3.6)

Equations (3.3), (3.5) and (3.6) have to be recalculated when adding new kernels. In order to use the
vector instructions of the CPU or GPU in the functions where the kernel is used, the kernel defines and
uses masks in order to do the necessary case distinctions and only uses the SIMD operators defined in
simd.h. The code snippet below shows the implementation of the kernel functions. In Section 3.6 it
is shown how these are called in the density evaluation. Note that in the code, q is called r while r2

is d2.

1 /*
2 * Initializes the SPH kernel , gives back all masks needed , can calculate
3 * temporary variables needed in SPHKERNEL and DSPHKERNEL_DR and
4 * calculates the kernel normalization C
5 */
6 #define SPHKERNEL_INIT(r, ifBall , C, t1 , mask1 , kernelType) { \
7 switch(kernelType) { \
8 case 0: { \
9 mask1 = r < 0.5f; \

10 t1 = r - 1.0f; \
11 C = 8.0f * M_1_PI * ifBall * ifBall * ifBall; \
12 break; } \
13 default: assert (0);\
14 }\
15 }
16 /*
17 * Evaluates the non -normalized kernel function , using the masks and
18 * temporary variables initialized in SPHKERNEL_INIT.
19 * Has to be normalized with C at the end
20 */
21 #define SPHKERNEL(r, w, t1 , t2, t3 , r_lt_one , mask1 , kernelType) { \
22 switch(kernelType) { \
23 case 0: { \
24 t2 = 1.0f + 6.0f * r * r * t1; \
25 t3 = - 2.0f * t1 * t1 * t1; \
26 w = maskz_mov(r_lt_one ,t3); \
27 w = mask_mov(w,mask1 ,t2); \
28 break; } \
29 default: assert (0);\
30 }\
31 }
32 /*
33 * Evaluates the derivative of the non -normalized kernel function with
34 * respect to r, using the masks and temporary variables initialized in
35 * SPHKERNEL_INIT. Has to be normalized with C at the end
36 */
37 #define DSPHKERNEL_DR(r, dwdr , t1, t2 , t3 , r_lt_one , mask1 , kernelType) { \
38 switch(kernelType) { \
39 case 0: { \
40 t2 = 6.0f * r * (3.0f * r - 2.0f); \
41 t3 = - 6.0f * t1 * t1; \
42 dwdr = maskz_mov(r_lt_one ,t3); \
43 dwdr = mask_mov(dwdr ,mask1 ,t2); \
44 break; } \
45 default: assert (0);\
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46 }\
47 }
48 /*
49 * Calculates the derivative of the normalized kernel function with respect
50 * to fball. Do not normalize , is already normalized.
51 */
52 #define DSPHKERNEL_DFBALL(r, ifBall , w, dwdr , C, dWdfball , kernelType) { \
53 switch(kernelType) { \
54 case 0: { \
55 dWdfball = - C * ifBall * (3.0f * w + dwdr * r); \
56 break; } \
57 default: assert (0);\
58 }\
59 }

3.4 Opening criterion

The opening criterion implements a decision tree to decide whether the gravitational forces between
two cells are calculated as Particle-Particle, Particle-Cell, Cell-Particle or Cell-Cell interactions.

3.4.1 Decision tree

In Figure 2, the decision tree of the opening criterion is shown. The sink cell for which the force has
to be calculated is called k, while the source cell is called c. The outcome of the opening criterion is
calculated for a single sink cell and a whole SIMD vector of source cells at a time. The meaning of the
different outcomes are as follows:

• iOpen = 0: c stays on the checklist and is visited again later with a smaller k cell

• iOpen = 1: All particles of c are added to the PP list, end of the process for c

• iOpen = 2: c is a bucket which is opened and each particle is added as a cell with zero size, the
particle can end up as a CP or PP interaction

• iOpen = 3: c is opened and the children are added to the checklist

• iOpen = 4: The multipole expansion is used, end of the process for c: PC interaction

• iOpen = 8: The local expansion is used, end of the process for c, CC or CP interaction

• iOpen = 10: c is empty, and removed, end of the process for c
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Figure 2: Decision tree of the opening criterion. The sink cell for which the force is to be calculated is
called k, while the source cell is called c. The new SPH overlap tests are highlighted in bold.

3.4.2 SPH criterion

In order to make sure that any source cell particle that is inside the kernel of any of the active sink
cell particles (gather) or has any active sink cell particle in its own kernel (scatter) ends up on the PP
list, two additional criteria are added. Scatter interactions are only used for the forces calculation, as
particles do not scatter density. These two criteria are overlap tests between either a box and a ball
(Ball of Balls) or two boxes (Box of Balls) described below.

• The first way to select the necessary particle uses a Ball of Balls which is calculated during the
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tree building (or updating) process. On bucket level, the particles are added one by one and the
radius and center of the new Ball of Balls is calculated such that it fully encompasses the old Ball
of Balls and the ball of the newly added particle. Cells that are not buckets have their Ball of
Balls calculated such that it encompasses the Ball of Balls of their two children. In the opening
criterion, the decision to include the particles of a source cell on the PP list is based on if the
source cell overlaps with the Ball of Balls of the sink cell for the gather particles and vice-versa
for the scatter particles.

