Principles of X-ray and Neutron Scattering

Lecture 12: Neutron Instrument Development

15.02.'24

Lectures by: Prof. Philip Willmott, Prof. Johan Chang and Dr. Artur Glavic

Course Outline

Monday	Tuesday	Wednesday	Thursday	Friday
Lecture 1	Lecture 4	Lecture 7	Lecture 10	Lecture 13
10-10h45	10-10h45	10-10h45	10-10h45	10-10h45
Philip	Philip	Artur	Artur	Johan
Lecture 2	Lecture 5	Lecture 8	Lecture 11	Lecture 14
11-11h45	11-11h45	11-11h45	11-11h45	11-11h45
Philip	Philip	Artur	Artur	Johan
Lunch - Mensa	Lunch - Mensa	Lunch - Mensa	Lunch - Mensa	Lunch - Mensa
Lecture 3	Lecture 6	Lecture 9	Lecture 12	Lecture 15
13h00-13h45	13h00-13h45	13h00-13h45	13h00-13h45	13h00-13h45
Philip	Philip	Artur	Artur	Johan
		Exercise Class 14h30-16		Exercise Class 14h30-16

Neutron Lectures:

- 7: Neutrons & Scattering to Determine Structure
- 8: Inelastic Neutron Scattering to Investigate Dynamics
- 9: Magnetic Scattering
- 10: Neutron Polarization Analysis
- 11: Studying quantum matter for nanoscale applications
- 12: Neutron Instrument Development

X-ray scattering

Neutron Scattering

Resonant x-ray scattering

Lecture 12: Neutron Instrument Development

Theoretical Background

- Fundamental limits, trade-off between resolution and intensity
- Instrument simulations and neutron optics

Practical Implementation

- Modeling guides and spurious scattering
- Neutron guides and focusing optics

Example Application

- Specialized optical devices
- Focusing reflectometry for small samples (Estia @ ESS)

Intensity in a (Neutron) Scattering Experiment

- The scattering signal scales with the number of atoms and thus the sample volume within the beam
- → Sample diameter L³ determines signal
- In first approximation the beam intensity scales linearly with wavelength and angular resolution
- → Total intensity scales as:

$$I \propto \frac{L^3}{\Delta \Theta_x \Delta \Theta_y \Delta \lambda}$$

Liouville's theorem

The phase-space volume of a closed system is constant

$$\Delta p_i \Delta q_i = \text{const}$$

→The brilliance (neutrons/(time · area · solid angle)) can never be increased (but decreased by losses as e.g. absorption)

Momentum p

Position q

To increase instrument performance you can only do 3 things:

- 1. Generate more neutrons (source itself)
- 2. Relax resolution (where not necessary)
- 3. Improve efficiency (usable neutrons detected / neutrons generated)

Optimizing Neutron Instruments

Relax resolution (where not necessary)

$$I \propto \frac{L^3}{\Delta \Theta_x \Delta \Theta_y \Delta \lambda}$$

Neutron instruments are optimized for particular experiments to be able to relax resolution where ever possible!

Experiment	Signal	Vertical Res.	Horizontal Res.	Wavelength Res.	Detector Area
Single crystal diffraction	high	medium	medium	medium-heigh	small
Powder diffraction (1D-det.)	medium	low	high	high	medium
Powder diffraction + texture	medium	medium	high	high	large
3-axes spectroscopy	low	low	medium	high	small
ToF spectroscopy	low	low	medium	medium	large
SANS	medium	high	high	low	medium
Reflectometry	low	low	high	low-medium	small
Spin-echo	low	low	low	very-high*	small
Back-scattering spec.	low	low	low	very-high	large

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Lecture 12: Neutron Instrument Development

Optimizing Neutron Instruments

How to get the divergence you want?

The size of the neutron source is limited, thus a divergent beam is not possible with a direct view alone.

