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Abstract

Model fitting using an unbinned maximum likelihood estimation
is a common technique for analysing data in High Energy Physics.
In the process, a significant fraction of computing power is used for
normalising complex model functions through numerical integration.
In this thesis, we studied the performance of the advanced Monte Carlo
integration algorithm vegas to test whether its usage can improve
the efficiency of the model fitting library zfit. For this purpose, we
used an existing implementation with TensorFlow, the computational
backend of zfit. The accuracy and runtime of the algorithm was
measured for the angular distributions of a B0 → K∗0µ+µ− decay
and a set of multidimensional toy functions. It was found that vegas
has a better accuracy and a higher runtime overhead compared to
a simple Monte Carlo method and excels for functions with narrow
peaks. For a given accuracy, vegas is therefore superior for non-flat
or computationally expensive functions.
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1 Introduction
The Standard Model (SM) of particle physics is a theory that describes the
elementary particles and their interactions. It encompasses our current un-
derstanding of physics on a subatomic level and has proven successful in pre-
dicting and explaining a wide range of phenomena. However, since it does
not account for various elements such as gravity, dark matter or neutrino
oscillations, it remains an incomplete theory. Though more measurements
and data are needed, the discovery of elementary particle processes that are
inconsistent with the SM could eventually guide us to a new theory.

Elementary particles and their interactions are studied in various collider
experiments around the world. Stable, charged particles, typically protons
or electrons, are accelerated to high enough energies such that particles of
interest can be produced in the subsequent collisions. To date, the Large
Hadron Collider (LHC) at CERN is the highest-energy particle accelerator
with a nominal energy of 6.5 TeV per proton. These protons are made to
collide at four distinct interaction points, where the particle detectors are
located. During the operation of the collider, particles originating from the
collisions pass through the detectors, where their tracks and properties are
measured. The recorded signals are selected by a trigger system in real-time
to reduce the data volume and save only the most interesting events for offline
analysis.

The LHCb experiment in particular focuses on the study of rare decays
involving b quarks. One example is the decay B0 → K∗0µ+µ−, which is
forbidden in the SM at tree level. Aaij et al. [1] perform a full analysis of the
angular distribution of the decay products from this process using 3 fb−1 of
integrated luminosity from LHC Run 1. This involves determining values for
a set of angular observables. By comparing the results to the SM predictions,
one can gauge the possibility of any contributions from physics beyond the
SM.

Data analysis is essential for any experiment in order to extract a quan-
tifiable result from the measurement data, which can be compared to the
theory. A common method to determine values for physical observables is
fitting a model to the data by means of maximum likelihood estimation
(MLE). Thereby, the model f is a probability density function (PDF) that
is hypothesised to describe the distribution of measured events. It is built
taking into account theoretical physics as well as experimental properties
and contains free parameters. Fitting a model to the data thus refers to
determining values for the free parameters that minimise the discrepancies
between the measured and theoretical distribution. For maximum likelihood
estimation, the agreement of the data with the model is quantified by the
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likelihood L. As the name suggests, the goal is to maximise the likelihood
in order to find estimates for the parameters. The maximisation is usually
an iterative process, where L is evaluated for a different set of parameter
values in each step, essentially probing the parameter space in search of the
extremum. Each evaluation of the likelihood also entails evaluations of the
model function for the same parameter constellation. To ensure that f fulfils
the conditions of a PDF, it needs to be normalised beforehand, which involves
the determination of an integral. In case the integral is not known analyt-
ically, the integration is performed numerically, which is a computationally
expensive task. As a result, the repeated integration during every step can
become a performance bottleneck of the model fitting process. Moreover,
the accuracy of the integration results directly affects the outcome of the
MLE. For this reason, fast and accurate integration methods are essential
for analysing the large quantities of data collected in High Energy Physics
(HEP). Since the mathematical models are oftentimes multivariate functions,
we require algorithms that are compatible with multidimensional integrands.
The classical quadrature rules available for one-dimensional problems gen-
erally do not scale well to higher dimensions. Instead, we consider a class
of algorithms known as Monte Carlo methods, which are based on random
number generation and are applicable to integrals of arbitrary dimension.

