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Abstract

The main aspect of this thesis is the construction and application of local inertial co-
ordinates in Cosmology. According to the principle of general covariance upon which the
Theory of General Relativity is built, the physical properties of a system are independent of
the choice of coordinates employed to describe it. Local inertial coordinates are the natural
frame that a freely falling observer builds in her proximity, in particular, Fermi Normal Co-
ordinates (FNC) are the local inertial coordinates that the observer adopts along her world
line. The metric in FNC is Minkowski plus quadratic corrections in the distance from the
geodesics. In Cosmology, for a cosmological observer that is freely falling the patch can be
studied with FNC is limited due to the existence of an intrinsic scale the Hubble scale. How-
ever, it is possible to build Conformal Fermi Coordinates (CFC) that preserve the advantage
of FNC and has a larger patch of validity independent of Hubble. The metric in CNC is
conformal Minkowski plus quadratic corrections in the distance from the geodesics. In this
thesis, we construct both FNC and CFC and we work in linear order in perturbation theory
around a RW metric.

i



Acknowledgements

First and foremost, I would like to extend my appreciation to my supervisor,
Prof. Jaiyul Yoo, for his exceptional guidance, profound knowledge, and unwavering
support. His insightful feedback and constructive criticism have been instrumental in
shaping this thesis. I am truly grateful for Prof.Yoo’s mentor-ship, especially for his
unpublished note on Fermi normal coordinates (FNC). The profound understanding
and unique perspective offered in this note have helped me to write the chapter on
FNC.

I would also like to thank the staff and faculty of the University of Zurich for
creating a great academic environment and providing access to essential resources.

In the end, I want to extend my gratitude to my family and friends for their
support and encouragement throughout this journey. Their love, understanding,
and belief in my abilities have been a constant source of motivation.

ii



Contents

I Introduction 1

II Gravity is Geometry 3

1 Principle of Equivalence 3

1.1 Weak Equivalence Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Einstein Equivalence Principle and Strong Equivalence Principle . . . . . . . . . 4

2 Curvature of Spacetime and Gravitation 4

2.1 Tensor fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Covariant derivative and Christoffel symbols . . . . . . . . . . . . . . . . . . . . . 6

2.3 Parallel transport, the geodesic equation and the Riemann curvature tensor . . . 7

2.4 Einstein’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Locally Inertial Coordinates 10

III The Geometry of Our Universe 10

4 The Standard Model of Cosmology 10

4.1 Hubble’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Thermal History of the Universe and the CMB . . . . . . . . . . . . . . . . . . . 11

4.3 Cold Dark Matter and Cosmological Constant . . . . . . . . . . . . . . . . . . . . 12

5 Homogeneous and Isotropic Universe 13

5.1 Homogeneity and Isotropy: Maximally Symmetric Space . . . . . . . . . . . . . . 13

5.2 Maximally Symmetric 3-D Space Metric . . . . . . . . . . . . . . . . . . . . . . . 14

5.3 Robertson-Walker Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.4 The Friedmann Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Perturbations of the homogeneous universe 18

6.1 Robertson-Walker Metric with Perturbations . . . . . . . . . . . . . . . . . . . . 18

IV Fermi-Normal Coordinates 20

7 Basic Formalism and Analytical Formula 20

8 Linear Order Calculations 23

8.1 The coordinates xµQ(xiF ) of the point Q . . . . . . . . . . . . . . . . . . . . . . . . 23

8.2 Derivative terms ∂xµ

∂xαF
(Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8.3 The Riemann tensor in FNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.4 The limitation of FNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iii



CONTENTS Yiwen Huang

V Conformal Fermi Coordinates 40

9 Basic Formalism and Analytical Formula 41

10 Linear order calculations 46

11 Choice of the CFC scale factor 48

VI Conclusions 50

iv



Part I

Introduction

Cosmology is the branch of science that studies the origin, evolution, and structure of the
universe as a whole. It seeks to understand the fundamental principles that govern the universe
on the largest scales, including its overall composition, expansion, and ultimate fate.

Cosmologists use a variety of observational and theoretical tools to study the nature of the
universe. Observational techniques such as telescopes and satellites allow scientists to study
the cosmic microwave background radiation, galaxies, clusters of galaxies, and other celestial
objects. These observations provide valuable data that help shape our understanding of the
history and structure of the Universe.

The theoretical framework of cosmology is based on Albert Einstein’s theory of general
relativity, which describes the gravitational interaction of matter and energy on cosmic scales.
General relativity is a fundamental theory in physics that revolutionized our understanding of
gravity. It was developed by Albert Einstein in the early 20th century as an extension of his
special theory of relativity. General relativity proposes that gravity arises due to the curvature
of space-time caused by mass and energy. According to this theory, massive objects such as
stars and planets curve the fabric of space-time around them, creating what we perceive as
gravity. In other words, gravity is not a force transmitted through space but rather a result of
the geometry of space-time itself. General relativity is a profound theory that revolutionized our
understanding of gravity, space-time, and the structure of the universe. This theory, together
with the concept of the Big Bang, is the foundation of modern cosmology. The Big Bang Theory
is a widely accepted scientific model that explains the origin and evolution of the universe. It
suggests that the universe began as a singular point of extremely high density and temperature,
and it has been expanding and evolving ever since. According to the Big Bang theory, around
13.8 billion years ago, all matter, energy, space, and time were compressed into an incredibly
small and hot state, often referred to as a singularity. In an event known as the Big Bang, this
singularity rapidly expanded, initiating the birth of the universe as we know it. In the early
stages of the expansion, the universe was extremely hot and dense, and it underwent rapid and
exponential expansion known as cosmic inflation. As the universe expanded, it cooled down,
allowing fundamental particles such as protons, neutrons, and electrons to form. These particles
eventually combined to form atoms, leading to the creation of matter. The Big Bang theory
is supported by a wealth of observational evidence. One of the key pieces of evidence is the
cosmic microwave background radiation, which is a faint glow of radiation left over from the
early stages of the universe. This radiation, discovered in 1965, provides strong support for
the idea that the universe was once in a hot and dense state. Additionally, observations of the
red-shift of galaxies show that the universe is expanding. The further away a galaxy is, the
greater its red-shift, indicating that galaxies are moving away from us and from each other.

Cosmologists also study the composition of the universe, which is thought to be made up
mainly of dark matter and dark energy, in addition to ordinary matter. Dark matter is believed
to make up about 85% of the matter in the universe, with the remaining 15% being ordinary
matter. However, its exact nature and composition are still unknown. Dark matter, although
invisible, exerts gravitational forces on visible matter and plays a crucial role in the formation
of galaxies and large-scale structures. Dark energy is responsible for the accelerated expansion
of the universe. It is a mysterious and hypothetical form of energy that is believed to permeate
all of space and drive this accelerated expansion. The nature of dark energy remains largely
unknown. One possible explanation is the presence of a cosmological constant. This concept
was initially introduced by Albert Einstein in his theory of general relativity but later discarded
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when the universe was believed to be static. The accelerating expansion of the universe revived
interest in the cosmological constant as a potential explanation for dark energy.

By studying the properties of the Universe and its constituents, cosmologists seek to answer
fundamental questions about its origin, structure, and ultimate fate. Cosmology is a rapidly
evolving field, and ongoing research continues to deepen our understanding of the cosmos, bring-
ing us closer to unraveling the mysteries of the universe.

Contemporary cosmological models are based on the idea that the universe is almost the
same everywhere but expands with time. Such a universe is described by the Robertson-Walker
metric which is a fundamental tool in the field of cosmology that describes the geometry and
dynamics of the expanding universe. The Robertson-Walker metric represents a four-dimensional
space-time that describes the geometry of the universe. It is based on the assumption that the
universe can be described as a homogeneous and isotropic space on large scales. Homogeneity
implies that the properties of the universe are the same at every point, while isotopy means that
it appears the same in all directions. The Robertson-Walker metric serves as the foundation
for the Friedmann-Lemâıtre-Robertson-Walker (FLRW) model, which is widely used in modern
cosmology. This model, combined with observations and theoretical principles, such as the Big
Bang theory and the theory of general relativity, provides insights into the origin, expansion, and
future fate of the universe. By utilizing the Robertson-Walker metric, cosmologists can study the
behavior of galaxies, the cosmic microwave background radiation, the formation of large-scale
structures, and other phenomena in the universe. It enables the exploration of fundamental
questions about the nature of space, time, and the overall structure of our vast and evolving
cosmos.

When we study cosmology, we need to perform calculations in a particular set of coordinates.
Sometimes the calculation can be easier in one set of coordinates than in another. Therefore,
the choice of an appropriate set of coordinates is very important in research. This is especially
true in general relativity and its application to cosmological perturbation theory. A bad set of
coordinates can greatly increase the computational complexity of the problem. So the choice of
coordinates can be very critical.

In the context of general relativity, gravitation is not given rise by additional field propagat-
ing through space-time but is the curvature of space-time itself. The principle of equivalence
indicates that for a local observer, one can always find a set of coordinates in which the metric
takes the canonical form as in the flat space-time. Fermi normal coordinates (FNC) is such a
locally inertial coordinates.

Choosing the natural set of coordinates of a local observer is very convenient because they
are directly related to local measurements. In most applications to cosmology, the local observer
is in an inertial frame, free-falling in the local gravitational potential. Such an inertial observer
can describe the neighborhood around the time-like geodesic of the free-falling observer as a flat
space-time with corrections that grow with the square of the distance from the observer’s geodesic
times the second derivatives of the space-time metric which is described by the Riemann tensor.
This holds in any space-time, and the set of coordinates is known as Fermi Normal Coordinates
(FNC).

However, when we apply the FNC to Cosmology, due to the expanding universe the patch
that can be covered by FNC is limited. For this reason, the conformal Fermi coordinates (CFC)
are established to solve the problem. Which will be discussed in this thesis.

Another thing we are going to talk about is that the real universe is not perfectly homo-
geneous and isotropic. These little perturbations are very important to the studying of the
evolution of the universe. Perturbation theory is a mathematical framework used to study the
evolution and behavior of small deviations or fluctuations from the isotropic and homogeneous
background of the universe. It provides a powerful tool for understanding how these perturba-
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tions grow and evolve over time, ultimately leading to the formation of galaxies, galaxy clusters,
and other large-scale structures in the universe. To conclude, Cosmology aims to explain the
origin and evolution of the entire contents of the Universe, the underlying physical processes, and
thus to gain a deeper understanding of the physical laws that are assumed to apply throughout
the Universe.

Part II

Gravity is Geometry

In the context of general relativity, gravitation is not given rise by an additional field propagating
through space-time but is the curvature of space-time itself. This is Einstein’s profound insight
and this idea is based on the Principle of Equivalence. This physical principle leads us to describe
gravity as the geometry of a curved manifold in which the curvature of space-time is described
by the Riemann tensor.

1 Principle of Equivalence

1.1 Weak Equivalence Principle

In Newtonian mechanics, the second law relates the force on an object and the acceleration of
the object by a proportional relation

F = mia. (1)

The constant mi is defined as the inertial mass. In other words, the inertial mass is a constant
that relates to the resistance you feel when pushing the object and this constant has a universal
character which means the value is not relevant to the type of force is being exerted. Newton’s
law of gravitation also states that the gravitation force exerted on an object is proportional to
the gradient of the gravitational potential Φ which is a scalar field

Fg = −mg∇Φ. (2)

Where mg is another constant defined as the gravitational mass. At first sight, we have no reason
to say that the inertial mass mi should be the same as the gravitational mass mg. Nevertheless,
experiments have shown that every object in a gravitational field falls at the same rate which
means the response of matter to gravity is universal. This leads us to the idea of the Weak
Equivalence Principle (WEP)[1], which simply states that

mi = mg (3)

for any object with any composition. We easily get that for objects that are only gravitationally
attracted which we will call ”free-falling” objects the acceleration is

a = −∇Φ. (4)

It shows that the behavior of a free-falling test particle is independent of its mass or any other
quality of it.

In the language of ”space-time” and ”trajectory” this statement is translated into that there
exists a preferred class of trajectories through space-time on which unaccelerated particles travel.
Here ”unaccelerated” means the particles are subjected only to gravity, so the trajectories are
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called ”free-falling” trajectories. That is to say, if an uncharged test body is placed at an initial
event in space-time and given an initial velocity there, then its subsequent trajectory will be
independent of its internal structure and composition. Where ”uncharged” means an electrically
neutral body that has negligible self-gravitational energy and that is small enough in size so that
its coupling to inhomogeneities in external fields can be ignored.

