

東京大

THE UNIVERSITY OF TOKYO INSTITUTES FOR ADVANCED STUDY

Origin of matter and gravitational wave

INSTITUTE FOR THE PHYSICS AND

ATHEMATICS OF THE UNIVERSE

Hitoshi Murayama (Berkeley, Kavli IPMU) University of Zurich, November 23, 2020

Cosmic mysteries

- We don't know what dark energy is
- We don't know what dark matter is
- We don't know why baryons exist

baryonDark MatterDark Energy

Beginning of Universe

1,000,000,000

1,000,000,000

Universe Now?

matter anti-matter We wouldn't be here to discuss it today!

deuterium Kirkman, Tytler, Suzuki, O'Meara, Lubin H Ly-9 H Ly-14 n P P Н 0 Ly-10 Ly-15 $sec^{-1} cm^{-2} Å^{-1}$ the same chemically 0 0 Ly-11 Ly-16 energy levels $F_{\lambda} \times 10^{-16}$ (ergs $E_n = -\alpha^2 \,\mu c^2/2$ $0 \mid$ Ly-17 Ly-12 reduced mass differs by ~1/4000 between H & D

hydrogen gas

QSO

Velocity (km se \bar{c}^1)

-100

Ly-18

100

Ly-13

100

0

-100

fraction of second later

matter anti-matter matter matter

Universe Now

matter anti-matter we survived at the expense of a billion friends!

Creation

 $n_b(t=0)\neq 0$

Or Evolution? $n_b(t=0)=0 \Rightarrow n_b(t>t_b)\neq 0$

Inflation

Beginning of Universe

1,000,000,001

1,000,000,001

fraction of second later

matter anti-matter turned a billionth of anti-matter to matter

Universe Now

matter anti-matter we were saved from the complete annihilation!

Who saved us from a complete annihilation?

Sakharov Conditions

- We need to satisfy all three ingredients
- Baryon number violation
 - need a way to change B=0 to B≠0
- CP violation
 - which one is matter? we need distinction
- Departure from equilibrium
 - no net gain as long as detailed balance
- Where and when?

too many theories for a single number

Five evidences for physics beyond SM

- Since 1998, it became clear that there are at least five missing pieces in the SM
 - non-baryonic dark matter
 - neutrino mass
 - dark energy
 - apparently acausal density fluctuations
 - baryon asymmetry
 - We don't really know their energy scales...

Two tales

- Testing Leptogenesis with gravitational waves
 - +Jeff Dror (Berkeley), Takashi Hiramatsu (ICRR), Kazunori Kohri (KEK), Graham White (TRIUMF)
 - arXiv:1908.03227 accepted for PRL, Editors' Suggestion
- Asymmetric Matters from a dark first-order phase transition
 - +Eleanor Hall (Berkeley), Thomas Konstandin (DESY), Robert McGehee (Berkeley)
 - arXiv:1911.12342

Testing seesaw and leptogenesis by gravitational wave

THE UNIVERSITY OF TOKYO INSTITUTES FOR ADVANCED STUDY I PN

'E FOR THE PHYSICS AND

ATHEMATICS OF THE UNIVERSE

Hitoshi Murayama (Berkeley, Kavli IPMU) +Jeff Dror (Berkeley), Takashi Hiramatsu (ICRR), Kazunori Kohri (KEK), Graham White (TRIUMF) arXiv:1908.03227, accepted for PRL

neutrinos oscillate

1998 a half of expected

shift inside the mine for KamLAND

reactor neutrinos

- KamLAND experiment
- a ring of reactors with average $L\sim 175$ km

very light

Seesaw

- Why is the neutrino mass so small?
 - neutrinos are left-handed
 - but now they have mass
 - we can overtake and look back
 - looks right-handed!
 - introduce right-handed neutrino
 - small but finite neutrino masses $m_v \sim (yv)^2 / M$
 - when you look back at a neutrino, you see anti-neutrino

 (νN)

 $\mathcal{L} = -yLNH$

 $-rac{(yv)^2}{M} = egin{matrix} 0 \ 0 \ M \end{bmatrix}$

Leptogenesis

- Right-handed neutrinos in early universe
- when they decay, produce $L \neq 0$

 $\Gamma(N_1 \to \nu_i H) - \Gamma(N_1 \to \bar{\nu}_i H^*) \propto \Im(h_{1j} h_{1k} h_{lk}^* h_{lj}^*)$

- the dominant paradigm in neutrino physics
- probe to very high-energy scale
- notoriously difficult to test

Anomaly!