How Neutron Guides Work

Neutron guides use reflective surfaces to transport beams over long distances (10-150 m)

Neutron Supermirrors

- Alternating layers with large (magnetic) contrast
 - Ni (ρ=9.4 Å⁻⁶)/Ti (ρ=-1.9 Å⁻⁶)
 - Fe (ρ=8.0±6.3 Å⁻⁶)/Si(ρ=2.1 Å⁻⁶)
 - → $\Delta \rho_{\Lambda}$ = 12.2 Å⁻⁶ / $\Delta \rho_{\downarrow}$ = -0.4 Å⁻⁶
- Increase bi-layer thickness from substrate to surface
- → Extent angle of (almost) total reflection multiple times
- m-value defined as relative angle compared to ٠ critical angle from natural nickel

Modeling Neutron Instruments - Why Ray-Tracing? Improve efficiency

Problem:

• How does radiation pass through a complex real-world geometry

Modeling Neutron Instruments - Why Ray-Tracing?

Problem:

• How does radiation pass through a complex real-world geometry

Known prerequisites:

- Wavelength much smaller than features of the geometry
- All relevant interactions between the radiation and material
- Material parameters and extension in space

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Modeling Neutron Instruments - Why Ray-Tracing?

Problem:

• How does radiation pass through a complex real-world geometry

Known prerequisites:

- Wavelength much smaller than features of the geometry
- All relevant interactions between the radiation and material
- Material parameters and extension in space

MC RT approach:

- Describe by particle rays
- Trace ray until interaction point, interact, repeat
- Approach to infinite rays is solution of the problem (multi dimensional integral)

Modeling Neutron Instruments

MC ray-tracing simulations (e.g. McStas) describe full instrument & sample

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Lecture 12: Neutron Instrument Development

→ Particle ray with all relevant physical parameters:

- direction (x,y,z)
- energy
- polarization (px, py, pz)

•

- 1. Choose random direction and energy (from distribution)
- 2. Trace trajectory until next point of interaction

Particle ray with all relevant physical parameters:

- direction (x,y,z)
- energy
- polarization (px, py, pz)

- Choose random direction and energy (from distribution)
- Trace trajectory until next point of interaction 2.
- 3. Choose random possible interaction and/or outcome energy/direction 🔆

Particle ray with all relevant physical parameters:

- direction (x,y,z)
- energy
- polarization (px, py, pz)

- Choose random direction and energy (from distribution)
- Trace trajectory until next point of interaction 2.
- Choose random possible interaction and/or outcome energy/direction 🔆 3.

4. Trajectory ends or continues with 2.

- Choose random direction and energy (from distribution)
- Trace trajectory until next point of interaction 2.
- Choose random possible interaction and/or outcome energy/direction 🔆 3.

- Trajectory ends or continues with 2. 4.
- 5. Record all trajectories at location (detector/tally) of interest

Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic 15.02.'24

Variance Problem

- 3D space is large, detector covers very small region
- Many possible reactions, any absorbed trajectory is lost
- Some problems; reactions that are important have low likelihood
- → Probability to record trajectory can be very low (1:10²⁰ source particles)

Computation can be impossible or very expensive to collect sufficient trajectories

Neutronics Calculations: McStas

- Limit source particles to desired wavelength range and tight directionality (what would hit the first guide)
- Linear sequence of components connected
 - Large reduction in possible interaction pathways
 - Each component defines its own "physics"
 - No cross-talk (can be problematic in some cases)
- For cold neutrons, non-straight trajectories (gravity) has to be taken into account

Neutronics Calculations: McStas e e **Component 3** Component 1 Component 2 2 1 source Neutron Guides Choppers/Absorbers Samples $-\alpha$ $R_{\rm R}$ n0 n1<n0 tanh()Wm \mathcal{O} Q_c

McStas to Simulate Neutron Guide Geometry

K. H. Klenø, et al., Nuc. Inst. Meth. A, 696 75-84 (2012)

Lecture 12: Neutron Instrument Development

Divergence (°)

2

2

McStas to Simulate Spurions

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Lecture 12: Neutron Instrument Development

Neutron Optical Elements

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Lecture 12: Neutron Instrument Development

Neutron Focusing Elements

Ellipse:

All beams from focus S₁ are reflected to focus S₂

Parabola: All beams from focus F are parallel

Aberration correcting optics:

Focus extended beam spot onto similar image (can be increased/decreased in size)

Neutron Focusing within Sample Environment

Measure sample under high pressure requires small samples and large pressure cells that can be hit by the neutron beam. Integrating a parabolic focusing optics into the sample environment increases signal on the sample while decreasing background from the cell.