• In the second way, a Box of Balls is used. During the tree build or update process, for each
bucket the minimum and maximum coordinate value of the particle positions plus or minus
the respective ball size is calculated. For non-bucket cells, the box is calculated such that it
encompasses the boxes of its two children. In the opening criterion, an overlap test between the
Box of Balls of the sink cell and the cell bounds of the source cell is done for the gather particles
and vice-versa for the scatter particles.

In Figure 3, the two variants are shown for an example configuration of a sink cell k and four source cells
cx. Which one of these two ways is used can be chosen using a preprocessor define in SPHOptions.h.
The overlap tests for either the Ball of Balls or Box of Balls are added to the tests T1 and T4, such
that every interaction either ends up on the PP list or passes a no-overlap test at least once.

k

c4

c1

c2

c3

k

c4

c1

c2

c3

Figure 3: Selection of cells cx for the ILP of group k in the Ball of Balls case (left) and the Box of
Balls case (right). The Ball of Balls variant selects cells c2, c3 and c4 while the Box of Balls
variant selects only cells c2 and c3.

3.4.2.1 Comparison In tests, it has been observed that using the Box of Balls selects around 30%
less particles on average than using the Ball of Balls. In Figure 4 the Ball of Balls and Box of Balls for
16 random balls (coordinates random ∈ [−0.5, 0.5] and radii random ∈ [1.0, 1.5]) are shown and one
can see that the Ball of Balls reaches farther than the Box of Balls along the coordinate axes. It thus
makes intuitive sense, why in the coordinate aligned tree structure, more particles could get selected
when the Ball of Balls is used.
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Figure 4: Example of 16 random balls (red), centered on the dark points in a cell (dashed) and the
corresponding Ball of Balls (blue) and Box of Balls (black). Due to the way the Ball of Balls
is created, only one of the balls is touching it (can be seen as the artifact in all figures).

3.5 Initialization

After reading the initial conditions and setting up everything for gravity calculations, three additional
steps have to be performed, before time-stepping can begin.

3.5.1 Kernel target

The method to find the smoothing length described in Section 2.3.2.2 needs a kernel target, either the
mass or the particle number in the kernel. This target is set as either param.nSmooth (the number of
smoothing neighbors used in the old SPH implementation) when the particle number density is used,
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or

Target =
Mtot

Ntot
Nsmooth (3.7)

when the mass density is used. This value is then set to the parameter structure, from where it is set
in each initialization of the SPHOptions structure, so that it is always available when needed.

3.5.2 Ball size

The value fBall has to be initialized too, because it enters the size of the Ball of Balls or Box of Balls
described above. So, to set fBall, an empty or ball smooth is performed with the smoothing neighbors
set to twice param.nSmooth. This smooth only searches for the nearest particles, calculates fBall and
saves this value to the particle memory. No additional calculations are performed.

3.5.3 Thermodynamical variable

The thermodynamical variable that is read from the initial condition file is the temperature in Kelvin,
but the thermodynamical variable used by the code is either the specific internal energy u or the
entropic function A(s) described in 2.3.2.8. So, during reading the initial condition, the temperature
is converted to specific internal energy following

u = T
R

(γ − 1)µ
(3.8)

where R is the gas constant, γ is the adiabatic index, and µ the mean molar weight of the gas. As the
relation between A(s) and u in Equation (2.90) also contains the density, the conversion can only be
done once the density is known. Thus, a density walk is performed which then directly converts from
u to A(s) using Equation (2.90).

3.6 Density calculation

In the density walk, only gather particles are selected in the opening criterion, but a small factor ≥ 1
is applied to the individual ball sizes of the particles during the tree build. This makes sure that if a
particle increases its ball size during the density calculation, all needed particles are on the PP list. In
the density walk, Newton-Raphson iterations are applied to solve for the density ρ and the ball size
fBall such that they satisfy either Equations (2.55) or (2.56) depending on a flag. This is done by
first doing a single density evaluation that also calculates the derivative of the density and the number
density with respect to the ball size. If the deviation from the kernel target is too large for any of
the particles in the group, new ball sizes are calculated for all active particles in the group, using a
modified Newton-Raphson method

fnewBall = fBall −
δ
dδ

dfBall

(3.9)

where δ is given by either Equation (2.55) or (2.56) minus the kernel target (ρ denotes either mass or
particle number density)

δ =
4

3
πf3Ballρ− Target (3.10)

and dδ
dfBall

is calculated from the derivatives

dδ

dfBall
=

4

3
πf2Ballρ+

4

3
πf3Ball

dρ

dfBall
(3.11)

This new value is then limited to be ∈ [0.5, 1.5]fBall to ensure stability of the solution process. A
second limiter limits the number of particle in the kernel to ten times param.nSmooth, in order to
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reduce the huge PP list sizes that can occur when extremely low density particles dominate the Ball of
Balls or Box of Balls for some groups. The workParticle is then sent to do a new density evaluation
and the process is repeated until convergence. Once converged, the values of the density ρ, the ball
size fBall and the grad-h correction Ω (see Equation (2.49)) are extracted from the workParticle and
saved to the particle memory. The code snippet below shows how the kernel functions are called and
the (number-) density and its derivative is calculated.