The WEP can also be stated in another form. Imagine particles in a small box, by observing
the behavior of the particles there is no way to tell if these particles are in a gravitational field
or the box is accelerating at a constant rate. But if the box is too big then the gravitational
field would change from place to place in an observable way, while the effect of the acceleration
will be the same everywhere in the box. The WEP can therefore be stated as: The motion of
freely-falling particles is the same in a gravitational field and a uniformly accelerated frame, in
small enough regions of space-time.

1.2 Einstein Equivalence Principle and Strong Equivalence Prin-
ciple

In the WEP we know that there is no way for the observer in the box to distinguish between
external gravitational field and uniform acceleration by simply dropping the particles. The WEP
alone does not highly constrain the dynamic of the theory of gravitation. In fact, there are many
theories other than the General Relativity that satisfied the WEP.[2] There exist additional
physical principles that make GR stand out: the Einstein equivalence principle (EEP) and in
particular the strong equivalence principle (SEP).[3][4]

The idea of EEP is simple, not by the motion of the particles, but by any local non-
gravitational experiment the observer cannot distinguish between an external gravitational field
and a uniform acceleration. The Einstein Equivalence Principle then states: (i) WEP is valid,
(ii) the outcome of any local non-gravitational test experiment is independent of the velocity of
the freely falling apparatus, and (iii) the outcome of any local non-gravitational test experiment
is independent of where and when in the universe it is performed. This principle is at the heart
of gravitation theory, for it is possible to argue convincingly that if EEP is valid, then gravitation
must be a curved-space-time phenomenon.

The Strong Equivalence Principle is a more inclusive principle. The idea of SEP is that in
small enough regions of space-time, it is impossible to detect the existence of a gravitational
field by means of any local experiments including both gravitational experiments and non-
gravitational experiments. SEP states that (i) WEP is valid for self-gravitating bodies as well as
for test bodies, (ii) the outcome of any local test experiment, gravitational or non-gravitational,
is independent of the velocity of the freely falling apparatus, and (iii) the outcome of any local
test experiment is independent of where and when in the universe it is performed.

Einstein’s theory of general relativity is thought to be the only theory of gravity that satisfies
the strong equivalence principle.[3]

2 Curvature of Space-time and Gravitation

The EEP implies that there are no such things that are ”gravitational neutral objects” since no
experiment can tell the acceleration and gravitational field apart. The fact that the gravitational
neutral object does not exist means gravity is inescapable. Considering this fact, it makes more
sense to define ”unaccelerated” as ”free-falling”. In other words, an object subjected only to
gravitational force is considered zero acceleration under our definition. From here we are led
to the idea that gravity is not a force since force is something that leads to acceleration. This
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suggests that we should attribute the action of gravity to the curvature of the space-time. But
the EEP indicates that in a small enough region the space-time is flat. We, therefore, describe
space-time with a kind of mathematical structure that looks locally like Minkowski space but
may possess nontrivial curvature over extended regions. This mathematical structure is a very
important conception of mathematics and physics which is known as the manifold. The geometry
of the manifold is defined by the metric so it is clear that the curvature is related to the metric
but it is not immediately clear how to relate the curvature to the metric since the metric depends
on the coordinate system. But we will formalize the curvature into a mathematical structure
from the metric.[5][1]

2.1 Tensor fields

A vector is a perfectly well-defined geometric object. A real vector space is a collection of vectors
that can be added and multiplied by real numbers in a linear way:

(a+ b)(A+B) = aA+ aB + bA+ bB (5)

where a, b are real numbers and A,B are vectors. Any vector can be written as a linear combi-
nation of basis vectors. If A is a vector and ê(µ) is a set of basis, i.e. a set of vectors that not
only span the vector space but also are linearly independent, the vector

A = Aµê(µ) (6)

Where Aµ are the components of the vector.
A dual vector space is the space of all linear maps from a vector space to the real numbers,

such that
ω(aA+ bB) = aω(A) + bω(B) ∈ R (7)

where ω is a dual vector, A,B are vectors and a, b are real numbers. The basis of the dual vector
space can be constructed by demanding

θ̂(ν)
(
ê(µ)
)

= δνµ. (8)

A dual vector thus can be written as
ω = ωµθ̂

(µ) (9)

where ωµ are the components of the dual vector. The action of a dual vector field on a vector
field is a scalar field:

ω(V ) = ωµθ̂
(µ)
(
V ν ê(ν)

)
= ωµV

ν θ̂(µ)
(
ê(ν)
)

= ωµV
νδµν

= ωµV
µ ∈ R.

(10)

A straightforward generalization of vectors and dual vectors is the notion of a tensor. A
dual vector is a linear map from vectors to R while a tensor of rank (k, l) is a multi-linear map
from a collection of dual vectors and vectors to R. From this point of view, a scalar is a rank
(0, 0) tensor, a vector is a rank (1, 0) tensor and a dual vector is a rank (0, 1) tensor. The tensor
product between a (k, l) tensor T and a (m,n) tensor S gives a (k +m, l + n) tensor

T⊗S
(
ω(1), . . . , ω(k), . . . , ω(k+m), V (1), . . . , V (l), . . . , V (l+n)

)
=T

(
ω(1), . . . , ω(k), V (1), . . . , V (l)

)
× S

(
ω(k+1), . . . , ω(k+m), V (l+1), . . . , V (l+n)

)
.

(11)
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A basis for the space of all (k +m, l + n) is then

ê(µ1) ⊗ · · · ⊗ ê(µk) ⊗ θ̂
(ν1) ⊗ · · · ⊗ θ̂(vl). (12)

Thus, we are able to write a (k, l) tensor as

T = Tµ1···µkν1···vl ê(µ1) ⊗ · · · ⊗ ê(µk) ⊗ θ̂
(v1) ⊗ · · · ⊗ θ̂(vl) (13)

where Tµ1···µkν1···vl are the components of the tensor.

The set of all vectors at a point P on a manifold is the tangent space TP . We choose the
coordinate basis for the tangent space TP as the basis. Coordinate basis is represented by the
partials ∂µ = ê(µ). If we consider a coordinate transformation between two coordinate systems

xµ → x′µ
′
, the chain rule gives

∂µ′ =
∂xµ

∂xµ′
∂µ. (14)

The vector is unchanged under the change of the basis

V µ∂µ = V µ′∂µ′

= V µ′ ∂x
µ

∂xµ′
∂µ,

(15)

hence,

V µ′ =
∂xµ

′

∂xµ
V µ (16)

is the vector transformation law. Further, the gradients dxµ are a basis of dual vectors since

dxµ (∂v) =
∂xµ

∂xν
= δµv . (17)

If we do the coordinates transformation xµ → x′µ
′
, we find

dxµ
′

=
∂xµ

′

∂xµ
dxµ. (18)

and thus the transformation law of the dual vector is

ωµ′ =
∂xµ

′

∂xµ
ωµ. (19)

In the end, we find that under the coordinate basis ∂µ and dµ for vector and dual vector
respectively, the coordinates transformation law of a tensor is[1][6]

Tµ
′
1···µ′k

v′1···v′l =
∂xµ

′
1

∂xµ1
· · · ∂x

µ′k

∂xµk
∂xν1

∂xν
′
1
· · · ∂x

νl

∂xν
′
l

Tµ1···µkv1···νl . (20)

2.2 Covariant derivative and Christoffel symbols

In flat space-time in inertial coordinates, the partial derivative operator ∂µ is a map from (k, l)
tensor fields to (k, l + 1) tensor fields. But the map of the partial derivative depends on the
coordinate system used since the partial derivative is not a good tensor operator. For this reason,
we want to define an operator to perform the functions of the partial derivative which should be
a map from (k, l) tensor fields to (k, l+ 1) tensor fields but in a way independent of coordinates.
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By requiring the properties of linearity and the Leibniz rule we define a covariant derivative of
a vector as

∇µV v = ∂µV
ν + ΓνµλV

λ. (21)

Where Γ is the connection coefficient. It is clear that the connection coefficient is not a tensor
because it is constructed to be nontensorial but is constructed to make the combination with
partial derivative to be able to transform as a tensor.[1]

Similarly, we can also express the covariant derivative of a one-form as a partial derivative
plus some linear transformation.

∇µων = ∂µων + Γ̃λµνωλ (22)

Consider now the properties of commuting with contractions and reducing to the partial
derivative on scalars and we have

Γ̃λµν = −Γνµλ (23)

Up to now we still have not completely defined the connection coefficient yet. Therefore we want
to introduce two additional properties to define the unique connection coefficient: torsion-free

Γλµν = Γλ(µν) (24)

and metric compatibility
∇ρgµν = 0. (25)

Where torsion tensor is defined by

T λµν = Γλµν − Γλνµ = 2Γλ[µν]. (26)

A connection is metric compatible if the covariant derivative of the metric with respect to that
connection is everywhere zero and a metric-compatible covariant derivative commutes with the
raising and lowering of indices. With these properties, we demand the formula of the connection
coefficient be defined

Γσµν =
1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (27)

This connection we derive from the metric is also known as the Christoffel connection and the
connection coefficient is called Christoffel symbol.[1][3]

2.3 Parallel transport, the geodesic equation and the Riemann
curvature tensor

We think of a derivative as a way of quantifying how fast something is changing. Actually, the
covariant derivative quantifies the instantaneous rate of change of a tensor field in comparison
to what the tensor would be if it were “parallel transported”. Where “parallel transport” means
keeping the vector constant when moving it along a path. However, there is a crucial difference
between flat and curved spaces, in a curved space, the result of transporting a vector from one
point to another will depend on the path taken between the points so it appears as if there is
no natural way to uniquely move a vector from one tangent space to another. Actually, this
indicates that two vectors can only be compared in a natural way if they are elements of the
same tangent space. Therefore what we can do is to define the directional covariant derivative.
Given a curve xµ(λ), the directional covariant derivative is defined to be the covariant derivative
along the curve

D

dλ
=
dxµ

dλ
∇µ. (28)
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This is a map defined only along the path, from (k, l) tensors to (k, l) tensors. Parallel transport
of the tensor T along the path xµ(λ) is defined to be that the covariant derivative of T along
the path vanished. For a vector, the equation of parallel transport takes the form

d

dλ
V µ + Γµσρ

dxσ

dλ
V ρ = 0. (29)

After the introduction of the parallel transport, we are now interested in defining the straight
line: a straight line is a path that parallel transports its own tangent vector. The tangent vector
to a path xµ(λ) is dxµ/dλ. The condition for the tangent vector to be parallel transported is
thus

D

dλ

dxµ

dλ
= 0, (30)

or
d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0. (31)

This equation is also known as the geodesic equation. We can easily check that in Euclidean
space and Cartesian coordinates Γµρσ = 0 so the geodesic equation is simply d2xµ/dλ2 = 0, which
is the equation for a straight line.

Now we are finally prepared to define the Riemann tensor which quantified the curvature.
We have mentioned that the result of transporting a vector from one point to another will
depend on the path taken between the points in non-flat space-time. Therefore the result of
transporting reflects the total curvature enclosed by the path. Riemann tensor is introduced by
considering parallel transport around an infinitesimal loop. As discussed before the covariant
derivative of a tensor in a certain direction measures how much the tensor changes relative
to what it would have been if it was parallel transported. Therefore the commutator of two
covariant derivatives in two directions measures the difference between parallel transporting a
tensor first one way and then another, versus in the opposite order of the two directions. The
calculation is straightforward.

[∇µ,∇ν ]V ρ =
(
∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλvσ − ΓρνλΓλµσ

)
V σ − 2Γλ[µν]∇λV

ρ

= RρσµνV
σ − T λµν∇λV ρ

(32)

Where the Riemann tensor is identified as[7]

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλvσ − ΓρνλΓλµσ (33)

From this expression it is easy to find the properties of the Riemann tensor: The Antisymmetry
of the first two indexes

Rρσµν = −Rσρµν , (34)

the Antisymmetry of the last two indices

Rρσµν = −Rρσνµ, (35)

the invariance of the exchange of the first and the second two indices

Rρσµν = Rµνρσ, (36)

and the vanishing of the sum of cyclic permutations of the last three indices

Rρσµν +Rρµνσ +Rρνσµ = 0. (37)
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The Riemann tensor may be contracted to give the Ricci tensor

Rµν = gλρRρµλν = Rλµλν . (38)

Because of the symmetry of the Riemann tensor the Ricci tensor is symmetric

Rµν = Rνµ. (39)

The trace of the Ricci tensor in the Ricci scalar

R = gµνRµν = Rµµ. (40)

Now we have found the curvature tensor which defines the geometry of the manifold and the
relationships between different components of the Riemann tensor. Considering the antisymme-
try, symmetry, and cyclicity properties the number of independent components of the Riemann
tensor is left with

1

8
(n4 − 2n3 + 3n2 − 2n)− 1

24
n(n− 1)(n− 2)(n− 3) =

1

12
n2(n2 − 1). (41)

For n = 1 the number of the independent components of the Riemann tensor is 0. Actually, in
one dimension of space-time, the Riemann tensor always vanishes. This should remind us that
the Riemann tensor reflects only the inner properties of the space-time, not how it is embedded
in a higher dimensional space-time. The Riemann tensor measures the intrinsic geometry of a
space-time which can be measured by observers confined to the manifold.[1]

2.4 Einstein’s Equation

Einstein’s equation governs how the metric responds to energy and momentum. According to
the conservation of the energy and momentum the energy-momentum tensor Tµν should obey

∇µTµν = 0 (42)

The Einstein tensor defined as[1]

Gµν = Rµν −
1

2
Rgµν (43)

is a symmetric (0, 2) tensor, constructed from the Ricci tensor, which is automatically conserved
because it satisfies the Bianchi identities. Thus, we relate the Einstein tensor to the energy-
momentum tensor as

Gµν = kTµν (44)

By contracting both sides we have R = −kT using which we rewrite the equation as

Rµν = k(Tµν −
1

2
Tgµν) (45)

Considering a perfect-fluid source and going to the Newtonian limit we find k = 8πG where G
is Newton’s constant of gravitation. Thus, we can present Einstein’s equation:

Rµν −
1

2
Rgµν = 8πGTµν (46)

The most general expression of Einstein’s equation includes an additional term proportional to
the metric tensor that is allowed by the metric compatibility.