- W and Z bosons massless at high temperature
- W field fluctuates just like in thermal plasma
- solve Dirac equation in the presence of the fluctuating W field

$$\Delta q = \Delta q = \Delta q = \Delta L$$

Sakharov Conditions

- all three ingredients satisfied
- Baryon number violation
 - lepton number violation + Electroweak anomaly (sphaleron effect)
- CP violation
 - Yukawa couplings $y_{ia} L_i N_a H + M_a N_a N_a$
 - even two generations sufficient
- Departure from equilibrium
 - out-of-equilibrium decay of N_{α} due to long lifetimes

Leptogenesis

How do we test it?

75,000

330

BU

270

build a 1014 GeV collider

Outler

Denseus

MEXT MINISTRY OF EDUCATION. CULTURE, SPORTS, SCIENCE AND TECHNOLOGY-JAPAN

how do we test it?

- possible three circumstantial evidences
 - 0νββ
 - CP violation in neutrino oscillation
 - other impacts e.g. LFV (requires new particles/interactions < 100 TeV)
- archeology
- any more circumstantial evidences?

Natural to think M is induced from symmetry breaking e.g. $\mathcal{L}=-y\langle \varphi \rangle N N$

Phase Transition

Mрi

Gravitational Waves?

- Consider <φ>≠0
 - M_R from $\langle \phi \rangle V_R V_R$
 - U(1) breaking produces cosmic strings because π₁(U(1))=Z
- nearly scale invariant spectrum
- simplification of the network produces gravitational waves
- stochastic gravitational wave background

K A https://www.ligo.org/science/Publication-S5S6CosmicStrings/index.php

cosmic strings

$G\mu \sim v^2/M_{Pl}^2$

classification

- possible gauge groups
 - forbids $M V_R V_R$
 - anomaly-free without additional fermions
 - no magnetic monopoles
 - rank ≤ 5
- possible Higgs
 - matter parity?
 - e.g. $\varphi(+1)$ or $\varphi(+2)$
 - $H=G_{SM} \text{ or } G_{SM} \times \mathbb{Z}_2$
- 5 out of 8 have strings

 $G_{\text{disc}} = G_{\text{SM}} \times \mathbb{Z}_N,$ $G_{B-L} = G_{\text{SM}} \times U(1)_{B-L},$ $G_{LR} = SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L},$ $G_{421} = SU(4)_{\text{PS}} \times SU(2)_L \times U(1)_Y,$ $G_{\text{flip}} = SU(5) \times U(1).$

	$\langle \phi \phi \rangle v_{R} v_{R} / M_{Pl}$		$\langle \phi \rangle v_R v_R$	
	$H = G_{\rm SM}$		$H = G_{\rm SM} \times \mathbb{Z}_2$	
G	defects	Higgs	defects	Higgs
$G_{\rm disc}$	domain wall [*]	B - L = 1	domain wall*	B-L=2
G_{B-L}	abelian string *	B - L = 1	$\mathbb{Z}_2 \text{ string}^{\dagger}$	B-L=2
G_{LR}	$texture^*$	$(1,1,2,rac{1}{2})$	\mathbb{Z}_2 string	(1 , 1 , 3 ,1)
G_{421}	none	(10, 1, 2)	\mathbb{Z}_2 string	$({f 15},{f 1},2)$
G_{flip}	none	(10, 1)	\mathbb{Z}_2 string	(50, 2)

 $\rightarrow \pi_0(H) \rightarrow \pi_0(G) = 0$

 $0 \to \pi_2(G) \to \pi_2(G/H) \to \pi_1(H) \to \pi_1(G) \to \pi_1(G/H)$

J. Dror, T. Hiramatsu, K. Kohri, HM, G. White, arXiv:1908.03227 covers pretty much the entire range for leptogenesis! caveat: particle emission from cosmic strings

Hybrid inflation

• $U(1)_{B-L}$ broken after inflation

 $W = \lambda X (S^+ S^- - v^2)$ $V = \lambda^2 |S^+ S^- - v^2|^2 + \lambda^2 |X|^2 (|S^+|^2 + |S^-|^2) + \frac{e^2}{2} (|S^+|^2 - |S^-|^2)^2$

• *D*-flat direction S=S+=S-

$$V = \lambda^{2} |S^{2} - v^{2}|^{2} + 2\lambda^{2} |X|^{2} |S|^{2}$$

- flat: S=0, $V = \lambda^2 v^2$
- falls down to S=v near X~0
- forms cosmic strings
- requires high $v \ge a$ few 10¹⁵ GeV
- excluded by Pulsar Timing Array?
- Wilfried Buchmüller, Valerie Domcke, HM, Kai Schmidt, arXiv:1912.03695