1 // Calculate distance
2 dx = Idx + Pdx;
3 dy = Idy + Pdy;
4 dz = Idz + Pdz;
5 d2 = dx*dx + dy*dy + dz*dz;
6 // Calculate inverse fBall and scaled distance
7 ifBall = 1.0f / fBall;
8 r = sqrt(d2) * ifBall;
9 // Evaluate the kernel

10 SPHKERNEL_INIT(r, ifBall , C, t1 , mask1 , kernelType);
11 SPHKERNEL(r, w, t1, t2 , t3, r_lt_one , mask1 , kernelType);
12 DSPHKERNEL_DR(r, dwdr , t1 , t2, t3, r_lt_one , mask1 , kernelType);
13 DSPHKERNEL_DFBALL(r, ifBall , w, dwdr , C, dWdfball , kernelType);
14 // return the density
15 anden = C * w;
16 arho = Im * anden;
17 // return the density derivative
18 adndendfball = dWdfball;
19 adrhodfball = Im * adndendfball;
20 // return the number of particles used
21 anSmooth = maskz_mov(r_lt_one ,1.0f);

3.7 FastGas

As an updated density is needed not only for active particles, but for all particles that are inside the
kernel of an active particle, the density update is generally done for all particles. But for rungs on
which only a small fraction of the particles is active, it is beneficial to calculate the density only for
those particles that end up on the PP list of an active particle. To facilitate this, a third walk is added
in front of the density walk with the same opening criterion settings as the force walk, but which only
sets a marking flag on any particle that it would add to the PP list without actually adding anything
and without doing any calculations besides the walk. The density walk then considers active particles
and marked particles as active and calculates the density for all these particles. The force calculation
is then done normally, for all active particles. The threshold below which this is done is exposed to the
parameter file. At the moment, a reasonable value seems to be 10%. In the rung distribution plots in
Section 4.5 and 4.6, this threshold is indicated and when comparing them with the step wallclock time
plots, one can see sharp drops or rises, whenever a rung crosses it.

3.8 Equation of State

At the moment, the only supported equation of state is the ideal gas EOS

P = (γ − 1)ρu c =
√
γ(γ − 1)u (3.12)

in two different formulations. One can switch at runtime between the formulation with the internal
energy u as the thermodynamical variable and the adiabatic formulation described in Section 2.3.2.8.
The EOS is evaluated when the workParticle is assembled, so it does not use particle memory for the
pressure and the sound speed but it is evaluated many times more than would be the case if we would
save the values. This can and maybe has to be moved into the density walk when more computationally
intensive EOS are used or for the interface correction.
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3.9 SPH forces calculation

The calculation of the SPH forces is done together in the same walk as the gravity forces, so they can be
both kicked together. The SPH force calculation uses the same method as the density calculation. The
contributions of each particle on the PP list is calculated using SIMD instructions and the SIMD-ready
kernel functions. This step calculates the acceleration (Equation (2.52)), the divergence of the velocity
∇ · v, the time derivative of the internal energy (Equations (2.37) and (2.54) for the formulation with
internal energy or Equation (2.91) for the entropic formulation) and the maximum time step size for
each interaction:

∆tSPH,ij = ηC min

f i
Ball
2

(1 + 0.6α)ci + 0.6β |min(0, µij)|
(3.13)

where ηC is the Courant parameter, α and β are the viscosities that also appear in the artificial viscosity
described in Section 2.3.1.6 and µij is given by Equation (2.36). This ensures that the CFL condition
is satisfied and follows the description in [42] and [55]. The actual time step size of a particle is then
calculated as the minimum of all the interactions in the kernel and the time step size from the gravity
condition

∆ti = min(min
j

(∆tSPH,ij),∆tgrav) (3.14)

with the gravity time step

∆Tgrav = η

√
ϵ

|a| (3.15)

where η = 0.2 is the time step parameter, ϵ is the particle softening and |a| is the acceleration
magnitude. This time step size then defines the rung on which the particle is for the next step.

3.10 Time integration

Positions and velocities are integrated using a leapfrog scheme. To evaluate the SPH forces, the
thermodynamical variable and the velocity are predicted to the current step using a predictor-corrector
scheme. In order to keep the memory footprint as small as possible, no predicted values are kept in
memory. Thus the prediction is done on-the-fly, whenever a predicted value is needed. As particles get
their velocities and thermodynamical variable updated during the forces walk, this prediction has to
be done either forward or backward. The necessary kick factors are computed at the beginning of the
walk for all rungs, according to Equation (2.125), depending on which fraction of the step the velocity
and thermodynamical variable stand in relation to the current fraction of the step. The prediction is
then done in the form

vpred = vsaved + asaved∆t (3.16)