M. Bartkowiak, et al., J. Phys. Conf. 340, 012021 (2012)

Polarizing Focused Beams

INITIAL

J. Stahn & A. Glavic, J. Phys.: Conf. Ser. 862 012007 (2017)

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

A beam with small focus and large divergence is harder to polarize as the angle on the mirror changes the q-value. A shape of a logarithmic spiral keep the angle the same for all directions.

Lecture 12: Neutron Instrument Development

Improving Bandwidth – Bi-spectral Switches

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Lecture 12: Neutron Instrument Development

Wavelength Frame Multiplication

- If the time resolution of a pulsed source is not good enough for a given instrument length it is possible to use a chopper to shorten the pulse.
- As the chopper has to have a minimum distance to the source the resulting wavelength band does not cover the full time between two source pulses.
- Using multiple, well designed pulses one can select several "frames" allowing to fill the unused time gap and increase efficiency.
- The WFM technique requires multiple, sophisticated choppers to work together in a concerted fashion.

WFMC

14000

Figure 4

6000

Time [microseconds]

8000

10000

12000

Lecture 12: Neutron Instrument Development

Traditional NR Experiments

Angle-dispersive set-up:

- variation of ω with fixed λ
- detection under 2ω

Energy-dispersive set-up:

- variation of λ with fixed ω
- detection via time-of-flight

$$q_{z} = \frac{2\pi}{\lambda} (\sin \alpha_{i} + \sin \alpha_{f}) = \frac{4\pi}{\lambda} \sin \alpha_{i}$$

$$10^{0} \qquad D17 \text{ ToF 8x5cm}^{2}:$$

$$<400 \text{ ms}$$

$$10^{-1} \qquad <400 \text{ ms}$$

$$10^{-2} \qquad 0.03 \qquad 0.1$$

$$Q(\text{Å}^{-1})$$

Reflectometry with a White Beam

RAINBOWS concept

R. Cubitt, et al., J. Appl. Crys. **51** 2/257 (2018)

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Relax Resolution - Divergent Beam PNR

Selene (Montel) Optics

Small Sample Polarized Reflectometer

PAUL SCHERRER INSTITUT

ESS Instrument Project: Beam Port: E2 User Operation: 2024 Class: Large-Scale Structures In-Kind Partner: PSI

4Å

Parameters: Band: 3.75Å-10.7Å Resolution: <7% Q-max: 3.15/Å Length: 39m

11Å

8Å

10Å

6Å

Small Sample Polarized Reflectometer

PAUL SCHERRER INSTITUT

ESS Instrument Project: Beam Port: E2 User Operation: 2024 Class: Large-Scale Structures In-Kind Partner: PSI

4Å

Parameters: Band: 3.75Å-10.7Å Resolution: <7% Q-max: 3.15/Å Length: 39m

11Å

Neutron Wavelength

8Å

10Å

6Å

Neutron feeder:

Moderator → virtual source

IN BUNKER

- Elliptic guides
- Two beams
- Two sections
 - Cu upstream
 - Al downstream

Necessary precision:

E88-86-81-MI

E12-05-01-1

010

00 00

60µm/24m -> 2.5e-6 rad

Adjustment of reflector

(6

E02-06-08-HU

Measurement of reflector position

Transmission polarizers:

- Transmission supermirrors
- Two logarithmic spirals
- Polarization >98% full band

Filters and monitor:

- Monitor beam shape
- Attenuate beam
- Reduce background

F. Piscitelli et al., Journal of Instrumentation **13**, 05 (2018).

Multiblade Detector:

- ¹⁰B coated plates under small angle
- High resolution 0.5x4 mm²
- Very high count rate (~100kHz/mm²)
- Thin entrance window

Thank you for your attention!

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Lecture 12: Neutron Instrument Development