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν (47)

Where Λ is the cosmological constant which is the main candidate for dark energy in the current
standard model of cosmology.[8] This equation tells how the curvature of the space-time reacts to
the presence of the energy-momentum. In vacuum where Tµν = 0 the vacuum Einstein equation
is simply Rµν = 0.
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3 Locally Inertial Coordinates

The Einstein equivalence principle indicates that in a small enough region the space-time is flat.
Actually, for a point P on a manifold it should always exist a coordinate system x̂µ in which
ĝµν takes the canonical form and the first derivatives ∂̂σ ĝµν vanishes. Where the canonical form
means that in this form the metric components become

ĝµν = diag(−1, ..., 1, ...0, ...). (48)

The idea to prove this is to consider the transformation of the metric

ĝµ̂ν̂ =
∂xµ

∂x̂µ̂
∂xν

∂x̂ν̂
gµν , (49)

and Taylor expand both sides

LHS = (ĝµ̂ν̂)p + (∂̂µ̂1 ĝµ̂ν̂)px̂
µ̂1 +O(x̂2) (50)

RHS,
∂xµ

∂x̂µ̂
=

(
∂xµ

∂x̂µ̂

)
p

+

(
∂2xµ

∂x̂µ̂1∂x̂µ̂

)
p

x̂µ̂1 +O(x̂2) (51)

gµν = (gµν)p + (∂̂µ̂gµν)px̂
µ̂ +O(x̂2) (52)

Set terms of equal order in x̂ on each side equal

(ĝµ̂ν̂)p + (∂̂µ̂1 ĝµ̂ν̂)px̂
µ̂1 =

(
∂xµ

∂x̂µ̂

)
p

(
∂xν

∂x̂ν̂

)
p

(gµν)p +

[(
∂xµ

∂x̂µ̂

)
p

(
∂xν

∂x̂ν̂

)
p

(∂̂µ̂gµν)p

+

(
∂xν

∂x̂ν̂

)
p

(
∂2xµ

∂x̂µ̂1∂x̂µ̂

)
p

(gµν)p +

(
∂xµ

∂x̂µ̂

)
p

(
∂2xν

∂x̂µ̂1∂x̂ν̂

)
p

(gµν)p

]
x̂µ̂1

(53)
Consider a 4-dimension spacetime. For the zeroth order, (ĝµ̂ν̂)p has 10 independent components
while

(
∂xµ

∂x̂µ̂

)
p

has 4 × 4 = 16 independent components. Therefore we are free to choose 16

components which is more than enough to put 10 components of the metric into canonical form.
For the first order, the matrix (∂̂µ̂1 ĝµ̂ν̂)p has 4 × 10 = 40 independent components and the

matrix
(

∂2xµ

∂x̂µ̂1∂x̂µ̂

)
p

has 4× 10 = 40 degrees of freedom. This is enough freedom for us to set the

first derivative of the metric to zero. For the second order, it is not possible to set the second
derivative of the metric to zero. Such coordinates are called locally inertial coordinates. In
locally inertial coordinates the metric at p looks like the metric of the Minkowski space-time to
first order.[1]

ĝµν(p) = ηµν , ∂̂ĝµν(p) = 0 (54)

Part III

The Geometry of Our Universe

4 The Standard Model of Cosmology

The Standard Model of Cosmology, also known as the ΛCDM Model or Concordance Model,
is the comprehensive scientific framework with which we understand our universe. In the late
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1920s, the first cosmological observations started to take place, and immediately our philosoph-
ical prejudice on the universe had to be abandoned. The ever-increasing amount of precise
astrophysical and cosmological data revealed unexpected results like the existence of unknown
energy components, together with a mysterious background of radiation that has the same tem-
perature in every direction. In the late 1990s, the ΛCDM model emerged as a coherent physical
description of our universe[9] and benchmarked the birth of Modern Cosmology as an actual
observational science.

The Standard Model of Cosmology is based on the modern formulation of the Copernican
Principle, which goes by the name of Cosmological Principle, and states that in the universe
there is no preferred position or direction.[10] In other words, the Cosmological Principle asserts
that the universe is homogeneous and isotropic on sufficiently large cosmological scales. Another
assumption of the ΛCDM Model is that Einstein’s theory of General Relativity is the correct
theory of gravity on cosmological scales, and is the main interaction that drives the evolution
of the universe. Both assumptions have been well-tested experimentally and are at the core of
Modern Cosmology.

To summarize the concordance model of cosmology: a Euclidean universe that is dominated
today by non-baryonic cold dark matter (CDM) and a cosmological constant Λ, with initial
perturbations generated by inflation in the very early universe.[11]

4.1 Hubble’s Law

The first compelling cosmological data are attributed to the astronomer Edwin Hubble, who in
1929 measured the distance and red-shift of nearby galaxies. Hubble observed that the spectra
of these galaxies appeared redder than expected and concluded that they were receding from the
Milky Way. Moreover, he noticed that the further a galaxy is from us, the fastest it is receding
away. Hubble’s fundamental discovery was that the recession velocities V of the distant galaxies
increased linearly with distance D.

V = cz = H0D (55)

This direct proportionality between receding velocity and distance is known as Hubble’s law
and the proportionality constant is the Hubble constant H0. At first glance, it seems that there
was a great explosion in our neighborhood from which the galaxies are thrown out. However,
we should not consider ourselves in a special position in the universe so in another position
in the universe we should be able to observe the same phenomenon. In fact, the isotropic and
homogeneous of the universe suggests a highly regular structure of the universe with no preferred
direction. Therefore the galaxies might be just points embedded in a space that is expanding
and indeed the idea of contemporary cosmology is that the universe is expanding.

The distance at which objects are receding from us at the speed of light due to the overall
expansion of the universe is the Hubble radius RH = c

H0
. The Hubble radius is a theoretical

construct used in cosmology to describe the size of the observable universe at a given time. It is
not a physical boundary but rather a characteristic scale associated with the expansion of space.
Objects beyond the Hubble radius are receding from us faster than the speed of light due to the
overall expansion, making them unobservable to us.[12]

4.2 Thermal History of the Universe and the CMB

In the early Universe, the Universe was denser and hotter, dominated by relativistic particles
and radiation. Because of its high energy, particles and anti-particle pairs are created and
annihilated.[13] In the strictest mathematical sense it is not possible for the Universe to be
in thermal equilibrium, as the FRW cosmological model does not possess a time-like Killing
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vector. For practical purposes, however, the Universe has for much of its history been very
nearly in thermal equilibrium. The key to understanding the thermal history of the Universe is
the comparison of the particle interaction rates and the expansion rate.[14]

At T � 1TeV , inflationary expansion and baryogenesis take place. During this stage, quarks
and gluons are not bound to hadronic states, such that there exist no protons, neutrons, and
so on. The Universe was made of fundamental elementary particles, forming a hot plasma.
At T ≈ 150MeV , the quark–hadron phase transition occurs, confining quarks into hadrons.
At T ≈ 100MeV , pions become non-relativistic and begin to annihilate. From this point on,
protons and neutrons are the only hadronic species left. At T ≈ 1MeV , electrons and positrons
become non-relativistic, annihilating each other. The weak interactions become ineffective, and
the ratio of neutrons to protons is frozen. At T ≈ 0.1MeV , the Big Bang Nucleosynthesis (BBN)
starts, synthesizing protons and neutrons to produce D, He, and a few other heavy elements.
This nuclear fusion is exactly the same as one at the core of stars, but it takes place everywhere
in the Universe. T ≈ 3000K, free electrons and protons recombine to form neutral hydrogen
atoms. The Universe then becomes transparent to photons, and these free-streaming photons
are observed today as the cosmic microwave background (CMB) in a black-body distribution.
[15][16]

In 1965, Arno Penzias and Robert Wilson discovered an isotropic background of microwave
radiation using a microwave antenna at Bell Labs.[17] This microwave background is known as
the Cosmic Microwave Background (CMB). More recently, the Cosmic Background Explorer
(COBE) satellite has revealed that the Cosmic Microwave Background is exquisitely well fitted
by a blackbody spectrum with a temperature T0 = 2.725K. The existence of the CMB is a very
important cosmological clue that the universe has a thermal origin. The existence of blackbody
radiation can be explained by an expanding universe that in the past was in a hot and dense
plasma phase.

We have mentioned that the CMB temperature was about 3000K and the temperature of
the CMB today is 2.725K, a factor of 1100 lower. The drop in temperature of the blackbody
radiation is a direct consequence of the expansion of the universe.[18][19]

4.3 Cold Dark Matter and Cosmological Constant

The discovery of the type Ia supernova 1997ff [20] marked the beginning of a new era in cosmology
and physics. The analysis of the emission of this type of supernova led to the discovery that
our universe is in a state of accelerated expansion. This is not natural to understand because
gravity, as we know it, should attract matter, slowing down the expansion. One possibility is
that there is a new form of matter or rather energy, that acts as an anti-gravitational force.
This is now widely known as Dark Energy (DE), and its nature is still a mystery to us. The
simplest and most successful candidate for DE is the cosmological constant Λ.

Another dark part of our universe is called dark matter. Many observations of different
nature and from different sources at different distance scales point out the existence of the dark
matter. One of these observations is the weak lensing. X-ray maps made by the combination of
X-ray and weak lensing observational techniques [21] show the result of a merging between the
hot gases of two galaxy clusters which gravitational lensing maps reveal to be lagging behind
their respective centers of mass. Therefore, most parts of the clusters simply went through one
another, leaving behind a smaller fraction of hot gas. This is seen as direct empirical proof of
the existence of dark matter forming a massive halo and a gravitational potential well in which
gas and galaxies lie. The observational evidence for dark matter suggests not only that it exists,
but also that it must have negligible pressure or, equivalently, a small velocity of its particles,
much less than the speed of light. Hence Cold Dark Matter (CDM).
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The combined observational successes of Λ and CDM form the so-called ΛCDM model, which
is the standard model of cosmology.[22]

5 Homogeneous and Isotropic Universe

Contemporary cosmological models are based on the idea that the universe is almost the same
everywhere but expands with time which can be related to a manifold that is spatially homoge-
neous and isotropic but evolving in time. Therefore in general relativity this translates into the
statement that the universe can be foliated into spacelike slices such that each three-dimensional
slice is maximally symmetric. Thus we consider our space-time to be R×Σ, where R represents
the time direction and Σ is a maximally symmetric three-manifold. According to the astro-
nomical observation the universe is homogeneous and isotropic on the scales of about 1018 and
larger. If we take the solar system as example the idea that the universe is homogeneous and
isotropic may sounds impossible but on a larger scale it is reasonable to say that. Because on
very large scale the local density variations are averaged over. There are a few observational
evidences for the homogeneity and isotropy of the universe such as the distribution of galaxies;
the isotropy of the distribution of radio sources on the sky and the remarkable isotropy of the
cosmic microwave background (CMB).

5.1 Homogeneity and Isotropy: Maximally Symmetric Space

The homogeneity of a manifold means that the metric is the same throughout the manifold.
Formally it states that given any two points p and q in the manifold, there is an isometry that
takes p into q.

Isotropy applies to specific points in the manifold. It states that the space looks the same in
any direction. The formal definition is that a manifold is isotropic around a point p if, for any
two vectors V and W in the tangent space of the manifold, there is an isometry of the manifold
such that the pushforward of W under the isometry is parallel with V .

