

Solid State Physics Exercise Sheet 8 Specific heat of metals

HS19 Prof. Dr. Marta Gibert

Assistant: Masafumi Horio

Received on 8th November Discussed on 15th November

Exercise 1 Specific heat of metals

In metals, specific heat has contribution both from electrons and phonons.

- (a) At temperature T much lower than the Debye temperature, express the ratio between phononic and electronic specific heat (C_{ph}/C_{el}) of a three-dimensional metal with Fermi temperature $T_{\rm F}$ and Debye temperature $\Theta_{\rm D}$.
- (b) Calculate C_{ph}/C_{el} at T=1 K and 10 K using typical values for metals: $T_{\rm F}=50000$ K and $\Theta_{\rm D}=300$ K. Discuss qualitatively the temperature dependence of C_{ph}/C_{el} .

Exercise 2 Electronic specific heat in two dimensions

Layered crystal structures often have electronic structures that can approximately be considered two-dimensional. The high-temperature superconductor $Tl_2Ba_2CuO_{6+\delta}$ is one such example.

- (a) The electronic heat capacity is give by $C_{\rm el} = \gamma T$. Show that in two dimensions the Sommerfeld parameter γ can be written as $\gamma = \frac{A\pi k_{\rm B}^2}{3\hbar^2}m$ where m is the electronic mass and A is the total area. What is the unit of $C_{\rm el}$?
- (b) The crystal structure of $\text{Tl}_2\text{Ba}_2\text{CuO}_{6+\delta}$ consists of stacked layers of CuO_2 . Within a layer, the CuO_2 forms a square lattice with a Cu-O lattice distance of $a=3.8\,\text{Å}$. The electronic **specific** heat capacity is measured in units $\text{J}\,\text{mol}^{-1}\,\text{K}^{-1}$. Show that $\gamma=\frac{N_{\text{A}}a^2\pi k_{\text{B}}^2}{3\hbar^2}m$ where N_{A} is the Avogadro number.
- (c) $\text{Tl}_2\text{Ba}_2\text{CuO}_{6+\delta}$ is observed to have the Sommerfeld parameter $\gamma = 6\,\text{mJ}\,\text{mol}^{-1}\,\text{K}^{-2}$. Using the result of (b), what is the electronic mass m for $\text{Tl}_2\text{Ba}_2\text{CuO}_{6+\delta}$? How does it compare to the free electron mass?

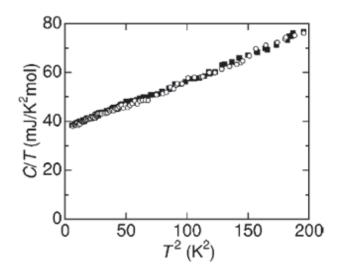


Figure 1: The total specific heat divided by temperature of Sr_2RuO_4 between T_c and 14 K in zero field (filled squares) and a magnetic field of 14 T (open circles) applied parallel to the c-axis.

Exercise 3 Extraction of electronic and phononic specific heat

In figure 1 the data from a specific heat experiment on Sr₂RuO₄ is shown (adapted from Mackenzie et al. JPSJ **67**, 385 (1998)).

- (a) Extract the electronic Sommerfeld parameter γ and the phonon coefficient A in $C_{\rm ph}=AT^3$.
- (b) The crystal structure of Sr_2RuO_4 is similar to the one of $Tl_2Ba_2CuO_{6+\delta}$. Which of the systems would have the larger electronic mass m?
- (c) What is the Debye temperature for Sr₂RuO₄?

Exercise 4 Specific heat of copper

Copper has a density of $\rho = 8.94\,\mathrm{g\,cm^{-3}}$ and a molar mass of $m_{\mathrm{mol}} = 63.55\,\mathrm{g\,mol^{-1}}$. Use the measured values for the specific heat of copper given below to:

- (a) determine the electron mass. Compare this value to the literature value for a free electron.
- (b) determine the Debye temperature of copper.

$$\begin{split} T[\mathbf{K}] &= \\ 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 3.75, 4.00, 4.50 \\ C_{\mathbf{V}}[\mathbf{m}\mathbf{J}\,\mathbf{m}\mathbf{o}\mathbf{l}^{-1}\,\mathbf{K}^{-1}] &= \\ 0.17, 0.35, 0.54, 0.74, 0.96, 1.21, 1.47, 1.78, 2.11, 2.50, 2.91, 3.35, 3.91, 4.46, 5.15, 5.87, 7.49 \end{split}$$