where the kick factor ∆t can be positive (forward prediction) or negative (backward prediction). The
backward prediction for the active particles yields the precise result at the current substep, while the
forward prediction and the backward prediction for inactive particles gives the result with the precision
of the predictor-corrector scheme. With this, a small execution order dependence is introduced, but
the precision of the prediction is either the same as in the predictor-corrector scheme or better. In
Figure 5 the operations in a single step (without substeps) is shown. First, the density update is done
for all active particles and their neighbors. Then the force calculation, the closing kick of the last step
and the opening kick of the new step are done in succession, asynchronously for each group of active
particles.
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Figure 5: This diagram shows how a single kick operation (indicated by the yellow box) is done. First,
the density update is done for all active particles and their neighbors. Then the force cal-
culation, the closing kick of the last step and the opening kick of the new step are done in
succession, asynchronously for each group of active particles. The red arrows imply a flow of
information, while the violet arrows indicate the on-the-fly forward and backward prediction
of the velocity (and thermodynamical variable) described in the text.
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4 Results

4.1 Relaxation test

As a first test of the new SPH code, an ideal gas ball (γ = 5
3) of one Jupiter mass with 1×106 particles

was generated using ballic [2]. This initial condition was then relaxed for 9500 steps using both the
new code and Gasoline. In Figure 6, the resulting minimum, maximum and mean values for the
density and the temperature are shown over time. The result of Gasoline shows visible oscillations
in all values, while the new implementation oscillates much less, even though it uses the M4 kernel
which has worse stability properties than the Wendland C2 kernel used in Gasoline [43]. These
better results can be attributed to the grad-h terms which remove spurious forces due to the varying
smoothing length. The large difference in the minimum values between the two implementations are
due to the vacuum surface correction that is implemented in Gasoline but missing in the new SPH
implementation in pkdgrav3. In Figure 7, the RMS velocity of the gas particles is shown over time.
Here too, the new implementation shows much less oscillation than Gasoline.
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Figure 6: Comparison of the relaxation of a 1MJ ideal gas ball with Gasoline and the new SPH
implementation in pkdgrav3. The new code shows less oscillations than the Gasoline
result. The difference in minimum values are due to the missing vacuum surface correction
in the new code.
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Figure 7: RMS velocities of the two relaxation runs with Gasoline and the new implementation. The
new code shows much less oscillation than Gasoline.
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4.2 Performance compared to pure gravity

As described in 3.2, adding all particles that are needed for the SPH evaluations to the PP list adds
gravity work. To assess the extent of this increase, the first step of the collision simulations with
200× 106 and 2× 109 particles described in Section 4.5 were analyzed. These tests were performed on
Eiger, using a single node in the 1x1x256 configuration (see Section 4.3). The first force evaluation was
performed three times. The first evaluation was done with only the gravity opening criterion active and
only gravity forces being calculated. The second evaluation then had the SPH opening criterion active,
but also only the gravity forces were calculated. The third evaluation had then everything active, both
the SPH selections and also the SPH force evaluation. As a comparison, also the density calculation
and an empty smooth (meaning, only finding the particles and the ball size, without doing an actual
computation like density or forces) were timed. The wallclock times of the different evaluations are
shown in Table 2. The additional particles on the PP list add around 40% to the gravity work, while
a full force evaluation takes around twice of what a pure gravity calculation takes. The density walk
takes around 80% of a pure gravity walk, and less than half of a full force calculation, even though
Newton-Raphson iterations are performed to solve for the ball size. The empty smooth takes more
than twice the time of a pure gravity evaluation, and still more than a full force walk, without doing
any actual kernel evaluations.

200× 106 2× 109

Gravity pure 6.587 s 100% 67.213 s 100%

Gravity with SPH selection 8.953 s 136% 97.494 s 145%

Gravity and SPH force 12.860 s 195% 134.339 s 200%

Density 5.338 s 81% 54.972 s 82%

Empty Smooth 15.103 s 229% 144.509 s 215%

Table 2: Comparison between wallclock time of pure gravity, gravity with SPH opening criterion, full
force calculation, density calculation and an empty smooth for the first step of the 200× 106

and 2× 109 particle collision simulations.
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Figure 8: Force error compared to the direct force evaluation for the end result of the 2× 106 particle
collision for the opening criterion with and without the SPH part.

We expect these additional PP particles to increase the accuracy of the gravitational force calculation.
To test this, the gravitational accelerations of all particles in the end result of the 2 × 106 particle
collision simulation (see Section 4.5) were calculated both with and without using the SPH opening
criterion and compared to the accelerations calculated with the direct accelerations. The direct accel-
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erations are calculated by forcing all particles onto the PP list, which takes very long as it is O(N2)
(see Section 2.2.1). In Figure 8, the resulting force error histograms are shown, and one can see that
the additional particles decrease the mean force error.

4.3 Multinode scaling

One of the strengths of pkdgrav3 is its scaling on many supercomputer nodes. As described in Section
3.1, pkdgrav3 uses a hybrid model of MPI and pthread. To uniquely describe the configuration with
which each simulation was run, we use the notation NxMxT where

• N: the number of nodes, between 1 and 32 (it could be more, Eiger has around 500 nodes at the
moment)

• M: the number of MPI tasks per node

• T: the number of threads per task

• The total number of threads used by pkdgrav3 is then N × M × (T − 1). As an example,
16x16x16 gives 3840 threads.