Note that there is no relevance between isotropic and homogeneous. A manifold can be
homogeneous but not isotropic around any point or it can be isotropic around a certain point
but not homogeneous. If the manifold is isotropic around a point and it is also homogeneous
then the manifold is isotropic everywhere, thus, homogeneous and isotropic. The observation of
the remarkable isotropy indicates the isotropy of the universe. The Copernican principle states
that humans, on the Earth or in the Solar System, are not privileged observers of the universe.
In other words, there is no reason to believe that we are the center of the universe so what we
observe should be the same everywhere in the universe. Therefore we assume that the universe
is isotropic and homogeneous.

Isotropy indicates that the space is invariant under rotations and homogeneity implies that
the space is invariant under translations. Considering an isotropic and homogeneous space of n
dimensions, the total number of independent translations is simply n and the total number of
independent rotations is 1

2n(n− 1) since there are n axes and for each axis it can rotate in n− 1
other axes, but one axis rotating towards another is the same as the reverse. Therefore, an n
dimensions isotropic and homogeneous space Rn has n + 1

2n(n − 1) = 1
2n(n + 1) independent

symmetries which also implies that the space Rn has 1
2n(n+1) independent Killing vector fields.

Where Killing vector fields are the vector fields that satisfy the Killing’s equation

∇(µKν) = 0. (56)

Every Killing vector implies the existence of conserved quantities associated with geodesic mo-
tion. If there is a vector that satisfies the Killing’s equation it is always possible to find a
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coordinate system in which the metric is independent of some coordinate. Physically it means
the metric is preserved along the direction of the Killing vector. We refer to an n dimensions
space R with 1

2n(n+ 1) independent Killing vector fields as a maximally symmetric space.[1]

Therefore the isotropy and homogeneity of the universe imply that the space of the universe
is maximally symmetric which also implies that the space of the universe has the maximum
possible number of Killing vectors. But note that the universe is maximally symmetric in space
but not in all of the space-time so we should consider the space-time of the universe to be R×Σ,
where R represents the time direction and Σ represents a maximally symmetric three-manifold.

5.2 Maximally Symmetric 3-D Space Metric

For a maximally symmetric space if we know the curvature of one point we are able to know the
curvature everywhere because the curvature is the same everywhere in every direction. Since
the geometry looks the same in every direction the curvature tensor should also look the same
in all directions. For one point P on the maximally symmetric manifold in a locally inertial
coordinate, the metric ĝµ̂ν̂ = ηµ̂ν̂ . Since the locally inertial coordinate is not unique we can
perform a Lorentz transformation at point P and the metric remains to be ηµ̂ν̂ . On the other

hand, in a maximally symmetric space the Riemann curvature tensor R̂ρ̂σ̂µ̂ν̂ at point p is also
unchanged under Lorentz transformations because the geometry looks the same in all directions.
Therefore it is reasonable to guess that the Riemann tensor of a maximally symmetric manifold
at point p somehow relates to the metric in these locally inertial coordinates. Actually, there is
only one possibility

R̂ρ̂σ̂µ̂ν̂(p) = K(ĝρ̂µ̂(p)ĝσ̂ν̂(p)− ĝρ̂ν̂(p)ĝσ̂µ̂(p)) (57)

considering the symmetry properties of the Riemann tensor. This is a tensorial equation so this
must be true in any coordinate and since the manifold is maximally symmetric the Riemann
tensor should be the same at any point. So we have

Rρσµν = K(gρµgσν − gρνgσµ) (58)

Contract both sides once,

gρµRρσµν = K(gρµgρµgσν − gρµgρνgσµ). (59)

The left hand side is the Ricci tensor and the right hand side is K(ngσν − gσν),

Rσν = K(ngσν − gσν). (60)

Contract both sides twice,

gσνgρµRρσµν = K(gσνgρµgρµgσν − gσνgρµgρνgσµ). (61)

The left hand side is simply the Ricci scalar which is a constant over the manifold and the right
hand side is K(n2 − n),

R = K(n2 − n). (62)

Therefore constant K is given by

K =
R

n(n− 1)
(63)

Hence, the geometry of a maximally symmetric manifold is specified by a constant curvature
scalar R.
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Our interest is in maximally symmetric three-dimensional space since we consider the space-
time of the universe to have four dimensions with the time direction and the maximally sym-
metric three-dimensional space. As discussed before the maximally symmetric metric of the
three-dimensional space should obey

(3)Rijkl = K (γikγjl − γilγjk) , (64)

and the Ricci scalar is
(3)Rjl = 2Kgjl (65)

where γij is the three-dimensional metric and K is given by

K =
R

6
, (66)

for n = 3.
A maximally symmetric space is guaranteed to be spherical symmetric and for spherical

symmetric three-dimensional space the metric can be put into the form

dl2 = γijdu
iduj = e2β(r)dr2 + r2dθ2 + r2sin2θdφ2, (67)

so this should also be true in the case of the maximally symmetric space. By calculating the
Ricci tensor we find

(3)Rrr =
2

r
∂rβ = 2Ke2β(r) (68)

(3)Rθθ = e−2β (r∂rβ − 1) + 1 = 2Kr2 (69)

(3)Rφφ =
[
e−2β (r∂rβ − 1) + 1

]
sin2 θ = 2Kr2sin2θ, (70)

and can solve for β(r)

β = −1

2
ln(1−Kr2), (71)

Which gives the metric

dl2 =
dr2

1−Kr2
+ r2dθ2 + r2sin2θdφ2. (72)

K is a constant sets the curvature which can be positive, zero or negative. It is common to
normalize the non-zero values. Do the substitution

r → r√
|K|

, (73)

and set
K|K| = K. (74)

Thus K ∈ {+1, 0,−1} and

dl2 =
1

|K|

(
dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdφ2

)
. (75)

Where 1
|K| is the curvature scalar which sets the physical size of the space. K = +1 corresponds

to the closed space, K = 0 corresponds to the flat space and K = −1 corresponds to the open
space.

Later we will see in the Robertson-Walker (RW) metric we can absorb the physical size into a
scale factor which is a function of time so for convenience we conclude the metric of a maximally
symmetric space as[1]

dl2 =
dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdφ2, K ∈ {+1, 0,−1}. (76)
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5.3 Robertson-Walker Metric

According to the cosmological principle the universe is homogeneous and isotropic on sufficiently
large scales. In other words, the position of the Milky Way in the universe is statistically
equivalent to the position of any other galaxies, and the universe looks statistically the same in
all directions. Despite the cosmological principle being an approximation of our real universe,
we consider in this section a cosmological model where the principle is exact. This cosmology is
maximally symmetric in space but not in time, and is best described by the Robertson-Walker
metric evolving according to Einstein’s equation of General Relativity.

The metric of a spatially maximally symmetric universe expanding over time is given by the
Robertson-Walker (RW) metric:

ds2 = −dt2 +R2(t)

[
dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdφ2

]
, (77)

where the time coordinate t is the cosmic time, and the spherical coordinates r, θ and φ are
called comoving coordinates. Any spatial slices of fixed t are maximally symmetric possessing
six Killing vectors: three for spatial translations and three for spatial rotations. The cosmic time
is hence interpreted as the proper time of a comoving observer who sees the universe spatially
homogeneous and isotropic. The scale factor R(t) is the only degree of freedom of the metric
and it fully specifies the dynamics of the universe since it tells us how the distance between two
points scales with time. The constant K is the spatial curvature and it describes the topology
of the maximally symmetric hypersurface: a negative K describes a hyperbolic space, K = 0
describes a Euclidean space and a positive K describes a spherical space. The spherical space
is compact and is therefore the only topology that admits a maximal radius. A universe with
positive spatial curvature is then called ”close” as opposed to ”open” and ”flat” for the case
with negative and positive curvature respectively.

Considering the transformations

r → r

R(t0)
, K → KR2(t0) , (78)

the RW metric keeps the same form as in Eq. (77) and it allows for a redefinition of the dimen-
sionless scale factor a as

a(t) :=
R(t)

R(t0)
, (79)

under which the RW assumes the standard form

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdφ2

]
. (80)

This metric and its physical implications as a homogeneous and isotropic expanding universe
were first studied by Friedmann in the early 1920s.[23][24] Later, in the mid 1930s[25][26][27]
Robertson and Walker derived it on the basis of isotropy and homogeneity. Lemaitre’s work [28]
had been also essential to develop the RW metric. It turns out that RW metric well describes
our universe, in particular, on cosmological scales our universe looks homogeneous and isotropic
as indicated by the analysis of the Sloan Digital Sky Survey (SDSS)[29] which concluded that
the irregularities in the galaxy density are on the level of a few percent on scales of 100 Mpc.[30]
Moreover, a recent work by Sarkar and Pandey [31] showed that the distribution of quasars
is homogeneous on scales larger than 250h−1Mpc. Despite the deviations from homogeneity
and isotropy being small on such large scales, a remarkable amount of information lies on such
perturbations, and they will be the subject of the next chapter.[32][33]
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5.4 The Friedmann Equations

From the property of maximal symmetry of the spatial slices of fixed cosmic time, it follows that
any cosmic fields defined on the RW space-time are form-invariant under spatial rotations and
translations [32]. Applying this remark to the energy-momentum tensor Tµν , which describes
the matter content of the universe, implies that the only possibility allowed by symmetry is

Tµν(t) = diag(−ρ(t), p(t), p(t), p(t)) , (81)

where ρ can be interpreted as the energy density of a perfect fluid and p as the isotropic pressure.
From the conservation of the energy-momentum tensor ∇µTµν = 0 we find

ρ̇ = −3H(p+ ρ) , (82)

where the dot stands for derivative with respect to time and H is the Hubble rate H := ȧ/a.
The relation between gravity and such energy content is governed by Einstein’s equations Gµν +
Λgµν = 8πGTµν . Given the RW metric, Friedmann equations can be straightforwardly computed
from the Einstein equations. In the case under consideration of the RW metric Einstein’s
equations become[32]

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
,

(
ȧ

a

)2

=
8πG

3
ρ− K

a2
+

Λ

3
, (83)

These equations are known as the Friedmann equations and are ordinary differential equations
that can be solved for the scale factor a(t) once the time evolution of the energy density and
pressures is given.

In the history of the universe, there have been long periods of time where the total energy
density was dominated by one type of component, e.g., radiation or matter. These periods
of time are therefore called radiation dominated era (RDE) and matter dominated era (MDE)
depending on which of these components was dominating.[22] In these cases it is straightforward
to derive the dynamics of the scale factor from the Friedmann equations. Assuming an equation
of state p = wρ for the perfect fluid, we can solve the conservation equation (82) to derive the
scaling of the energy density

ρ(t) ∝ a(t)−3(1+w) , (84)

which scales as a−4 for radiation (w = 1/3) and as a−3 for matter (w = 0). From this scaling, we
immediately conclude that RDE takes place before MDE and the transition happens at matter-
radiation equality. Plugging the solution above for the energy density in the second Friedmann
equation in Eq. (83) we obtain the differential equation(

ȧ

a

)2

∝ a−3(1+w) , (85)

which can be integrated to derive

a ∝ t
2

3(1+w) . (86)

Therefore, we find that in RDE the scale factor evolves as a ∝
√
t and in MDE as a ∝ t2/3. In

the ΛCDM model, dark energy in the form of a cosmological constant is found to be dominating
the energy budget of the universe from red-shift z ≈ 0.5. Repeating the steps above for the
equation of state w = −1 for a cosmological constant we obtain the scaling a ∝ eHt with
constant Hubble rate. As a concluding remark, we note that the dynamics in RDE and MDE
describe an expanding and decelerating universe, while in a dark energy dominated era the
universe accelerates.[1]
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6 Perturbations of the homogeneous universe

Our universe is homogeneous and isotropic on very large cosmological scales, where it can be
described by RW metric. However, the cosmological principle is merely an approximation, which
ignores all the structures present in the universe such as stars, galaxies, and also ourselves. To
describe the real universe we can treat these inhomogeneities on cosmological scales as small
deviations from the perfectly homogeneous universe. In other words, we can use a linearly
perturbed Robertson-Walker metric with perturbations being of order 10−5 as measured in the
CMB temperature anisotropies.[34] Moreover, given the measurement of the Planck data[35] for
the curvature density parameter today ΩK,0 = 0.0008+0.0040

−0.0039, we can safely assume a spatially
flat RW metric plus perturbations.

In this Chapter, we introduce the concept of perturbed RW cosmology and we perform some
of the computations that will prove useful in the following Chapters.