SO(10)

- All of them embeddable into SO(10)
- paradox:
 π_I(SO(I0)/G_{SM})=0
- resolution:

 $G_{\text{disc}} = G_{\text{SM}} \times \mathbb{Z}_N,$ $G_{B-L} = G_{\text{SM}} \times U(1)_{B-L},$ $G_{LR} = SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L},$ $G_{421} = SU(4)_{\text{PS}} \times SU(2)_L \times U(1)_Y,$ $G_{\text{flip}} = SU(5) \times U(1).$

	$\langle \phi \phi \rangle v_R v_R v_R v_R v_R v_R v_R v_R v_R v_R$	J _R /M _{PI}	$\langle \phi \rangle v_R v_R$	
	$H = G_{\rm SM}$		$H = G_{\rm SM} \times \mathbb{Z}_2$	
G	defects	Higgs	defects	Higgs
$G_{ m disc}$	domain wall [*]	B - L = 1	domain wall*	B-L=2
G_{B-L}	abelian string^*	B - L = 1	$\mathbb{Z}_2 \text{ string}^{\dagger}$	B-L=2
G_{LR}	$texture^*$	$(1,1,2,rac{1}{2})$	\mathbb{Z}_2 string	(1 , 1 , 3 ,1)
G_{421}	none	(10, 1, 2)	\mathbb{Z}_2 string	$({f 15},{f 1},2)$
G_{flip}	none	(10, 1)	\mathbb{Z}_2 string	(50, 2)

 $0 \to \pi_2(G) \to \pi_2(G/H) \to \pi_1(H) \to \pi_1(G) \to \pi_1(G/H) \to \pi_0(H) \to \pi_0(G) = 0$

monopoles

- string from $U(1)_{B-L}$ breaking is basically Abrikosov flux in a superconductor
 - For the Higgs $\Phi(\pm Q)$
 - magnetic flux $2\pi\hbar/(e Q) \times integer (Q=1, 2, ...)$
 - minimum monopole charge $2\pi\hbar/e$
 - If Q=1, monopole can saturate the flux and cut the string
 - If Q=2, the minimum string cannot be cut by monopoles ightarrow

eE

 $-e^{-\pi m^2 n/eE}$

- dual Schwinger process ightarrow
- $\frac{1}{L} = \frac{cL}{4\pi^2}$ survives to date if $v < 10^{15}$ GeV

hybrid inflation $\kappa = m_{\text{monopoly}}^2$

Wilfried Buchmüller, Valerie Domcke, HM, Kai Schmidt, arXiv:1912.03695 f [HZ]

Conclusions

- stochastic gravitational waves as another possible circumstantial evidence for seesaw+leptogenesis
- for rank≤5 gauge groups, more than a half of theories produce cosmic strings
- future missions promising to cover most range of seesaw scales
- if we do detect scale-invariant gravitational waves, a smoking gun for strings
- if strings appear to break, evidence for grand unification!
- any experimental technique to probe gravitational waves of much higher frequencies?

Asymmetric Matters from a dark first-order phase transition

THE UNIVERSITY OF TOKYO INSTITUTES FOR ADVANCED STUDY IPN

E FOR THE PHYSICS AND

ATHEMATICS OF THE UNIVERSE

Hitoshi Murayama (Berkeley, Kavli IPMU) +Nell Hall (Berkeley), Thomas Konstandin (DESY), Robert McGehee (Berkeley) arXiv:1911.12342

Sakharov Conditions

- Standard Model may have all three ingredients
- Baryon number violation
 - Electroweak anomaly (sphaleron effect) ightarrow
- CP violation
 - Kobayashi–Maskawa phase
 - Departure from equilibrium $M_u^{\dagger} M_u, M_d^{\dagger} M_d]/T_{EW}^{12} \sim |0^{-20} \ll |0^{-10}$
- - First-order phase transition of Higgs ightarrow

requires $m_h < 75 \text{ GeV}$

Experimentally testable?