To benchmark the parallelization performance of the new SPH implementation in pkdgrav3, 1MJ

ideal gas balls were generated in the same way as described in Section 4.1 with different numbers
of particles. With these balls, collision initial conditions were then created with impact parameter
b = 0.5 and impact velocity vimp = 50 km s−1 as in Section 4.5. These were then run for 11 steps and
the wallclock time of the steps 6 to 10 were averaged (the two bodies have not collided at this point).
The ideal configuration for this test turned out to be either 1x1x256 for single node or Nx16x16 for
multiple nodes (and for single node, when the particle number is low). On the left side of Figure 9 the
strong scaling behavior for the configurations Nx16x16 is shown.
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Figure 9: Left: Strong scaling speedup for the Nx16x16 configuration with different particle numbers
in the first steps of a collision simulation. For increasing particle numbers, the scaling ap-
proaches the ideal scaling. Right: Speedup as a function of the particle number for the same
tests, but normalized with the 1x1x256 run. The 1x1x256 configuration is slower than the
1x16x16 configuration for low particle numbers.

The results look as expected, with increasing particle number, the scaling gets better and closer to the
ideal scaling. On the right side of Figure 9, the speedup of the Nx16x16 configurations in relation to
the 1x1x256 configuration is shown as function of the particle number. It reveals multiple interesting
features. First, the 1x16x16 configuration is faster than the 1x1x256 configuration for the 200 × 103

and 2 × 106 particle runs, but slightly slower for larger particle numbers. Secondly, only the single
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node and 2 node lines seem to have reached their maximum. So, increasing the particle number will
further increase the scaling. But this is not possible at the moment, as we run into limitations in the
initial condition generation (see Section 4.7). Lastly, there is a regular pattern with steep increases
and then dips in scaling. These are caused by the rung structure of the simulations. The runs where
the scaling dips have a low fraction of particles on the lowest rung (12% and 1%, for the 100 × 106

and 500× 106 particle runs respectively), while those that have steep increases have their lowest rung
well filled (51% and 32% for the 50× 106 and 200× 106 particle runs). A low particle fraction means
that many threads have no or few active particles, which reduces the scaling, as they sit idle.
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Figure 10: Weak scaling results divided into the parts of a substep. Most of the time is spent in the
density (30.1%) and forces (56.8%) calculation, while the domain decomposition (9.91%),
tree build (2.76%) and tree update (0.452%) have smaller contributions.

Figure 10 shows a weak scaling analysis. For this, the 2× 109 particle case was run with the 32x16x16
configuration. Additional runs were performed while halving the number of nodes and particles, until
a case with 62.5×106 particles was run on a single node (this results in 260×103 particles per thread).
As changing the particle number also changes the rung distribution and the total number of substeps
necessary, comparing the wallclock time of a full step is not fair (shown as the black line in the figure).
Thus, the mean of the wallclock time for the individual parts of the rung 0 substeps of steps 6 to
10 are shown. The different parts do not contribute evenly to the wallclock time. In the single node
simulation, they are split into 9.91% for the domain decomposition, 2.76% for the tree build, 0.452%
for the tree update, 30.1% for the density calculation and 56.8% for the force calculation. The two
largest contributors, the density and force calculation scale reasonably well. As the contribution of the
tree update is very small, it is not alarming that it scales worse than the density and force calculation.

4.4 Performance compared to Gasoline

One of the main motivations to do this work was the fact that the tool currently used to perform collision
simulations for publications (Gasoline for example in [6, 61]) does not scale well with multiple nodes
and is quite slow compared to modern codes. To compare the new implementation to Gasoline, the
same test is performed as for pkdgrav3, but only up to 150× 106 particles, as Gasoline would not
start with more than that, but the reason for that is unclear. On the left side of Figure 11, the strong
scaling result for Gasoline is shown, and we only get a maximum speedup of 2 at 150× 106 particles.
On the right side of Figure 11 the speedup of the new SPH implementation in pkdgrav3 compared
to Gasoline is shown. Even on a single node, the new implementation soon outperforms Gasoline
by a factor of around 10, while with 32 nodes, the speedup is 47 at 150× 106 particles. The speedup
would probably increase further with more particles, but we could not test that.
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Figure 11: Left: Strong scaling results for Gasoline. A maximum speedup of 2 can be achieved for
16 nodes with 150 × 106 particles. Right: Speedup for the new implementation compared
to Gasoline. On a single node, the new implementation delivers a speedup of around 10,
while with 32 nodes, the speedup is up to 47.

4.5 Collision example

As an example, a collision between two bodies was simulated. For this, an ideal gas ball of one Jupiter
mass was created with γ = 5

3 using ballic with 1×105, 1×106, 1×107, 1×108 and 1×109 particles. The
1× 105 particle case represents the resolution that is currently used to perform production simulations
with Gasoline. Two copies of these balls are then set up for a collision with impact parameter b = 0.5
and impact velocity vimp = 50 km s−1 which is 1.5vesc for a mutual escape velocity of 33.44 km s−1. The
collision should thus result in a hit-and-run collision. In Figure 12 some results of the 2× 105 particle
simulation are shown to illustrate the kind of details we can expect at this resolution. In Figures 13 -
15 the same plot with the same settings are shown for the higher resolution simulations. Starting at
2 × 108 particles, the shearing collision interface between the two bodies starts to show (suppressed)
fluid mixing instabilities in Figure 14. In Figure 15, the material that is lifted away from the main
bodies by the shockwave that has traveled through the body shows structure that is not resolved with
less particles.