6.1 Robertson-Walker Metric with Perturbations

For a spatially flat universe with K = 0 the RW metric in Eq. (80) takes the form

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) , (87)

where we picked Cartesian coordinates. Instead of working with cosmic time t we introduce a
new time coordinate, the conformal time η, defined by the following relation

η(t) =

∫
dt

a(t)
→ dt = a(η)dη. (88)

such that the flat RW metric becomes

ds2 = a2(η)(−dη2 + dx2 + dy2 + dz2) , (89)

which is nothing but a conformal Minkowski metric. To describe an inhomogeneous universe
with metric gµν we consider the RW metric above as a fictitious background ḡµν , and we define
the perturbations δgµν := gµν − ḡµν . Our convention for the perturbations in a generic metric
is given here

g00 = −a2(1 + 2A), g0a = −a2Ba, gab = a2 (δab + 2Cab) , (90)

with A, Ba, and Cab small perturbations that depend on RW space-time coordinates that can
be decomposed in scalar-vector-tensor under spatial rotations:

A = α Ba = β,a +B(v)
a , Cab = ϕδab + γ,a,b + 2C

(v)
(a,b) + C

(t)
ab (91)

The definition in Eq.(90) is valid at all orders in perturbations, but our computations will be
limited to first order. At first order in perturbations the inverse metric gµν is

g00 =
1

a2
(−1 + 2A), g0a = − 1

a2
Ba, gab =

1

a2

(
δab − 2Cab

)
. (92)

In the following part of this Thesis we will be interested in computing geometric quantities
related to this perturbed universe. The Christoffel symbols defined as

Γµνρ =
1

2
gµσ (gνσ,ρ + gρσ,ν − gνρ,σ) , (93)
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where the comma indicates partial derivative with respect to space-time coordinates, in the
perturbed RW universe become

Γ0
00 =

a′

a
+A′ , Γ0

0a = A,a −
a′

a
Ba , Γa00 = A,a −Ba′ − a′

a
Ba

Γ0
ab =

a′

a
δab − 2

a′

a
δabA+B(a,b) + C ′ab + 2

a′

a
Cab , Γa0b =

a′

a
δab +

1

2

(
B ,a
b −B

a
,b

)
+ Ca′b ,

Γabc =
a′

a
δbcB

a + Cab,c + Cac,b − C
,a

bc (94)

From the Christoffel symbols we can compute the Riemann tensor defined as

Rµνρσ = Γµνσ,ρ − Γµνρ,σ + ΓενσΓµρε − ΓενρΓ
µ
σε , (95)

that at first order in perturbations is

R0
000 = 0 , Ra000 = 0 , R0

b00 = 0 , Rab00 = 0 , R0
0ab = 0

R0
0a0 = −R0

00a = H′Ba

Ra0b0 = −Ra00b = −H′δab +HA′δab +A,ab −
1

2

(
B ,a
b +Ba

,b

)′ − 1

2
H
(
B ,a
b +Ba

,b

)
− Ca′′b −HCa′b

R0
a0b = −R0

ab0 = H′δab −
[
HA′ + 2H′A

]
δab −A,ab +B′(a,b) +HB(a,b) + C ′′ab +HC ′ab + 2H′Cab

R0
abc = 2Hδa[bA,c] +

1

2
(Bc,ab −Bb,ac)− 2C ′a[b,c]

Ra0bc = Ra0bc = 2Hδa[bA,c] −B
,a

[b ,c] +Ba
,[bc] − 2H2δa[bBc] − 2Ca′[b,c]

Rab0c = −Rabc0 = H (δbcA
,a − δacA,b) +H′δbcBa −H2 (δbcB

a − δacBb)

− 1

2

(
B ,a
b −B

a
,b

)
,c

+ Ca′c,b − C
′ ,α
bc

Rabcd = H2 (δac δbd − δadδbc) (1− 2A)

+
1

2
H
[
δbd
(
B ,a
c +Ba

,c

)
− δbc

(
B ,a
d +Ba

,d

)
+ 2δacB(b,d) − 2δadB(b,c)

]
+H

[
δbdC

a′
c − δbcCa′d + δacC

′
bd − δadC ′bc + 2H (δacCbd − δadCbc)

]
+ 2Ca(b,d),c − 2Ca(b,c),d + C ,a

bc ,d − C
,α

bd ,c

(96)
The expressions for the linear-order Christoffel symbols and Riemann tensor above are com-

puted in a generic gauge. However, depending on the problem under consideration it could
be more convenient to work in a specific gauge. In cosmological perturbation theory, a gauge
transformation is induced by a change of coordinates in the inhomogeneous universe

xµ → x̃µ(x) = xµ + ξµ(x) , (97)

where ξµ is the generator of the small gauge transformation and it can be treated as a perturba-
tion. The coordinate transformation induces a tensorial transformation of the metric components
gµν(x)→ g̃µν(x̃) such that

gαβ(x) =
∂x̃µ

∂xα
∂x̃ν

∂xβ
g̃µν(x̃) , (98)

with gµν(x) and g̃µν(x̃) describing the same physics due to the diffeomorphism symmetry of
Einstein’s theory of General Relativity. At first order in perturbations, we derive the gauge
transformation of the metric components[1]

δ̃gµν(x) = δgµν(x)− 2ξ(µ;ν)(x) , (99)
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where the semicolon denotes the covariant derivative. Based on this equation, given a choice of
the gauge field ξµ, we can set up to four functions in the metric perturbations to zero. One of
the most popular gauges is the Newtonian gauge, obtained by setting the perturbations β and
γ to zero

ds2 = −a2(1 + 2α)dη2 + a2(1 + 2ϕ)(dx2 + dy2 + dz2) , (100)

where the potentials α and ϕ are related to the Newtonian potentials when taking the Newtonian
limit of General Relativity.

The general covariance of general relativity guarantees that any coordinate system can be
used to describe the physics and it has to be independent of coordinate systems. This is known
as the diffeomorphism symmetry in general relativity. However, when we split the metric into
the background and the perturbations around it by choosing a coordinate system, we explic-
itly change the correspondence of the physical Universe to the background homogeneous and
isotropic Universe. Hence, the metric perturbations transform non-trivially (or gauge trans-
form), and the diffeomorphism invariance implies that the physics should be gauge-invariant.
We conclude by saying that there exist other ways to exploit the diffeomorphism symmetry of
General Relativity by performing coordinate transformations that are not gauge transformations.
These coordinate transformations do not assume that a splitting of the metric in background
plus perturbations has been defined, and are hence valid independently of the chosen gauge.
The next sections are devoted to such coordinate transformations and are the main focus of this
thesis.[10]

Part IV

Fermi-Normal Coordinates

In Part II we have mentioned that it is always possible to find coordinates locally in which the
metric looks like the metric of the Minkowski space-time to the first order. These coordinates
are called locally inertial coordinates but we have not constructed any of these coordinates.

In 1922 Fermi showed that, given any curve in a Riemannian manifold, it is possible to
introduce coordinates near this curve in such a way that the Christoffel symbols vanish along
the curve, leaving the metric there rectangular.[36] If we specialize to the case where the curve
is a geodesic, and choose a particular set of coordinates that satisfies the condition that along
the curve the Christoffel symbols vanish, the resulting coordinates are called Fermi-Normal
Coordinates because of an analogy to the Riemann normal coordinates.[37]

7 Basic Formalism and Analytical Formula

Let us first construct the Fermi-Normal coordinates. Consider a free-falling observer, whose
trajectory is a time-like geodesic xµ(τ) parameterized by its proper time, which we call the
central geodesic and it defines the spatial origin of the coordinate system at all times. We
take the proper time τ along the central geodesic as the time coordinate. Then choose four
orthonormal vectors (or tetrads) [et]

µ (τ) and [ei]
µ (τ) on a point P on the geodesic. The four-

velocity of the free-falling observer uµ defines the time direction

[et]
µ = uµ =

∂xµ

∂τ
(101)
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We then choose an orthonormal set of spatial basis vectors [ei]
µ to fix the coordinate axes there

such that the metric on point P on the geodesic is in the normal form ηµν . The orthonormal
condition for the tetrads is

− 1 = [et]
µ [et]

ν gµν , δij = [ei]
µ [ej ]

ν gµν (102)

Since [et]
µ is the tangent vector of the geodesic it is parallel transported along the geodesic by

the definition of the geodesic. The three space-like tetrads [ei]
µ are also defined all along the

geodesic by parallel transporting them. Which implies

[ei]
µ
;τ = 0 (103)

Since parallel transport preserves angles the metric in the coordinate fixed by the four tetrads
is ηµν all along the geodesic.

At the point P along the time like geodesic, consider another point Q with definite proper
distance sQ (fixed value) that is uniquely connected by another space like geodesic xµ(s) from
xµ(s = 0) = P . The spatial tangent vectors of the space like geodesic at point P can be written
as the linear combination of the spatial basis vectors

dxµ

ds

∣∣∣∣
s=0

= ai [ei]
µ (104)

Now do the Taylor’s expansion of xµ(sQ) for small sQ around s = 0, xµ(sQ) can be expanded
as

xµ (sQ) = xµ(0) + sQ
dxµ(s)

ds

∣∣∣∣
0

+
1

2
s2Q
d2xµ(s)

ds2

∣∣∣∣
0

+
1

6
s3Q
d3xµ(s)

ds3

∣∣∣∣
0

(105)

Further define

xiF = aisQ, (106)

so that xµ(sQ) can be written as

xµQ =P + [ei]
µ
P x

i
F −

1

2
Γµαβ

∣∣∣∣
P

[ei]
α
P [ej ]

β
P x

i
Fx

j
F

− 1

6

[
Γµαβ,γ − 2ΓµσαΓσβγ

]
P

[ei]
α
P [ej ]

β
P [ek]

γ
P x

i
Fx

j
Fx

k
F

(107)

Where we have use the geodesic equation.

To compute the metric in the FNC, we need to compute the derivatives of the coordinate
transformation:

∂xµ

∂x0F
(Q) =

∂xµ

∂x0F
(P ) +

∂

∂x0F

(
[ei]

µ
P

)
xiF −

1

2

∂

∂x0F

[
Γµαβ

∣∣∣
P

[ei]
α
P [ej ]

β
P

]
xiFx

j
F +O

(
x3F
)

= [et]
µ
P − Γµαβ

∣∣∣
P

[ei]
α
P [et]

β
P x

i
F −

1

2

[
Γµαβ,γ − 2ΓµσβΓσγα

]
P

[et]
γ
P [ei]

α
P [ej ]

β
P x

i
Fx

j
F

(108)
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The spatial derivatives are:

∂xµ

∂xlF
(Q) =

∂xµ

∂xlF
(P ) +

∂

∂xlF

(
[ei]

µ
P x

i
F

)
− 1

2

∂

∂xlF

(
Γµαβ

∣∣∣
P

[ei]
α
P [ej ]

β
P x

i
Fx

j
F

)
− 1

6

∂

∂xlF

([
Γµαβ,γ − 2ΓµσαΓσβγ

]
P

[ei]
α
P [ej ]

β
P [ek]

γ
P x

i
Fx

j
Fx

k
F

)
= 0 + [el]

µ
P − Γµαβ

∣∣∣
P

[ei]
α
P [el]

β
P x

i
F −

1

6

[
Γµαβ,γ − 2ΓµσαΓσβγ

]
P[

[el]
α
P [ej ]

β
P [ek]

γ
P x

j
Fx

k
F + [ei]

α
P [el]

β
P [ek]

γ
P x

i
Fx

k
F + [ei]

α
P [ej ]

β
P [el]

γ
P x

i
Fx

j
F

]
= [el]

µ
P − Γµαβ

∣∣∣
P

[ei]
α
P [el]

β
P x

i
F

− 1

6

[
Γµαβ,γ + 2Γµγα,β − 2ΓµσγΓσαβ − 4ΓµσβΓσγα

]
P

[ei]
α
P [ej ]

β
P [el]

γ
P x

i
Fx

j
F

(109)

Expand global metric at Q around P :

gαβ(Q) = gαβ|P + gαβ,µ|P [xµQ − x
µ
P ] +

1

2
gαβ,µν

∣∣∣∣
P

[xµQ − x
µ
P ][xνQ − xνP ]

= gαβ|P + gαβ,µ|P [ei]
µ
P x

i
F +

1

2

[
gαβ,µν − gαβ,σΓσµν

]
P

[ei]
µ
P [ej ]

ν
P x

i
Fx

j
F

(110)

The FNC metric at Q can be calculated now with gFµν(Q) = ∂xα

∂xµF

∂xβ

∂xνF
gαβ(Q).

gF00(Q) = [et]
α
P [et]

β
P gαβ +

(
gαβ,ρ − gσβΓσρα − gασΓσρβ

)
P

[et]
α
P [et]

β
P [ei]