Mikko Laine (Bern)

Phase diagram for the Standard Model:

 $\langle H \rangle$ =0 from gauge invariance (Elitzur) $\langle H^{\dagger}H \rangle$ is not an order parameter

for m_h =125GeV, it is crossover No phase transition in the Minimal Standard Model

Scenario Cohen, Kaplan, Nelson

- First-order phase transition
- Different reflection probabilities for *t*_L, *t*_R
- asymmetry in top quark
- Left-handed top quark asymmetry partially converted to lepton asymmetry via anomaly
- Remaining top quark asymmetry becomes baryon asymmetry
- need varying CP phase inside the bubble wall (G. Servant)
- fixed KM phase doesn't help
- need CPV in Higgs sector

Electric Dipole Moment

ARTICLE

ACME Collaboration*

Oct 2018

https://doi.org/10.1038/s41586-018-0599-8

- baryon asymmetry limited by the sphaleron rate $\Gamma \sim 20 \alpha_W^5 T \sim 10^{-6} T$
- Can't lose much more to obtain 10⁻⁹
- need
 - new physics for 1st order PT at the Higgs scale v=250 GeV
 - CP violation×efficiency ≥10⁻³

*d*_e ≤ 1.1×10⁻²⁹ e cm

Improved limit on the electric dipole

moment of the electron

Barr-Zee diagrams

$$d_e \approx \frac{em_e}{(16\pi^2)^2} \frac{1}{v^2} \sin \delta = 1.6 \times 10^{-22} e\,\mathrm{cm}\sin \delta$$

Spectrum

- m_u and m_d free parameters
- If $m_d \ll m_u \ll \Lambda_{QCD}$, *n*' dominates
- If m_u «m_d«Λ_{QCD}, p' dominates, together with π'- for charge neutrality
 - possibly a resonant interaction $\pi'^- p' \rightarrow \Delta^0 \rightarrow \pi'^- p'$
 - may solve core/cusp problem

Robert McGehee, HM, Yu-Dai Tsai, in prep

Xiaoyong Chu, Camilo Carcia-Cely, HM, Phys.Rev.Lett. 122 (2019) no.7, 071103

some history

- asymmetric dark matter
 - S. Nussinov, PLB 165, 55 (1985) "technocosmology"
 - R. Kitano, HM, M. Ratz, arXiv:0807.4313, moduli decay
 - D.E. Kaplan, M. Luty, K. Zurek, arXiv:0901.4117
- darkogenesis (= "EW baryogenesis" in the dark sector)
 - J. Shelton, K. Zurek, arXiv:1008.1997

neutrino portal

$$\mathcal{L} = y' \bar{L}' H \nu_R + y_i \bar{L}_i H \nu_R$$

$$\epsilon_i = \frac{y_i}{\sqrt{(y')^2 + (y_i)^2}}$$

$$M_{\nu} = \sqrt{(y')^2 + (y_i)^2}v$$

- charged current universality: $\epsilon_i^2 < 10^{-3}$
- $\mu \rightarrow e \gamma$ constraint: $\varepsilon_e \varepsilon_{\mu} < 4 \times 10^{-5} (G_F M_{\nu})$
- $\tau \rightarrow \mu \gamma$ constraint: $\varepsilon_e \varepsilon_{\mu} < 0.03 (G_F M_v)$
- If $M_v < 70$ GeV, $\varepsilon_i^2 < 10^{-5}$ (DELPHI: $Z \rightarrow v v_R, v_R \rightarrow lff$)
- equilibration of asymmetries requires only $\varepsilon_i > 10^{-16}$ or so
- (orders of magnitude estimates so far)

Dark Neutron Dark Matter

Dark Proton & Pion Dark Matter

Conclusions

- Electroweak baryogenesis too testable, very tight
 - do it in the dark sector
- dark SU(3)xSU(2)xU(1), one generation
 - two Higgs doublet CPV, 1st order phase transition
 - neutrino portal to transfer asymmetry to SM baryons
- dark neutron 1.33 or 1.58 GeV, or multi-component $p+\pi^-$
- amazingly wide array of experimental signatures
 - dark proton good target for direct detection
 - exotic Z-decay, h-decay (HL-LHC, ILC, CEPC, FCC-ee)
 - dark photon search at Belle II, LHC-b, beam dump
 - gravitational wave at LIGO, LISA, Einstein Telescope, etc
 - potential instanton-induced dark neutron decay in halos
- explain coincidence $\Omega_{DM} \sim \Omega_b$ if $N_{gen}=3$ and unification

Five evidences for physics beyond SM

- Since 1998, it became clear that there are at least five missing pieces in the SM
 - non-baryonic dark matter
 - neutrino mass
 - dark energy

- apparently acausal density fluctuations
- baryon asymmetry
- We don't really know their energy scales...

many things to look forward to!