Data analysis in HEP has traditionally been performed in C++. At
CERN in particular, a framework called ROOT has been developed and is
currently being used. However, the usage of Python has been perpetually
rising in recent years. This popularity can be attributed in part to the exist-
ence of a vast Python ecosystem for scientific computing and its ease of use.
Although existing C++ libraries can be accessed from Python through Py-
thon bindings, this is accompanied by issues with integration in Python and
extendibility among other things. Consequently, pure-Python libraries are
crucial for a complete transition of HEP analysis to the Python ecosystem.
This premise also motivated the development of the model fitting library
zfit [2]. It is designed with the HEP-specific requirements for model fitting
in mind, thereby aiming to serve as an alternative to the RooFit module
from ROOT. Moreover, it is implemented using the computational backend
TensorFlow [3], which provides additional benefits including operation cach-
ing and the ability to run computations on different hardware devices like
CPUs and GPUs. The resulting boost in performance allows zfit to com-
pete with implementations in compiled languages like C++, which otherwise
tend to be faster than interpreted Python code.

As established above, efficient integration is essential for data analysis and
model fitting. However, the numerical integration capabilities of zfit are
currently limited to the simplest Monte Carlo method. In order to improve
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the library in this regard, more advanced algorithms need to be implemen-
ted. A highly promising integration method, which we will examine in this
thesis, is the vegas algorithm developed by G.P. Lepage in 1978 [4]. Over
the years, the algorithm has been used and implemented in a multitude of
programming languages, including a Python version based on TensorFlow in
the VegasFlow library [5]. We will take advantage of this implementation in
order to investigate the performance of the vegas algorithm in comparison
to a simple Monte Carlo method within the TensorFlow framework. In the
end, we will use our findings to answer the question, whether vegas is worth
including in zfit.
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2 Theory

2.1 Maximum Likelihood Estimation
Maximum likelihood estimation is a method for estimating unknown para-
meters in a mathematical model f depending on a set of measured events
x⃗1, . . . , x⃗n. The resulting constellation of parameter values characterises the
version of f that yields the highest probability of measuring x⃗1, . . . , x⃗n in an
experiment. This is accomplished by finding the maximum of the likelihood
function.

For a single measured event x⃗i, the likelihood of the parameters θ1, . . . , θk

is defined as
L(θ1, . . . , θk | x⃗i) = P (x⃗i | θ1, . . . , θk) (1)

where P (x⃗i | θ1, . . . , θk) is the conditional probability of measuring x⃗i given
the parameter values θ1, . . . , θk. Since the probability distribution of x⃗i is
described by f , it follows that

L(θ1, . . . , θk | x⃗i) = f(x⃗i | θ1, . . . , θk) (2)

The main difference between the PDF and the likelihood function is which
quantities are considered variables and which are considered fixed paramet-
ers. The PDF is a function of x⃗ given fixed parameter values for θ1, . . . , θk,
whereas the likelihood is a function of θ1, . . . , θk given a fixed measurement
value x⃗i.

For multiple independent events, the likelihood is the product of the in-
dividual likelihoods of each event.

L(θ1, . . . , θk | x⃗1, . . . , x⃗n) =
n∏

i=1
L(θ1, . . . , θk | x⃗i) (3)

Thus, the likelihood function of all events in the dataset, usually referred
to as L, is given as

L = L(θ1, . . . , θk | x⃗1, . . . , x⃗n) =
n∏

i=1
f(x⃗i | θ1, . . . , θk) (4)

The estimates for the unknown parameters of f correspond to the argument
values for which L is maximal.

θ̂1, . . . , θ̂k = argmax(L) (5)
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While some likelihood functions are simple enough that the maximum
can be found analytically, which results in exact values for the parameters,
this is not possible in the general case. Instead, iterative algorithms are used
that sample the parameter space in order to find approximate numerical val-
ues for the model parameters.

Further information about likelihood and maximum likelihood estimation
can be found in [6] and [7].

2.2 Normalisation of the PDF
Since the model function f is a PDF, it is non-negative and integrates to 1
over the considered space Ω of possible events.∫

Ω
f (x⃗ | θ1, . . . , θk) dx⃗ = 1 (6)

It may be rewritten as the following quotient

f(x⃗ | θ1, . . . , θk) = p (x⃗ | θ1, . . . , θk)∫
Ω p (x⃗ | θ1, . . . , θk) dx⃗

(7)

where p is the kernel of the PDF that describes the shape of the distribution
and the denominator is a normalisation factor that ensures eq. (6) holds.

The normalisation factor can only be given as an explicit function of the
parameters θ1, . . . , θk if the integration of the kernel can be performed ana-
lytically. Otherwise, it needs to be computed using numerical integration
methods, which employ algorithms to compute an approximation of the nu-
merical value of the integral.