ρ
P x

i
F

+

(
1

2
gµν,αβ −

1

2
gµν,σΓσαβ − 2gµγ,αΓγβν − gµγΓγαβ,ν + 2gµγΓγσβΓσνα + gγσΓγαµΓσβν

)
P

[et]
µ
P [et]

ν
P [el]

α
P [em]βP x

l
Fx

m
F

= η00 −RF0l0mxlFxmF
(111)

gF0a(Q) = [et]
α
P [ea]

β
P gαβ +

(
gαβ,ρ − gσβΓσρα − gασΓσρβ

)
P

[et]
α
P [ea]

β
P [ei]

ρ
P x

i
F

+

[
1

2
gµν,αβ −

1

2
gµν,σΓσαβ − gµγ,αΓγβν − gνγ,αΓγβµ −

1

2
gνγΓγαβ,µ + gνγΓγσαΓσµβ + gγσΓγαµΓσβν

−1

6
gµλ

(
Γλαβ,ν + 2Γλνα,β − 2ΓλσνΓσαβ − 4ΓλσβΓσαν

)]
P

[et]
µ
P [ea]

ν
P [el]

α
P [em]βP x

l
Fx

m
F

= η0a −
2

3
RF0lamx

l
Fx

m
F

(112)

gFab(Q) = [ea]
α
P [eb]

β
P gαβ +

(
gαβ,ρ − gσβΓσρα − gασΓσρβ

)
P

[ea]
α
P [eb]

β
P [ei]

ρ
P x

i
F

+

[
1

2
gµv,αβ −

1

2
gµv,σΓσαβ − 2gµγ,αΓγvβ + gγσΓγαµΓσβv

−1

3
gµλ

(
Γλαβ,v + 2Γλvα,β − 2ΓλσvΓ

σ
αβ − 4ΓλσβΓσαv

)]
P

[ea]
µ
P [eb]

v
P [el]

α
P [em]βP x

l
Fx

m
F

= ηab −
1

3
RFalbmx

l
Fx

m
F

(113)

Therefore, we conclude that
gFµν = ηµν +O(RFµlνmx

l
Fx

m
F ). (114)

Where
RFαβγδ = [eα]µP [eβ]νP [eγ ]κP [eδ]

λ
P Rµνκλ (115)
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is the Riemann tensor at point P in FNC.

In this way we have constructed a coordinate system in which the coordinate axes are fixed by
the four tetrads defined along the time-like geodesic of a free-falling observer and the components
of the coordinate for a point near the central geodesic are defined by the proper distance. FNC
is the inertial coordinate that a free-falling observer would set in a neighborhood around them
all along the geodesic. On the geodesic the metric gFµν is exactly ηµν and for the point in the
neighborhood the metric is the Minkowski one plus some deviations.[38]

8 Linear Order Calculations

We have now constructed the Fermi normal coordinates on an arbitrary manifold with any global
coordinate but the universe is described by the Robertson-Walker metric with perturbations.
Therefore, we would like to use the perturbated Robertson-Walker metric as the global metric
and then apply the Fermi normal coordinates.

First, we find the four tetrads in the Robertson-Walker metric. Since the universe is only
homogeneous and isotropic to the comoving observer whose four-velocity is given by uµ =
1
a(1, 0, 0, 0) and a comoving observer is a free-falling observer we would like to use the time-like
geodesic of the comoving observer as the central geodesic. Therefore, the tetrad of the time
direction is simply

[ēt]
µ =

1

a
(1, 0, 0, 0). (116)

The spatial directions can be arbitrary. For convenience, however, we fix the spatial symmetry
by aligning the spatial tetrads directions with the coordinate directions used in the Robertson-
Walker metric in a homogeneous and isotropic universe as

[ēi]
µ =

1

a
(0, δai ). (117)

However, the real universe is not perfectly homogeneous and isotropic so the free-falling
geodesic will have some small deviations from the one of the perfectly homogeneous and isotropic
universe. Therefore, the tetrads will not align with the coordinate directions used in the
Robertson-Walker metric anymore. We need to consider small perturbations on the tetrads,
the tetrads with perturbations can be written as

[et]
µ =

1

a
(1−A, V a) , (118)

and

[ei]
µ =

1

a

(
Vi −Bi, δai − Cai − εaijΩj

)
. (119)

Where V a is the spatial velocity and Ωj is the rotation of spatial axis.[39]

8.1 The coordinates xµQ(x
i
F ) of the point Q

We have introduced the perturbations terms into the background metric and we have written
down the four orthonormal tetrads [eα]µ with perturbations. Now we are prepared to derive
the expression for the global coordinate xµQ at the point Q in terms of Fermi coordinates up to

O
(
x3F
)
.
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We have calculated in section 7 that

xµQ = P + [ei]
µ
P x

i
F −

1

2
Γµαβ

∣∣∣∣
P

[ei]
α
P [ej ]

β
P x

i
Fx

j
F

−1

6

[
Γµαβ,γ − 2ΓµσαΓσβγ

]
P

[ei]
α
P [ej ]

β
P [ek]

γ
P x

i
Fx

j
Fx

k
F (120)

Where the tetrads are those with perturbations defined before and the Christoffel symbols are
based on the perturbed Roberston-Walker metric which has been calculated in section 6.

Now we will calculate all the components of the coordinates xµQ. First we find the time

component x0Q.

x0Q = x0P + [ei]
0
P x

i
F −

1

2
Γ0
αβ

∣∣∣∣
P

[ei]
α
P [ej ]

β
P x

i
Fx

j
F

−1

6

[
Γ0
αβ,γ − 2Γ0

σαΓσβγ
]
P

[ei]
α
P [ej ]

β
P [ek]

γ
P x

i
Fx

j
Fx

k
F , (121)

we then expand the term quadratic in Fermi coordinates as follows

− 1

2
Γ0
αβ

∣∣∣∣
P

[ei]
α
P [ej ]

β
P x

i
Fx

j
F

= −1

2

{
Γ0
00 [ei]

0 [ej ]
0 + Γ0

a0 [ei]
a [ej ]

0 + Γ0
0b [ei]

0 [ej ]
b + Γ0

ab [ei]
a [ej ]

b
}
xiFx

j
F

= − 1

2a2

(
a′

a
δab − 2

a′

a
δabA+B(a,b) + C ′ab + 2

a′

a
Cab

)(
δai − Cai − εailΩl

)(
δbj − Cbj − εbjlΩl

)
xiFx

j
F

= − 1

2a2

[
a′

a
δab(δ

a
i − Cai − εailΩl)δbj +

a′

a
δabδ

a
i (−Cbj − εbjlΩl)+(

−2
a′

a
δabA+B(a,b) + C ′ab + 2

a′

a
Cab

)
δai δ

b
j

]
xiFx

j
F

= − 1

2a2

[
a′

a

(
δij − Cij − εjilΩl

)
+
a′

a

(
−Cij − εijlΩl

)
− 2

a′

a
δijA+B(i,j) + C ′ij + 2

a′

a
Cij

]
xiFx

j
F

= − 1

2a2
[
Hδij − 2HδijA+B(i,j) + C ′ij

]
xiFx

j
F , (122)

and for the two terms cubic in the Fermi coordinates we obtain

Γ0
αβ,γ [ei]

α [ej ]
β [ek]

γ xiFx
j
Fx

k
F

=
{

Γ0
00,0 [ei]

0 [ej ]
0 [ek]

0 + Γ0
a0,0 [ei]

a [ej ]
0 [ek]

0 + Γ0
0b,0 [ei]

0 [ej ]
b [ek]

0 + Γ0
00,c [ei]

0 [ej ]
0 [ek]

c

+Γ0
ab,0 [ei]

a [ej ]
b [ek]

0 + Γ0
a0,c [ei]

a [ej ]
0 [ek]

c + Γ0
0b,c [ei]

0 [ej ]
b [ek]

c + Γ0
ab,c [ei]

a [ej ]
b [ek]

c
}

xiFx
j
Fx

k
F

=
1

a3

[
H′δabδai δbj(Vk −Bk) + (−2HδabA,c +B(a,b),c + C ′ab,c + 2HCab,c)δai δbjδck

]
xiFx

j
Fx

k
F

=
1

a3
[
H′δij(Vk −Bk)− 2HδijA,k +B(i,j),k + C ′ij,k + 2HCij,k

]
xiFx

j
Fx

k
F (123)
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and

− 2Γ0
σαΓσβγ [ei]

α [ej ]
β [ek]

γ xiFx
j
Fx

k
F

= −2
{

Γ0
σ0Γ

σ
00 [ei]

0 [ej ]
0 [ek]

0 + Γ0
σaΓ

σ
00 [ei]

a [ej ]
0 [ek]

0 + Γ0
σ0Γ

σ
b0 [ei]

0 [ej ]
b [ek]

0

+Γ0
σ0Γ

σ
0c [ei]

0 [ej ]
0 [ek]

c + Γ0
σaΓ

σ
b0 [ei]

a [ej ]
b [ek]

0 + Γ0
σaΓ

σ
0c [ei]

a [ej ]
0 [ek]

c + Γ0
σ0Γ

σ
bc [ei]

0 [ej ]
b [ek]

c

+Γ0
σaΓ

σ
bc [ei]

a [ej ]
b [ek]

c
}
xiFx

j
Fx

k
F

= −2
{

Γ0
0aΓ

0
b0 [ei]

a [ej ]
b [ek]

0 + Γ0
daΓ

d
b0 [ei]

a [ej ]
b [ek]

0 + Γ0
0aΓ

0
0c [ei]

a [ej ]
0 [ek]

c

+Γ0
daΓ

d
0c [ei]

a [ej ]
0 [ek]

c + Γ0
00Γ

0
bc [ei]

0 [ej ]
b [ek]

c + Γ0
d0Γ

d
bc [ei]

0 [ej ]
b [ek]

c + Γ0
0aΓ

0
bc [ei]

a [ej ]
b [ek]

c

+Γ0
daΓ

d
bc [ei]

a [ej ]
b [ek]

c
}
xiFx

j
Fx

k
F

= −2
1

a3

[
HδdaHδdb δai δbj(Vk −Bk) +HδdaHδdc δai δck(Vj −Bj) +HHδbc(Vi −Bi)δbjδck

+(A,a −HBa)Hδbcδai δbjδck +Hδda(HδbcBd + Cdb,c + Cdc,b − C
,d

bc )δai δ
b
jδ
c
k

]
xiFx

j
Fx

k
F

=
1

a3
[
−6H2δij(Vk −Bk)− 2HδjkA,i + 2H2δjkBi − 2H2δjkBi − 2HCij,k − 2HCik,j

+2HCjk,i]xiFx
j
Fx

k
F

=
1

a3
[
−6H2δij(Vk −Bk)− 2HδjkA,i − 2HCij,k

]
xiFx

j
Fx

k
F

(124)
Thus, the third order term is

− 1

6

[
Γ0
αβ,γ − 2Γ0

σαΓσβγ
]

[ei]
α [ej ]

β [ek]
γ xiFx

j
Fx

k
F

= − 1

6a3
[
H′δij(Vk −Bk)− 2HδijA,k +B(i,j),k + C ′ij,k + 2HCij,k − 6H2δij(Vk −Bk)

−2HδjkA,i − 2HCij,k]xiFx
j
Fx

k
F

= − 1

6a3
[
H′δij(Vk −Bk)− 6H2δij(Vk −Bk)− 4HδijA,k +B(i,j),k + C ′ij,k

]
xiFx

j
Fx

k
F

(125)

Finally we get the expansion of x0Q in terms of the Fermi normal coordinate as

x0Q =x0P +
1

a
(Vi −Bi)xiF −

1

2a2
[
Hδij − 2HδijA+B(i,j) + C ′ij

]
xiFx

j
F

− 1

6a3
[
H′δij(Vk −Bk)− 6H2δij(Vk −Bk)− 4HδijA,k +B(i,j),k + C ′ij,k

]
xiFx

j
Fx

k
F

(126)

Then we find the spatial components xlQ

xlQ =xlP + [ei]
l
P x

i
F −

1

2
Γlαβ

∣∣∣∣
P

[ei]
α
P [ej ]

β
P x

i
Fx

j
F

− 1

6

[
Γlαβ,γ − 2ΓlσαΓσβγ

]
P

[ei]
α
P [ej ]

β
P [ek]

γ
P x

i
Fx

j
Fx

k
F

(127)

The first order term is

[ei]
l
P x

i
F =

1

a
(δli − C li − εl ihΩh)xiF (128)
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The second order term is

− 1

2
Γlαβ

∣∣∣∣
P

[ei]
α
P [ej ]

β
P x

i
Fx

j
F

= −1

2

{
Γl00 [ei]

0 [ej ]
0 + Γla0 [ei]

a [ej ]
0 + Γl0b [ei]