Figure 12: Results from the 2 × 105 particle collision simulation. Left: full temperature plot at step
100, middle: thin slice through the temperature plot at step 100, right: temperature plot
at step 600. Logarithmic temperature scale for left and middle figure: 1 × 103K (blue) -
1× 106K (red), for right figure: 1× 102K (blue) - 1.585× 104K (red).
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Figure 13: Full view of the collision at step 100 for different particle numbers. Top left 2×106, top right
2 × 107, bottom left 2 × 108 and bottom right 2 × 109 particles. Logarithmic temperature
scale: 1× 103K (blue) - 1× 106K (red).
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Figure 14: Temperature plot of a thin slice through the collision at step 100 for different resolutions.
Top left 2× 106, top right 2× 107, bottom left 2× 108 and bottom right 2× 109 particles.
At higher resolutions, the shearing interface between the two bodies starts to show (SPH
suppressed) Kelvin-Helmholtz instabilities. Logarithmic temperature scale: 1×103K (blue)
- 1× 106K (red).
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Figure 15: Temperature plot of the result at step 600. Top left 2× 106, top right 2× 107, bottom left
2×108 and bottom right 2×109 particles. As expected, with larger particle count, more and
more details are resolved. Logarithmic temperature scale: 1× 102K (blue) - 1.585× 104K
(red).

In Figure 16, the rung distribution and step wallclock time are shown over the course of the simulation
with 2×108 particles. As expected, the rung distribution shifts towards higher rungs during the actual
collision and then towards lower rungs again, once the bodies separate. The step wallclock time follows
that, leading to high step times during the collision and low step times when particles go to lower
rungs again. There is an increase in step wallclock towards the end of the run, which coincides with
an increase of particles on rung 3, caused by the infall of mass that was ejected before, towards the
denser remnants.

40



4 Results Thomas Meier

0 200 400 600 800 1000

Time step

10-8

10-6

10-4

10-2

100
C

um
m

ul
at

iv
e 

fr
ac

tio
n 

of
 p

ar
tic

le
s

rung 0
rung 1
rung 2
rung 3
rung 4
rung 5
rung 6
FastGas

0 200 400 600 800 1000

Time Step

0

100

200

300

400

500

600

700

800

900

S
te

p 
w

al
lc

lo
ck

 ti
m

e 
[s

]

Figure 16: Cumulative particle rung evolution and step wallclock time for the 2× 108 particle collision
simulation. The periodic upwards spikes represent the time steps in which a result was
written, which needs an additional density and gravity evaluation.

For the simulation with 2 × 109 particles, the global timestep (corresponding to rung 0) had to be
reduced by a factor of ten, because the simulation kept crashing when the shockwave that traveled
through the body hit low density gas. The reason for this is that high rung particles suddenly interact
with particles that are on a much lower rung and thus a much larger time step size. It was already
pointed out by [62] that problems start to occur when the timestep sizes between interacting particles
differ by more than a factor of 4. Due to this difference in global time step, the x-axis in Figure 17 is
different than in Figure 16 but represents the same physical time. This also causes the maximum rung
to be 4 compared to 6 in the 2 × 108 particle simulation, but when using the same global time step,
the maximum rung in the 2× 109 particle simulation would be 8.
In the wallclock diagram in Figure 17 four different runs of the 2×109 particle simulation are shown with
different configurations. The same initial conditions were simulated with three different parallelization
configurations. In the beginning, the step wallclock times show the stacking expected from the scaling
analysis presented in Section 4.3, where the 32x8x16 configuration is roughly in the middle between
the 16x16x16 and the 32x16x16 configuration. But as the action increases and thus also the amount
of communication between the nodes, the 32x16x16 configuration starts to get outpaced by the other
two configurations.
A second peculiar feature starts to occur at around step 7000, where a small number of particles with
large smoothing lengths in the low density outer regions of the domain can lead the PP list size of
single groups to get extremely large, when cells from much denser regions are selected. This happens
in all simulations, but only becomes a problem when multiple nodes are used, as the large PP list only
occurs for a small number of particles. The amount of additional computations is small, but when
the particles that end up on this single large PP list have to be fetched from other nodes, this can
massively increase the wallclock time for the whole simulation. In the diagram, we can see that this
not only happens in the 32xNx16 simulations, but also in the 16x16x16 simulation. As only half as
many nodes are involved, the amount of communication is much smaller and thus the impact is also
much smaller.
The fourth line labeled 32x8x16 modified is from an additional simulation where two parts of the code
were modified. The first change was the increase of the maximum cache communication data size from
512 bytes to 4096 bytes. This allows the cache to exchange 16 instead of 4 particles and 16 instead
of 2 cells in one communication, reducing the total number of communications needed. This leads
to a reduction of the step wallclock time of around 11% (mean value until step 7000). The second
modification was to change the ball size limit from the one described in Section 3.6 based on the
number of particles in the kernel to a hard limit at 10 code units. Even though this can not be the
final solution, it definitely solves the problem at hand, as this sudden increase in PP list size and the
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corresponding jump in step wallclock time does not occur in this simulation.
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Figure 17: Cumulative particle rung evolution and step wallclock time for the 2× 109 particle collision
simulation. The step wallclock time is smoothed with a Gaussian filter with window size 50.
Even though the 32x16x16 thread configuration is faster than the 32x8x16 configuration in
the beginning, it looses when the action is more intense. It soon becomes slower than the
16x16x16 configuration. The sudden jumps in step wallclock time at the end are caused
by an increase of the PP size of a single thread due to a few particles with extremely large
smoothing lenghts.