The accuracy of the integral value as a normalisation factor directly affects
the accuracy of the PDF and consequently of L. Using inaccurate values
for the likelihood in the maximisation may lead to inaccurate parameter
estimates or even failure to find the true maximum. Therefore, it is crucial
for the parameter estimation to obtain numerical integration results that are
as precise as possible and at least in the order of magnitude of the desired
accuracy.

2.3 Numerical Integration
For one-dimensional problems, there are efficient quadrature rules that re-
quire evaluating the function at evenly spaced points, such as the Simpson’s
rule or the trapezoidal rule. The same rules may be used to compute higher
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dimensional integrals by phrasing them as a product of one-dimensional in-
tegrals. However, assuming a fixed number of function evaluations per 1D
integral, this causes the total number of function evaluations and thus the
computation time to grow exponentially with the number of dimensions.

A more attractive option for multidimensional integrals are the so-called
Monte Carlo methods that make use of random number generation for de-
termining the points where the function should be evaluated. In contrast to
the quadrature rules, they are easy to apply to any integrand with an accur-
acy that is independent of the number of dimensions. As a result, they may
yield better results for an equal number of function evaluations, especially
for high-dimensional integrals.

2.4 Crude Monte Carlo
The simplest Monte Carlo method for estimating the integral value I of a
function f is also called Crude Monte Carlo.

I =
∫

Ω
f(x⃗) dx⃗ (8)

For a sample size N , one draws N random points x⃗i from a uniform distri-
bution over the integration space Ω. The estimate of the integral is then

Î = V
1
N

N∑
i=1

f(x⃗i) (9)

where V is the volume of Ω. The corresponding uncertainty on the integral
value is

σ =
√

Var(Î) = V√
N

√
Var(f) (10)

Since the exact value for the variance of f contains the unknown integral
value I, one can use an unbiased sample variance to compute the uncertainty
estimator.

Var(f) = 1
N − 1

N∑
i=1

(
f(x⃗i) − 1

N

N∑
i=1

f(x⃗i)
)2

= 1
N − 1

 N∑
i=1

f 2(x⃗i) − 1
N

(
N∑

i=1
f(x⃗i)

)2 (11)

According to the Law of large numbers, the estimators will converge to the
true values as N tends to infinity.
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The estimated uncertainty on the obtained integration result is inversely
correlated to the square root of the sample size. This means that while it is
possible to increase the number of function evaluations to obtain more accur-
ate results, eventually one reaches a point of diminishing returns. Therefore,
to obtain the best results with a given number of evaluations, it is essential
to use smart algorithms that employ additional strategies to improve the
accuracy.

2.5 Stratification
Stratification or stratified sampling refers to the strategy of dividing the
integration volume Ω into a set of smaller volumes Ωi, for which the numerical
integrals are then computed individually. Due to the linearity of integration,
the results can be summed up to find the total integral estimate.∫

Ω
f(x⃗) dx⃗ =

k∑
i=1

∫
Ωi

f(x⃗) dx⃗ (12)

Since the integral estimates from the different sections are independent, they
can be considered uncorrelated random variables. Therefore, one can sum
up the variances of each section to find the total variance. This results in
the following error estimate

σ =

√√√√ N∑
i=1

Var(Îi) (13)

The variance of each Îi is related to the variance of f within the volume Ωi.
The spread of the function values of f within a section of the total volume
is either the same or more likely smaller than over all of Ω. That means,
disregarding volume factors, the variance of f on that section is also smaller.
Thus, by computing the smaller integrals individually and combining them,
it is possible to reduce the error on the integral without changing the sample
size.

Stratification can be applied without prior knowledge about f by dividing
the integration volume into evenly sized sections. However, there are also
adaptive algorithms that attempt to optimise the division depending on f in
order to minimise σ.

2.6 Importance Sampling
The idea of importance sampling is to draw less samples in the areas of
Ω where the function values f(x⃗) are low and more samples in the areas
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where they are high and thus contribute more to the integral value. Since
more samples leads to a higher accuracy, this means spending the computing
power proportionately to where it has the largest impact. In practice, this is
achieved by sampling the x⃗i from a density function p with a shape similar
to that of f instead of a uniform distribution.

One can think of the integral over f as being an integral over a new
function f/p weighted by the density function p.