0 [ej ]
b + Γlab [ei]

a [ej ]
b
}
xiFx

j
F

= − 1

2a2

[
Hδlaδai (Vj −Bj) +Hδlbδbj(Vi −Bi) + (HδabBl + C la,b + C la,b − C

,l
ab )δai δ

b
j

]
xiFx

j
F

= − 1

2a2

[
Hδli(Vj −Bj) +Hδlj(Vi −Bi) +HδijBl + C li,j + C li,j − C

,l
ij

]
xiFx

j
F

= − 1

2a2

[
2Hδli(Vj −Bj) +HδijBl + C li,j + C li,j − C

,l
ij

]
xiFx

j
F

(129)

To compute the third order term by parts, the first term is

Γlαβ,γ [ei]
α [ej ]

β [ek]
γ xiFx

j
Fx

k
F

=
{

Γl00,0 [ei]
0 [ej ]

0 [ek]
0 + Γla0,0 [ei]

a [ej ]
0 [ek]

0 + Γl0b,0 [ei]
0 [ej ]

b [ek]
0 + Γl00,c [ei]

0 [ej ]
0 [ek]

c

+Γlab,0 [ei]
a [ej ]

b [ek]
0 + Γla0,c [ei]

a [ej ]
0 [ek]

c + Γl0b,c [ei]
0 [ej ]

b [ek]
c + Γlab,c [ei]

a [ej ]
b [ek]

c
}

xiFx
j
Fx

k
F

=
1

a3

[(
HδabBl

,c + C la,bc + C lb,ac − C
,l

ab,c

)
δai δ

b
jδ
c
k

]
xiFx

j
Fx

k
F

=
1

a3

(
HδijBl

,k + C li,jk + C lj,ik − C
,l

ij,k

)
xiFx

j
Fx

k
F

(130)

26



Linear Order Calculations Yiwen Huang

and the second term is

− 2ΓlσαΓσβγ [ei]
α [ej ]

β [ek]
γ xiFx

j
Fx

k
F

= −2
{

Γlσ0Γ
σ
00 [ei]

0 [ej ]
0 [ek]

0 + ΓlσaΓ
σ
00 [ei]

a [ej ]
0 [ek]

0 + Γlσ0Γ
σ
b0 [ei]

0 [ej ]
b [ek]

0

+Γlσ0Γ
σ
0c [ei]

0 [ej ]
0 [ek]

c + ΓlσaΓ
σ
b0 [ei]

a [ej ]
b [ek]

0 + ΓlσaΓ
σ
0c [ei]

a [ej ]
0 [ek]

c + Γlσ0Γ
σ
bc [ei]

0 [ej ]
b [ek]

c

+ΓlσaΓ
σ
bc [ei]

a [ej ]
b [ek]

c
}
xiFx

j
Fx

k
F

= −2
{

Γl0aΓ
0
b0 [ei]

a [ej ]
b [ek]

0 + ΓldaΓ
d
b0 [ei]

a [ej ]
b [ek]

0 + Γl0aΓ
0
0c [ei]

a [ej ]
0 [ek]

c

+ΓldaΓ
d
0c [ei]

a [ej ]
0 [ek]

c + Γl00Γ
0
bc [ei]

0 [ej ]
b [ek]

c + Γld0Γ
d
bc [ei]

0 [ej ]
b [ek]

c + Γl0aΓ
0
bc [ei]

a [ej ]
b [ek]

c

+ΓldaΓ
d
bc [ei]

a [ej ]
b [ek]

c
}
xiFx

j
Fx

k
F

= −2
1

a3

[
(Hδla +

1

2

(
B ,l
a −Bl

,a

)
+ C l′a )(Hδbc − 2HδbcA+B(b,c) + C ′bc + 2HCbc)

(δai − Cai − εaihΩh)(δbj − Cbj − εbjhΩh)(δck − Cck − εckhΩh)
]
xiFx

j
Fx

k
F

= −2
1

a3

[
H2δlaδbcδ

a
i δ
b
jδ
c
k + (

1

2

(
B ,l
a −Bl

,a

)
+ C l′a )Hδbcδai δbjδck

+Hδla(−2HδbcA+B(b,c) + C ′bc + 2HCbc)δai δbjδck +H2δlaδbc(−Cai − εaihΩh)δbjδ
c
k

+H2δlaδbcδ
a
i δ
c
k(−Cbj − εbjhΩh) +H2δlaδbcδ

a
i δ
b
j(−Cck − εckhΩh)

]
xiFx

j
Fx

k
F

= −2
1

a3

[
H2δliδjk +Hδjk(

1

2
B ,l
i −

1

2
Bl

,i + C l′i )− 2H2δliδjkA+Hδli(B(j,k) + C ′jk + 2HCjk)

+H2δjk(−C li − εl ihΩh) +H2δli(−Cjk − εkjhΩh) +H2δli(−Cjk − εjkhΩh)
]
xiFx

j
Fx

k
F

=
1

a3

[
−2H2δliδjk(1− 2A)−Hδjk(B ,l

i −B
l
,i + 2C l′i )− 4H2δliCjk −Hδli(2B(j,k) + 2C ′jk)

+2H2δjk(C
l
i + εl ihΩh) + 4H2δliCjk

]
xiFx

j
Fx

k
F

(131)
Thus the third order term is

− 1

6

[
Γlαβ,γ − 2ΓlσαΓσβγ

]
P

[ei]
α
P [ej ]

β
P [ek]

γ
P x

i
Fx

j
Fx

k
F

=
1

6a3

{
H2[−2δliδjk(1− 2A) + 2δjk(C

l
i + εl ihΩh)]

+H[δjk(−B ,l
i +Bl

,i − 2C l′i )− δli(2B(j,k) + 2C ′jk) + δijB
l
,k] + C li,jk + C lj,ik − C

,l
ij,k

}
xiFx

j
Fx

k
F

=
1

6a3

{
H2[−2δliδjk(1− 2A) + 2δjk(C

l
i + εl ihΩh)]

+H[δjk(−B ,l
i + 2Bl

,i − 2C l′i )− δli(2B(j,k) + 2C ′jk)] + C li,jk + C lj,ik − C
,l

ij,k

}
xiFx

j
Fx

k
F

(132)
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Finally we get:

xlQ =xlP +
1

a
(δli − C li − εl ihΩh)xiF −

1

2a2

[
2Hδli(Vj −Bj) +HδijBl + C li,j + C li,j − C

,l
ij

]
xiFx

j
F

+
1

6a3

{
H2[−2δliδjk(1− 2A) + 2δjk(C

l
i + εl ihΩh)]

+H[δjk(−B ,l
i + 2Bl

,i − 2C l′i )− δli(2B(j,k) + 2C ′jk)] + C li,jk + C lj,ik − C
,l

ij,k

}
xiFx

j
Fx

k
F

(133)
We have calculated the Taylor expansion of the coordinates of a point Q near point P on a
timelike geodesic. If we set all the perturbation terms to 0 then the results are reduced to the
non-perturbed Robertson-Walker space-time case.

8.2 Derivative terms ∂xµ

∂xαF
(Q)

To compute the metric in the FNC, we need to compute the derivatives of the coordinate
transformation gFµν(Q) = ∂xα

∂xµF

∂xβ

∂xνF
gαβ(Q). We have calculated all the derivative terms in section

7. Again we bring in the tetrads and Christoffel symbols based on the perturbed Robertson-
Walker metric. The 00 component is

∂x0

∂x0F
(Q) = [et]

0
P − Γ0

αβ

∣∣
P

[ei]
α
P [et]

β
P x

i
F −

1

2

[
Γ0
αβ,γ − 2Γ0

σβΓσγα
]
P

[et]
γ
P [ei]

α
P [ej ]

β
P x

i
Fx

j
F (134)

The zeroth order term is

[et]
0 =

1

a
(1−A) (135)

The first order term is

Γ0
αβ [ei]

α [et]
β xiF =

{
Γ0
00 [ei]

0 [et]
0 + Γ0

a0 [ei]
a [et]

0 + Γ0
0b [ei]

0 [et]
b + Γ0

ab [ei]
a [et]

b
}
xiF

=
1

a2

[
H(Vi −Bi) + (A,a −HBa)δai +Hδabδai V b

]
xiF

=
1

a2
[H(Vi −Bi) +A,i −HBi +HVi]xiF

=
1

a2
[2H(Vi −Bi) +A,i]x

i
F

(136)
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Calculate the second order term by parts, the first term is

Γ0
αβ,γ [et]

γ [ei]
α [ej ]

β xiFx
j
F

=
{

Γ0
00,0 [et]

0 [ei]
0 [ej ]

0 + Γ0
a0,0 [et]

0 [ei]
a [ej ]

0 + Γ0
0b,0 [et]

0 [ei]
0 [ej ]

b + Γ0
00,c [et]

c [ei]
0 [ej ]

0

+Γ0
ab,0 [et]

0 [ei]
a [ej ]

b + Γ0
a0,c [et]

c [ei]
a [ej ]

0 + Γ0
0b,c [et]

c [ei]
0 [ej ]

b + Γ0
ab,c [et]

c [ei]
a [ej ]

b
}
xiFx

j
F

=
1

a3

{
Γ0
ab,0 [et]

0 [ei]
a [ej ]

b
}
xiFx

j
F

=
1

a3

[
H′δab − 2H′δabA− 2HδabA′ +B′(a,b) + C ′′ab + 2H′Cab + 2HC ′ab

]
(1−A)(δai − Cai − εaihΩh)(δbj − Cbj − εbjhΩh)xiFx

j
F

=
1

a3

[
H′δabδai δbj + (−2H′δabA− 2HδabA′ +B′(a,b) + C ′′ab + 2H′Cab + 2HC ′ab)δai δbj

+H′δab(−A)δai δ
b
j +H′δab(−Cai − εaihΩh)δbj +H′δabδai (−Cbj − εbjhΩh)

]
xiFx

j
F

=
1

a3

[
H′δij − 2H′δijA− 2HδijA′ +B′(i,j) + C ′′ij + 2H′Cij + 2HC ′ij −H′δijA

−H′Cij −H′εjihΩh −H′Cij −H′εijhΩh
]
xiFx

j
F

=
1

a3

[
H′δij − 3H′δijA− 2HδijA′ + 2HC ′ij +B′(i,j) + C ′′ij

]
xiFx

j
F

(137)
and the second term is

− 2Γ0
σβΓσγα [et]

γ [ei]
α [ej ]

β xiFx
j
F

= −2
{

Γ0
σ0Γ

σ
00 [et]

0 [ei]
0 [ej ]

0 + Γ0
σbΓ

σ
00 [et]

0 [ei]
0 [ej ]

b + Γ0
σ0Γ

σ
c0 [et]

c [ei]
0 [ej ]

0

+Γ0
σ0Γ

σ
0a [et]

0 [ei]
a [ej ]

0 + Γ0
σbΓ

σ
0a [et]

0 [ei]
a [ej ]

b + Γ0
σbΓ

σ
c0 [et]

c [ei]
0 [ej ]

b

+Γ0
σ0Γ

σ
ca [et]

c [ei]
a [ej ]

0 + Γ0
σbΓ

σ
ca [et]

c [ei]
a [ej ]

b
}
xiFx

j
F

= −2
{

Γ0
0bΓ

0
00 [et]

0 [ei]
0 [ej ]

b + Γ0
dbΓ

d
00 [et]

0 [ei]
0 [ej ]

b + Γ0
00Γ

0
0a [et]

0 [ei]
a [ej ]

0

+Γ0
d0Γ

d
0a [et]

0 [ei]
a [ej ]

0 + Γ0
0bΓ

0
0a [et]

0 [ei]
a [ej ]

b + Γ0
dbΓ

d
0a [et]

0 [ei]
a [ej ]

b

+Γ0
0bΓ

0
ca [et]

c [ei]
a [ej ]

b + Γ0
dbΓ

d
ca [et]

c [ei]
a [ej ]

b
}
xiFx

j
F

= − 2

a3

[
(Hδdb − 2HδdbA+B(d,b) + C ′db + 2HCdb)(Hδda +

1

2
B ,d
a −

1

2
Bd

,a + Cd′a )

(1−A)(δai − Cai − εaihΩh)(δbj − Cbj − εbjhΩh)
]
xiFx

j
F

= − 2

a3

[
H2δdbδ

d
aδ
a
i δ
b
j + (−2HδdbA+B(d,b) + C ′db + 2HCdb)Hδdaδai δbj

+Hδdb(
1

2
B ,d
a −

1

2
Bd

,a + Cd′a )δai δ
b
j −H2δdbδ

d
aδ
a
i δ
b
jA+H2δdbδ

d
a(−Cai − εaihΩh)δbj

+H2δdbδ
d
aδ
a
i (−Cbj − εbjhΩh)