Two additional simulations were performed with 2× 108 particles for lower impact velocities of vimp =
40 km s−1 and vimp = 30 km s−1 to generate a recolliding and a merging example. In Figure 18, the
same plots as in Figure 15 are shown for these simulations and Figure 19 shows plots from a later point
in the simulation.

Figure 18: Temperature plots of step 600 for the 2 × 108 particle collision simulations with vimp =
40 km s−1 (left) and vimp = 30 km s−1 (right). Logarithmic temperature scale: 1 × 102K
(blue) - 1× 105K (red)
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Figure 19: Temperature plots of step 3000 for the 2 × 108 particle collision simulations with vimp =
40 km s−1 (left) and vimp = 30 km s−1 (right). Logarithmic temperature scale: 1 × 102K
(blue) - 1× 105K (red)

4.6 Cosmology example

As a second example, a cosmology simulation of a 50Mpc box was done with cosmology parameters h =
0.67, Ω0 = 0.32 and Λ = 0.68. For this, initial conditions for a dark matter cosmology simulation were
generated using the integrated cosmology IC generator of pkdgrav3 but modified such that instead
of dark matter particles, it generates SPH particles for an ideal gas with γ = 5

3 with a temperature of
34K to correspond to the baryon temperature at redshift z = 49. This was done for grids with 1283,
2563, 5123 and 10243 particles. These initial conditions were then simulated from z = 49 to z = 0 with
the new SPH implementation. In Figure 20 the density is plotted for the four different resolutions. One
can see, that what is just some blob at 1283 gains more and more structure with increasing resolution.
In Figure 21, zooms into the 10243 simulation are shown, revealing the detailed structure that emerges
at this resolution.
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Figure 20: Logarithmic density plot of a 50Mpc box size cosmology simulation with ideal gas and no
dark matter. Top left 1283, top right 2563, bottom left 5123, bottom right 10243 particles.
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Figure 21: Zoom to the structure in the upper left corner of the 10243 particle run (bottom right in
Figure 20), left side x4, right side x8.

In Figure 22, the rung distribution and step wallclock time over the course of the 10243 particle
simulation is shown. One can see that even though the matter is collapsing in comoving coordinates,
the work per time step actually gets less over time, as the particles move down in rungs.
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Figure 22: Cumulative particle rung evolution and step wallclock time for the 10243 particle simulation
run with the 32x16x16 configuration.

4.7 Limitations

The number of particles that we can use in collision simulations is currently limited by the following
limits from largest to smallest:

• pkdgrav3 uses 43 bits of an unsigned 64-bit integer (uint64_t) to hold the particle id, which
results in an upper limit of 243 = 8796 093 022 208 particles. When running in unordered mode
(particles do not have an id, which may not be acceptable in certain use cases, i.e. when the
origin of the particle is of interest as for analyzing the mixing in a collision result), the theoretical
maximum is 264 − 1 = 18 446 744 073 709 551 615 as all count variables are uint64_t, but only
231−1 = 2 147 483 647 threads can exist with 231−1 = 2 147 483 647 particles, giving a maximum
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of (231 − 1)(231 − 1) = 4 611 686 014 132 420 609 particles. As we are far away from such thread
counts and amounts of memory, this is irrelevant at the moment.

• The tipsy file format uses unsigned integers to index particles, which gives a maximum particle
count of 232 − 1 = 4 294 967 295

• The program collide used to create the collision initial condition was initially memory limited as
it held onto multiple copies of all particles. This was not a problem before, as particle counts were
in the millions. It was modified such that it now uses much less memory, but it uses the tipsy.c
file to handle tipsy files, which uses a signed integer for indexing the particles during writing.
After changing that to an unsigned integer, it can now also handle up to 232 − 1 = 4 294 967 295
particles.

• The program ballic used to create the equilibrium models mostly uses signed integers for particle
counts and indices, so it is limited to 231 − 1 = 2 147 483 647 particles.

• The tipsy program used to postprocess the simulations (create the figures) also uses signed
integers to index particles, so the maximum particle count is 231 − 1 = 2 147 483 647. In order to
create the picture in Figure 23, the tipsy file was split into quadrants on the XY plane and the
4 pictures were stitched together.