I =
∫

Ω
f(x⃗) dx⃗ =

∫
Ω

f(x⃗)
p(x⃗) p(x⃗) dx⃗ (14)

The Monte Carlo estimate then becomes

Î = V
1
N

N∑
i=1

f(x⃗i)
g(x⃗i)

(15)

which is analogous to eq. (9) with f/p instead of f , hence the uncertainty
follows according to eq. (10). Since f and p are similar, the variance of f/p
is smaller than the variance of f and therefore the resulting uncertainty ob-
tained with importance sampling is smaller.

This technique is especially useful for peaky functions, where a large
fraction of the integral comes from a small area of the integration space.
Unlike stratification, it can not be applied blindly. The probability density
p should be a function that can be sampled from efficiently and finding a
suitable one requires prior knowledge about f .

2.7 VEGAS

The vegas algorithm is a Monte Carlo algorithm for multidimensional in-
tegration that employs adaptive importance sampling. The used probability
density p is a step function defined by a coordinate grid, which is adapted
to the integrand over multiple iterations. In the following, the algorithm will
be outlined in one dimension. For multiple dimensions, the one-dimensional
strategy is applied to each axis individually. A more detailed explanation of
the algorithm can be found in [4].

At first, the integration range is divided into M uniform intervals [xi, xi+1].
The step function p is defined as being inversely proportional to the interval
width ∆xi = xi+1 − xi.

p(x) = 1
M∆xi

(16)
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Thus, starting from an equidistant grid, the xi are changed iteratively in
order to adapt the density p to the integrand. In each iteration, Monte Carlo
integration with N samples is performed. Then, each interval is divided
further into mi subintervals, where mi is proportional to the interval’s con-
tribution to the integral. Finally, the initial number of intervals is restored
by merging subintervals in a way that attempts to even out the integral con-
tributions. In the next iteration, the new grid is used for the integration step
and refined further. Eventually, one reaches an optimum where the grid only
fluctuates minimally due to the random nature of the procedure.

The total integral estimate and its corresponding error estimate can be
computed from the results Ij and σj of each iteration as follows.

Ī = σ2
Ī

∑
j

Ij

σ2
j

(17)

σĪ =
∑

j

1
σ2

j

− 1
2

(18)

The results are weighted by the inverse of their variance, which means more
accurate values contribute more to the final result. In practice, it may also
make sense to exclude the first few iterations from the computation, because
the results can be unreliable when the grid is not well established.

2.8 VEGAS Enhanced
The enhanced vegas or vegas+ algorithm is an improved version of the
original vegas algorithm that combines adaptive importance sampling with
adaptive stratification. Instead of taking an equal amount of samples in
each area Ωi, adaptive stratification attempts to distribute the fixed number
of samples across the areas in a way that minimizes σ. This additional
step leads to improved accuracy of the integral that is most noticeable in
lower dimensions, while adding only a negligible amount of computational
cost. This modification also helps the algorithm deal with multiple peaks
or structures aligned with the diagonals, which are difficult for the original
vegas algorithm to cope with. A detailed explanation of the algorithm can
be found in [8].
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3 Python Libraries

3.1 zfit and TensorFlow
zfit is a newer Python library for advanced model building and fitting inten-
ded mainly for data analysis in High Energy Physics. Unlike other libraries
that serve a similar purpose, it is written in pure Python. Additionally, it
uses the machine learning library TensorFlow as a computational backend,
which comes with specific advantages but also imposes restrictions on the
applications.

While pure Python code is interpreted, TensorFlow can be used to just-in-
time compile functions when they are first called in the code. This constructs
a directional computational graph, where each node represent an operation
and each edge represents a tensor. In this case, a tensor is an object in
TensorFlow that corresponds to an arbitrarily dimensional array, whose size
and data type need to be specified upon creation and are immutable. The
graph is built using placeholder values with the respective size and type of
the input parameters, such that a function evaluation becomes equivalent to
executing the graph using specific values. Due to the compilation, repeated
calls of the same function are faster. In addition, the framework allows
performing computations on different devices – e.g. GPUs or CPU cores –
and even distributing them across multiple devices. Depending on the task
and the used hardware, a certain degree of parallelisation can be achieved,
which speeds up the computation. Another benefit of using TensorFlow
is the support for automatic gradient computation from a graph. This is
particularly helpful for finding the maximum of the likelihood function during
model fitting.

The main drawback of using TensorFlow is that functions may not utilise
regular Python logic like conditionals or loops if they are to be compiled.
Instead, one is limited to using operations provided by TensorFlow, which
places restrictions on what kind of functions may be built.

3.2 vegas and VegasFlow
The vegas library [9] is an implementation of the vegas+ algorithm by the
original author. In order to achieve performances that are similar to compiled
languages, it is written in cython and uses numpy functions. This means it
makes use of functions that are compiled in C and accessible through Python.

The VegasFlow library implements the vegas algorithm using Tensor-
Flow. It is built on a structure for general Monte Carlo integration tech-
niques, which facilitates extending the library with additional integration al-
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gorithms. At the time of writing, vegas+ and crude Monte Carlo are already
available. The usage of TensorFlow allows VegasFlow to take advantage of
all the above mentioned advantages, such as hardware acceleration, without
the need of handling the implementation details.
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4 Methods
Crude Monte Carlo provides a perfectly parallelisable algorithm that is easy
to implement and currently the default in zfit. It therefore serves as the
baseline that vegas is compared against. For a fair comparison, the integ-
ration with both algorithms is performed using TensorFlow with the classes
PlainFlow and VegasFlow respectively from the VegasFlow module. The in-
tegrands used to study the algorithm properties include physical model func-
tions from HEP analysis and different toy functions. The S-Wave and P-Wave
angular distributions of the final state particles of B0 → K∗0µ+µ− decays
as found in [1] serve as the examples of the physical models. The toy func-
tions consist of polynomial and trigonometric functions as well as Gaussian
distributions and are representatives of different properties. These include
symmetric and asymmetric functions, varying levels of peakiness and differ-
ent dimensionalities. The main focus is on multivariate functions with small
dimensions, hence the considered integrands are at most five-dimensional.

4.1 Accuracy
Firstly, we are interested in the reported accuracy of the integration results
when using the same amount of effort for both algorithms. For this purpose,
it is assumed that the function evaluations dominate the computational cost
and that it is therefore sufficient to use the same number of sample points and
iterations irrespective of the actual runtime. Performing integration using
the above-mentioned classes from the VegasFlow library yields the estimated
integral value and the corresponding uncertainty. We repeat the integration
of a function using different numbers of samples per iteration so that we
can plot the accuracy against the sample size and study their correlation.
By including the resulting datasets for both algorithms in the same graph,
we can compare not only the magnitude of the errors, but also if and how
the correlation differs. In order to draw comparisons between the results of
different integrands, we use relative errors, i.e. the uncertainty divided by
the integral value.

4.2 Runtime
For the first part, it was assumed that the computational cost of the in-
tegration depends primarily on the number of function evaluations. This
idealisation would predict that crude Monte Carlo and vegas have a similar
runtime when using the same number of iterations and samples. However,
this neglects the fact that the runtime also depends on the algorithm and
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the specific implementation. The vegas algorithm is more complex and con-
tains more computation steps for performing the integration. Consequently,
one would expect this to result in a longer runtime. In order to test this
hypothesis, we measure the time it takes to compute an integral estimate for
each algorithm with the same number of samples and iterations. Since the
first iteration of any run will generally take longer due to the compilation
of the TensorFlow functions, we exclude it from the measurement. Addi-
tionally, by also measuring the time needed for evaluating the function, the
computational overhead of the integration part can be determined from the
difference between the total runtime and the evaluation time. As is common
for timing functions, we take an average of numerous repetitions in order to
even out statistical fluctuations arising from the randomness of the process.
Since TensorFlow is capable of running computations on different hardware,
a further step would be to compare the relative runtime the integration re-
quires on the CPU and the GPU.

For practical purposes, it might be most interesting to directly measure
the runtime of the algorithms for computing an integral estimate with a
given maximal uncertainty. This would show explicitly if one algorithm is
preferable in terms of speed for equally accurate results. Unfortunately, using
a target accuracy as an input value and letting the number of samples and
iterations be chosen automatically is a rather complex task. Although it has
been requested1, there is no implementation of this in VegasFlow at the time
of writing.

4.3 Limits of VEGAS

After investigating the properties of vegas for well behaved functions, we
are also interested in what its limits are. Namely, we want to study how
far we can change the function properties or the input parameters of the
algorithm such that it fails to produce a consistent result. Failure of the
algorithm does not mean that it throws an error, but rather that the result
is unreliable. This can be the result of the grid not adapting to the function
properly, such as not being able to find a peak. However, without knowledge
of the expected integration result, this can be hard to identify. While a large
relative uncertainty is a strong indicator of an underlying problem, it is not
a necessary criterion. In the example where a peak is missed completely, the
resulting values might look reasonable while being completely wrong.