So, the maximum particle count for the existing pipeline is 4 294 967 295 under ideal conditions (mean-
ing equal particle counts for target and impactor). In Figure 23, a result of such a simulation with
4.2×109 particles is shown. In Figure 24 the rung distribution and step wallclock time of this simulation
is shown, and we can see that the new implementation is able to handle this without problems.

Figure 23: Temperature plot of step 600 of the 4.2 × 109 particle collision simulation. Logarithmic
temperature scale: 1× 102K (blue) - 1.585× 104K (red).
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Figure 24: Cumulative particle rung evolution and step wallclock time for the 4.2×109 particle collision
simulation run in the 32x8x16 configuration.
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5 Conclusion and Outlook

Motivated by the lack of scalability of the currently used Gasoline code for planetary collision sim-
ulations, a fluid treatment in the form of SPH was implemented into the N-Body code pkdgrav3 to
take advantage of its excellent gravity performance and scalability. For this, a novel approach to the
neighbor finding was applied to reduce the work of this crucial step. We showed that this new concept
works well and the code shows good strong and weak scaling, even though there is still some opti-
mization potential. We also showed that higher resolution collision simulations are desirable, because
higher particle numbers allow to resolve additional features (e.g. ocean, atmosphere or crust) or when
more detailed results like mixing are of interest, as many fluid mixing features are not resolved at lower
particle numbers. This implementation is only a proof of concept, but we obtained very promising
results and are optimistic to push the state of the art in resolution of collision simulations to a new
level.
Going forward, the main goal is to make the new implementation ready to replace Gasoline in the
planetary collision simulations. This means to allow the use of more complex EOS (like Tillotson EOS,
ANEOS, M-ANEOS and REOS) which can be accomplished by including the EOSlib developed in
[41, 6]. To get correct results at the material/vacuum interface and at the interface between different
materials like the core/mantle boundary, a surface correction and interface correction as described in
[2] and [4] has to be added. While the surface correction should be straightforward to be included into
the density walk, the interface correction needs more thought and likely an additional walk. To get an
entropy conserving formulation, we can use the tools derived in [2] and already used in Gasoline and
EOSlib, or for EOS that provide entropy information like (M-)ANEOS, derive something similar to
the entropic formulation for the ideal gas described in Section 2.3.2.8. As the fluid model is only valid
for larger bodies, adding a strength model would allow for the simulation of collisions between smaller
bodies like asteroids or the analysis of impact cratering.
On the numerical side, the M4 kernel has many shortcomings and should be replaced by a member of
the Wendland kernel family as described in [43] which is already implemented in Gasoline. To reduce
dampening of subsonic turbulence and angular momentum transfer due to the artificial viscosity added
to capture shocks, a viscosity limiter should be added. The Morris and Monaghan limiter described
in Section 2.3.2.4 would fit perfectly into the existing framework, as the only change needed is the
addition of two floats to the particle (the evolving viscosity α and its time derivative), as everything
else is already provided. To get improved results in shearing and rotational flows, it can also be
combined with the Balsara switch. Adding artificial thermal conductivity to better model instabilities
should also be pretty straightforward, as even though the source term for the evolution of the thermal
conductivity contains the Laplacian of the internal energy, Price [25] points out that using a rescaled
first derivative of the kernel function instead of the second derivative leads to better results. Once
all these improvements are in place, it is desirable to run validation tests, to show what extreme
resolution simulations can achieve in tests like the Sod shock-tube, Sedov-Taylor blast wave, box test,
Gresho-Chan vortex test or Rayleigh-Taylor and Kelvin-Helmholtz tests.
On the performance side, there is still optimization potential concerning cross-node communication
as discussed in Section 4.5 where a wallclock time reduction of 11% was achieved by changing a
single parameter in the communication framework. A solution has to be found for the cases where
a single cell with an enormous PP list dominates the wallclock time of the walk. The limit on the
maximum smoothing length works well, but it has to be at least adaptive or better dynamic. A limit to
the difference in time step of interacting particles has to be implemented according to [62] to improve
integration stability. The machine that is currently called Eiger is actually only the multi-core partition
of the upcoming general-purpose system Alps which will also contain GPU nodes. In order to harness
the power of these GPU nodes, the density and SPH force calculation can be offloaded to the GPU
with little modification as they use the PP infrastructure. The only tricky part is the fact that the
workParticle has to hold onto a copy of the ILP instead of a reference, as it will be changed between
Newton-Iterations because the GPU executions are asynchronous to the tree walk.
If we want to go beyond 4.2 × 109 particles, we need to modify the pre- and postprocessing pipeline
such that it can handle these high particle numbers. One way would be to modify the tipsy file
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format and the corresponding programs to use a larger integer type (uint64_t) or we could switch to
a combination of hdf5 for the file structure and paraview for postprocessing. This would have the
advantage that paraview is fully parallelized and able to run on multiple nodes, while tipsy is single
threaded. But this would also mean to modify the programs of the pipeline to use the new format
and add the ability to pkdgrav3 to read hdf5 files in addition to the already implemented writing
capability.
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