1https://github.com/N3PDF/vegasflow/issues/72

13

https://github.com/N3PDF/vegasflow/issues/72


One property that affects the results strongly is the peakiness of the func-
tion. In HEP, data may consist of a slowly varying background and a sharp
signal peak, which is the main area of interest. Thus, it is important that the
integration algorithm does not miss this peak. To investigate the effect of
the peakiness, we consider a superposition of two multivariate Gaussian dis-
tributions. We choose one peak to be relatively wide with a fixed width and
perform integration for varying widths of the second peak. The advantage of
using Gaussians is that they are defined in arbitrary dimension and that the
expected integral value is known. By comparing our integration results to
the expected values, we can identify when the algorithms have successfully
captured both peaks. In order to explore the boundaries of the algorithm,
we may also vary the dimension of the multivariate Gaussians while keeping
the sample size constant and vice versa.

4.4 Iterations vs. Sample Size
In comparison to other algorithms that might take an accuracy threshold or
the number of samples as input parameters, vegas requires the specification
of both a number of iterations i and a number of samples per iteration N .
Choosing appropriate values is non-trivial as increasing i or N both result
in a higher computational cost, but affect the integration results differently.
According to [8], the grid of the vegas algorithm usually converges within 5
to 20 iterations. However, there is no general guideline as to how many iter-
ations one should choose even within these boundaries. We want to explore
the question if it is preferable to increase one parameter over the other in
order to improve the integration result. For this purpose, we choose a fixed
value for one and perform the integration repeatedly for varying values of
the other parameter and compare the results.
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5 Results

5.1 Accuracy
For both plain and vegas, the relative uncertainty of the integral estimate as
reported by the algorithm was measured for a selection of different functions
and sample sizes. For each integrand, the two data sets were plotted against
the sample size in the same graph as shown in fig. 1.
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Figure 1: Reported relative uncertainties of the vegas and plain algorithm
after 5 iterations for different sample sizes

Across all investigated functions, a larger sample size correlates with a
smaller uncertainty. In a double logarithmic plot, an approximately linear
correlation with a negative slope between the uncertainty and the number of
samples N can be observed.

The comparison between the algorithms shows that vegas outperforms
plain Monte Carlo in terms of accuracy given the same number of function
evaluations. In other words, vegas needs less samples than plain Monte
Carlo in order to reach the same accuracy. While the difference in magnitude

15



of the uncertainties varies between different integrands, vegas is better up
to an order of magnitude. This can be seen in fig. 1, where the data points
for vegas are generally located below those for plain Monte Carlo.

These observations are consistent with the expectation according to eq. (10).
When a logarithm is applied to both sides of this equation, the product can
be rewritten as a sum by applying logarithmic identities.

log(σ) = −1
2 log(N) + 1

2 log(Var(f)) + log(V ) (19)

The result is a linear correlation between the logarithms of the observed
quantities with a negative slope. In addition, the y-axis shift depends on the
variance of the integrand. Since the importance sampling used in the vegas
algorithm aims to reduce the variance of f compared to crude Monte Carlo,
one would expect to see a smaller shift.

5.2 Runtime
The runtime of both the vegas and plain algorithm as well as the mere
function evaluation was measured for the same functions and sample sizes as
in the previous section. For each integrand, the three quantities were plotted
against the sample size in a common graph as shown in fig. 2.

In the investigated range of at most 106 samples per iteration, there ap-
pears to be a linear correlation between the measured time and the sample
size for all three quantities. Consequently, as the difference between two
quantities with a linear dependence on the sample size, the overhead of the
algorithm also exhibits a linear behaviour. This becomes more apparent when
the data is shown using linearly scaled axes as in fig. 3, which depicts the over-
head for different integrands in the same graph. In theory, the scale factor of
the linear correlation depends on the dimensionality of the integration space,
but not the actual integrand. Any direct dependency on the integrand would
result from function evaluations, which do not contribute to the overhead as
per its definition. However, the cost of operations performed on points from
the integration space – such as those found in the grid refinement process –
scales with the size of the array and therefore the dimensionality. The over-
head of vegas depicted in fig. 3b reflects these expectations perfectly, as the
observed scale factor is larger for higher-dimensional integrands and almost
identical for the two physical functions with the same dimensionality. In
comparison, the differences between the scale factors are relatively minor for
the overhead of plain Monte Carlo shown in fig. 3a. This observation might
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Figure 2: Runtimes for vegas, plain and the function evaluation for different
sample sizes, averaged over 100 repetitions of 5 iterations each

be explained by the simplicity of the algorithm, which lacks any extensive
array computations that would result in a pronounced dependency on the
dimensionality.

Figures 2 and 3 clearly show that the vegas algorithm has a significantly
larger overhead. Due to its complexity, more operations are performed per
event in comparison to plain, which results in a larger scale factor on the
sample size. Therefore, the observation is in line with our expectations.

The comparison between the evaluation time and the algorithm runtimes
indicates that the assumption of the computational cost being dominated by
the function evaluation does not hold for vegas. In our measurements, the
function evaluation accounted for less than 10% of the total runtime in most
cases. While the contribution is more significant for plain, the overhead of
the algorithm can still not be considered negligible.

However, in the example of the P-Wave function, we find that the eval-
uation time makes up an increasingly larger fraction of the total runtime as
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Figure 3: Overhead of the vegas and plain algorithm for a set of linearly
spaced sample sizes, averaged over 100 repetitions of 5 iterations each

the sample size grows. This diminishing importance of the overhead is expec-
ted when a function is computationally intensive enough that its evaluation
time scales more strongly with the sample size than the algorithm overhead.
Given that the evaluation of the P-Wave is by far the costliest among those
we measured, it seems reasonable that we observe the effect for this function.

5.3 Limits of VEGAS
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Figure 4: Integral values of the sum of two 5-dimensional Gaussians for
varying standard deviations of the second peak. The left side shows the
results after 5 iterations, the right side after 20.
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In fig. 4, one can see the results obtained from integrating the sum of two
multidimensional Gaussians using varying widths for one peak, while keeping
the other variables constant. There are a few things that can be observed
from this.

Firstly, for large values of the width σ2, the obtained integral values are
around 2, while for small values they are around 1. Since each Gaussian
should integrate to approximately 1, this means both algorithms eventually
fail to find the second peak as it becomes too narrow. However, this seems
to happen faster with plain compared to vegas. Secondly, the values for
vegas are mostly in the area around either 1 or 2, while the values are more
widespread for plain.

These observations can be explained by the adaptive importance sampling
employed by the vegas algorithm. If any sample points land in the area
of the peak in the first few iterations, the grid is adapted such that more
points are sampled in this area in subsequent iterations. Thus, with enough
iterations, vegas is able to find an approximation for the integral including
the narrow peak. On the contrary, if no points land in the area of the peak
towards the beginning, it is more likely to be left out completely, because
the grid is adapted to focus on the area of the wider Gaussian. Even if some
points land there in later iterations, the effect will likely be small. This is
due to the grid adaption being damped, which means that the changes made
to the grid become smaller with increasing iterations in order to avoid rapid
fluctuations. As a consequence, the results obtained with vegas are mostly
split between the integral value of both peaks and the one of the wider peak
only.

In contrast, the integral values obtained with plain depend more strongly
on how many sample points land in the area of the narrow peak. The extreme
ends of the spectrum are the same as for vegas, where a good estimate of
both peaks is obtained with plenty of points and the narrow peak is practic-
ally ignored with too few points. However, there is also a range in between,
where there are enough sample points in the area of the peak to significantly
affect the integral value, yet not enough to obtain an accurate estimate. In
that case, decreasing the peak width reduces the number of points that stat-
istically land in the peak area and consequently their contribution to the
integral estimate. Therefore, we observe values that are more widespread
and change gradually with the peak width σ2.

It is further notable, that the errors for plain are larger in this intermedi-
ate value range, thereby hinting at the inaccuracy of the result. In contrast,
the values on the lower end show the smallest error estimates. This is likely
due to the fact that missing the narrow peak practically reduces the integrand
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to the wider Gaussian, which has a lower variance. It also illustrates that one
should not rely solely on the reported accuracy to assess the quality of the
results. In practice, it is best to have a good understanding of the integrand,
especially for peaky functions. Approximately knowing what integral value
to expect certainly helps with judgement of the result. In addition, having a
rough idea of the space covered by the peak within the integration volume can
guide us in deciding how many sample points to use. For peaks that occupy
a very small fraction of the volume, it may be better to use stratification in
order to prevent vegas from reducing the sample points in certain areas too
drastically. If the position of the peak is known, the surrounding subvolume
could even be selected manually and integrated separately from the rest in
order to focus more sample points on the peak to capture its integral.

5.4 Iterations vs. Sample Size
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Figure 5: Distribution of the integral values obtained with vegas for varying
sample sizes and numbers of iteration. The integrand is the sum of a wide
and a narrow three-dimensional Gaussian.
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In fig. 5, one can see the value distributions obtained from repeatedly
integrating the sum of two multidimensional Gaussians with vegas for a
varying number of iterations. For small enough sample sizes, we observe
peaks representing value accumulations around two different values. As in
the previous section, the lower values are a result of the smaller Gaussian
being missed. With the exception of the lowest number, the graph also shows
that increasing the number of iterations hardly affects the distribution. This
is in line with our previous statement, that if not enough points land in the
peak to significantly contribute to the integral in the first few iterations, this
is unlikely to change with more iterations. It is a consequence of the adaptive
importance sampling distributing the bulk of the points to other areas and
the adaptation being damped. On the other hand, by increasing the sample
size per iteration, the lower peak eventually vanishes and the distribution
around the correct value becomes narrower.

Generalising these observations, one could say that in order to obtain a
good integration result, we need to use a sample size that is large enough
for the shape of the integrand to be captured at the beginning. Otherwise,
the adaption of the grid is at best inefficient and at worst counterproductive.
Additionally, we need to run enough iterations that the grid can adapt to the
function properly, from which point on the changes to it will only be minor.
According to [8], once a good grid has been found, it is generally better to
increase the sample size in order to reduce the statistical uncertainty on the
integration result. They also indicate a usual range of 5 − 20 iterations for
the grid to converge. Apart from that, determining how many sample points
and iterations are enough to fulfil the aforementioned conditions depends on
the integrand and remains largely a matter of trial and error.

5.5 Use Cases of VEGAS and Plain
The efficiency of each algorithm may change depending on factors that vary
from case to case such as the integrand shape or the number of samples used.
While neither is universally superior, they show certain tendencies regarding
their suitability for different use cases. In the following, we will offer some
suggestions as to why one might choose one algorithm over the other.

The vegas algorithm is especially beneficial for peaky functions, because
it yields more accurate results by focusing more points on the relevant areas,
provided that they are found initially. The main drawback of vegas is the
comparatively large overhead of the integration. The contribution of the over-
head to the runtime becomes less important the larger the evaluation time of
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the integrand is. Thus, vegas becomes more appealing to use for computa-
tionally intensive functions. Additionally, the importance sampling of vegas
can be particularly useful for integrating multiple functions that only differ
slightly. After training the grid on the first integrand, it can be reused for the
remaining integrands to obtain more accurate results compared to uniform
sampling without any additional computational cost. Alternatively, it can be
used as a starting point to reduce the total number of adaption steps needed.

The plain algorithm is generally preferable for integrands with relatively
low variance and no sharp peaks, where the additional accuracy obtained by
using vegas is minor and does not compensate for the additional runtime
required. Similarly, it might be the better choice if the main objective is ob-
taining an integral estimate quickly without concern for high accuracy, given
that no essential parts of the integrand are missed when using uniformly
sampled points.
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6 Conclusion
In this thesis, we investigated the computational efficiency and numerical
accuracy of the VegasFlow library. On one hand, we found that the runtime
of the vegas algorithm is significantly higher than for the plain algorithm
when using the same number of samples. On the other hand, vegas generally
yields more accurate results and thus requires less samples overall to achieve
the same accuracy. Depending on the integrand properties, one algorithm
may be preferable over the other. The plain algorithm might be sufficient
for functions whose shape is captured reasonably well by uniformly sampled
points. In contrast, vegas tends to perform better than plain for peaky or
computationally expensive functions, as well as for bulk integration of similar
functions. Therefore, it would be worth implementing the vegas algorithm
in the zfit library in addition to the currently available simple Monte Carlo.

In the future, we would like to see a wider selection of algorithms used
with TensorFlow. Since the VegasFlow library provides a framework for
Monte Carlo algorithms to be used with TensorFlow, additional algorithms
could be implemented as extensions to the library in order to be tested for
performance with less effort. New algorithms or combination of algorithms
that are found to outperform vegas or specialise on different use cases could
then be incorporated into the zfit library. One notable candidate is the ve-
gas+ algorithm discussed in 2.8, which has been implemented in VegasFlow,
but not yet documented. Furthermore, it would be worth investigating how
the usage of GPUs for the computations in addition to or instead of CPUs
affects the performance of the algorithms.
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