]
xiFx

j
F

=
1

a3
[
−2H2δij + 4H2δijA− 2HB(i,j) − 2HC ′ij − 4H2Cij −HBi,j +HBj,i − 2HC ′ij

+2H2δijA+ 2H2Cij + 2H2εjihΩh + 2H2Cij + 2H2εijhΩh
]
xiFx

j
F

=
1

a3
[
−2H2δij + 6H2δijA− 2HBi,j − 4HC ′ij

]
xiFx

j
F

(138)
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Finally we get:

∂x0

∂x0F
(Q) =

1

a
(1−A)− 1

a2
[2H(Vi −Bi) +A,i]x

i
F

− 1

a3
[H′δij − 3H′δijA− 2HδijA′ − 2HC ′ij +B′(i,j) + C ′′ij − 2H2δij + 6H2δijA

− 2HBi,j ]xiFx
j
F

=
1

a
(1−A)− 1

a2
[2H(Vi −Bi) +A,i]x

i
F

− 1

a3
[H′(δij − 3δijA)− 2H2(δij − 3δijA)−H(2δijA

′ + 2C ′ij + 2Bi,j)

+B′(i,j) + C ′′ij ]x
i
Fx

j
F

(139)

The k0 component is

∂xk

∂x0F
(Q) = [et]

k
P − Γkαβ

∣∣∣
P

[ei]
α
P [et]

β
P x

i
F −

1

2

[
Γkαβ,γ − 2ΓkσβΓσγα

]
P

[et]
γ
P [ei]

α
P [ej ]

β
P x

i
Fx

j
F (140)

The zeroth order term is

[et]
k =

1

a
V k (141)

The first order term is

Γkαβ [ei]
α [et]

β xiF =
{

Γk00 [ei]
0 [et]

0 + Γka0 [ei]
a [et]

0 + Γk0b [ei]
0 [et]

b + Γkab [ei]
a [et]

b
}
xiF

=
1

a2

[
(Hδka +

1

2
B ,k
a −

1

2
Bk

,a + Ck′a )(δai − Cai − εaihΩh)(1−A)

]
xiF

=
1

a2

[
Hδki +

1

2
B ,k
i −

1

2
Bk

,i + Ck′i −HCki −HεkihΩh −Hδki A
]
xiF

=
1

a2

[
H(δki − δki A− Cki − εkihΩh) +

1

2
B ,k
i −

1

2
Bk

,i + Ck′i

]
xiF

(142)

Calculate the second order term by parts, the first term is

Γkαβ,γ [et]
γ [ei]

α [ej ]
β xiFx

j
F

=
{

Γk00,0 [et]
0 [ei]

0 [ej ]
0 + Γka0,0 [et]

0 [ei]
a [ej ]

0 + Γk0b,0 [et]
0 [ei]

0 [ej ]
b + Γk00,c [et]

c [ei]
0 [ej ]

0

+Γkab,0 [et]
0 [ei]

a [ej ]
b + Γka0,c [et]

c [ei]
a [ej ]

0 + Γk0b,c [et]
c [ei]

0 [ej ]
b + Γkab,c [et]

c [ei]
a [ej ]

b
}
xiFx

j
F

=
{

Γka0,0 [et]
0 [ei]

a [ej ]
0 + Γk0b,0 [et]

0 [ei]
0 [ej ]

b + Γkab,0 [et]
0 [ei]

a [ej ]
b
}
xiFx

j
F

=
1

a3

[
H′δkaδai (Vj −Bj) +H′δkb δbj(Vi −Bi)

+(H′δabBk +HδabBk′ + Ck′a,b + Ck′b,a − C
′ ,k
ab )δai δ

b
j

]
xiFx

j
F

=
1

a3

[
2H′δki (Vj −Bj) +H′δijBk +HδijBk′ + Ck′i,j + Ck′j,i − C

′ ,k
ij

]
xiFx

j
F

(143)
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and the second term is

− 2ΓkσβΓσγα [et]
γ [ei]

α [ej ]
β xiFx

j
F

= −2
{

Γkσ0Γ
σ
00 [et]

0 [ei]
0 [ej ]

0 + ΓkσbΓ
σ
00 [et]

0 [ei]
0 [ej ]

b + Γkσ0Γ
σ
c0 [et]

c [ei]
0 [ej ]

0

+Γkσ0Γ
σ
0a [et]

0 [ei]
a [ej ]

0 + ΓkσbΓ
σ
0a [et]

0 [ei]
a [ej ]

b + ΓkσbΓ
σ
c0 [et]

c [ei]
0 [ej ]

b

+Γkσ0Γ
σ
ca [et]

c [ei]
a [ej ]

0 + ΓkσbΓ
σ
ca [et]

c [ei]
a [ej ]

b
}
xiFx

j
F

= −2
{

Γk0bΓ
0
00 [et]

0 [ei]
0 [ej ]

b + ΓkdbΓ
d
00 [et]

0 [ei]
0 [ej ]

b + Γk00Γ
0
0a [et]

0 [ei]
a [ej ]

0

+Γkd0Γ
d
0a [et]

0 [ei]
a [ej ]

0 + Γk0bΓ
0
0a [et]

0 [ei]
a [ej ]

b + ΓkdbΓ
d
0a [et]

0 [ei]
a [ej ]

b

+Γk0bΓ
0
ca [et]

c [ei]
a [ej ]

b + ΓkdbΓ
d
ca [et]

c [ei]
a [ej ]

b
}
xiFx

j
F

= −2
1

a3

[
HδkbH(Vi −Bi)δbj +HδkdHδdaδai (Vj −Bj) +Hδkb (A,a −HBa)δai δbj

+Hδda(HδdbBk + Ckd,b + Ckb,d − C
,k

db )δai δ
b
j +HδkbHδcaV cδai δ

b
j

]
xiFx

j
F

= −2
1

a3

[
H2δkj (Vi −Bi) +H2δki (Vj −Bj) +HδkjA,i −H2δkjBi +H2δijB

k +HCki,j

+HCkj,i −HC
,k

ij +H2δkj Vi

]
xiFx

j
F

=
1

a3

[
−6H2δki (Vj −Bj)− 2H2δijB

k − 2H(δkjA,i + 2Ck(i,j) − C
,k

ij )
]
xiFx

j
F

(144)

Thus,

− 1

2

[
Γkαβ,γ − 2ΓkσβΓσγα

]
P

[et]
γ
P [ei]

α
P [ej ]

β
P x

i
Fx

j
F

= − 1

2a3

[
2H′δki (Vj −Bj) +H′δijBk − 6H2δki (Vj −Bj)− 2H2δijB

k

−H(2δkjA,i + 4Ck(i,j) − 2C ,k
ij − δijBk′) + 2Ck′(i,j) − C

′ ,k
ij

]
xiFx

j
F

(145)

Finally we get:

∂xk

∂x0F
(Q) =

1

a
V k − 1

a2

[
H(δki − δki A− Cki − εkihΩh) +

1

2
B ,k
i −

1

2
Bk

,i + Ck′i

]
xiF

− 1

2a3

[
2H′δki (Vj −Bj) +H′δijBk − 6H2δki (Vj −Bj)− 2H2δijB

k

−H(2δkjA,i + 4Ck(i,j) − 2C ,k
ij − δijBk′) + 2Ck′(i,j) − C

′ ,k
ij

]
xiFx

j
F

(146)

The 0l component is

∂x0

∂xlF
(Q) = [el]

0
P − Γ0

αβ

∣∣
P

[ei]
α
P [el]

β
P x

i
F

− 1

6

[
Γ0
αβ,γ + 2Γ0

γα,β − 2Γ0
σγΓσαβ − 4Γ0

σβΓσγα
]
P

[ei]
α
P [ej ]

β
P [el]

γ
P x

i
Fx

j
F

(147)
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The first order term is

−Γ0
αβ [ei]

α [el]
β xiF = −

{
Γ0
00 [ei]

0 [el]
0 + Γ0

a0 [ei]
a [el]

0 + Γ0
0b [ei]

0 [el]
b + Γ0

ab [ei]
a [el]

b
}
xiF

= − 1

a2
[
(Hδab − 2HδabA+B(a,b) + C ′ab + 2HCab)

(δai − Cai − εaihΩh)(δbl − Cbl − εblhΩh)
]
xiF

= − 1

a2

[
(Hδab − 2HδabA+B(a,b) + C ′ab + 2HCab)δai δbl

+Hδabδai (−Cbl − εblhΩh) +Hδabδbl (−Cai − εaihΩh)
]
xiF

= − 1

a2
[
Hδil − 2HδilA+B(i,l) + C ′il + 2HCil

+H(−Cil − εilhΩh) +H(−Cil − εlihΩh)
]
xiF

= − 1

a2
[
Hδil − 2HδilA+B(i,l) + C ′il

]
xiF

(148)

Calculate the second order term by parts, the first term is

Γ0
αβ,γ [ei]

α [ej ]
β [el]

γ xiFx
j
F

=
{

Γ0
00,0 [ei]

0 [ej ]
0 [el]

0 + Γ0
a0,0 [ei]

a [ej ]
0 [el]

0 + Γ0
0b,0 [ei]

0 [ej ]
b [el]

0 + Γ0
00,c [ei]

0 [ej ]
0 [el]

c

+Γ0
ab,0 [ei]

a [ej ]
b [el]

0 + Γ0
a0,c [ei]

a [ej ]
0 [el]

c + Γ0
0b,c [ei]

0 [ej ]
b [el]

c + Γ0
ab,c [ei]

a [ej ]
b [el]

c
}
xiFx

j
F

=
{

Γ0
ab,0 [ei]

a [ej ]
b [el]

0 + Γ0
ab,c [ei]

a [ej ]
b [el]

c
}
xiFx

j
F

=
1

a3

[
H′δabδai δbj(Vl −Bl) + (−2HδabA,c +B(a,b),c + C ′ab,c + 2HCab,c)δai δbjδcl

]
xiFx

j
F

=
1

a3
[
H′δij(Vl −Bl)− 2HδijA,l +B(i,j),l + C ′ij,l + 2HCij,l

]
xiFx

j
F ,

(149)
The second term is

2Γ0
γα,β [ei]

α [ej ]
β [el]

γ xiFx
j
F

= 2
{

Γ0
00,0 [ei]

0 [ej ]
0 [el]

0 + Γ0
0a,0 [ei]

a [ej ]
0 [el]

0 + Γ0
00,b [ei]

0 [ej ]
b [el]

0 + Γ0
c0,0 [ei]

0 [ej ]
0 [el]

c

+Γ0
0a,b [ei]

a [ej ]
b [el]

0 + Γ0
ca,0 [ei]

a [ej ]
0 [el]

c + Γ0
c0,b [ei]

0 [ej ]
b [el]

c + Γ0
ca,b [ei]

a [ej ]
b [el]

c
}
xiFx

j
F

= 2
{

Γ0
ca,0 [ei]

a [ej ]
0 [el]

c + Γ0
ca,b [ei]

a [ej ]
b [el]

c
}
xiFx

j
F

= 2
1

a3

[
H′δcaδai δcl (Vj −Bj) + (−2HδcaA,b +B(c,a),b + C ′ca,b + 2HCca,b)δai δbjδcl

]
xiFx

j
F

=
1

a3
[
2H′δli(Vj −Bj)− 4HδliA,j + 2B(l,i),j + 2C ′li,j + 4HCli,j

]
xiFx

j
F

(150)
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The third term is

− 2Γ0
σγΓσαβ [ei]

α [ej ]
β [el]

γ xiFx
j
F

= −2
{

Γ0
σ0Γ

σ
00 [ei]

0 [ej ]
0 [el]

0 + Γ0
σ0Γ

σ
a0 [ei]

a [ej ]
0 [el]

0 + Γ0
σ0Γ

σ
0b [ei]

0 [ej ]
b [el]

0

+Γ0
σcΓ

σ
00 [ei]

0 [ej ]
0 [el]

c + Γ0
σ0Γ

σ
ab [ei]

a [ej ]
b [el]

0 + Γ0
σcΓ

σ
a0 [ei]

a [ej ]
0 [el]

c

+Γ0
σcΓ

σ
0b [ei]

0 [ej ]
b [el]

c + Γ0
σcΓ

σ
ab [ei]

a [ej ]
b [el]

c
}
xiFx

j
F

= −2
{

Γ0
00Γ

0
ab [ei]

a [ej ]
b [el]

0 + Γ0
d0Γ

d
ab [ei]

a [ej ]
b [el]

0 + Γ0
0cΓ

0
a0 [ei]

a [ej ]
0 [el]

c

+Γ0
dcΓ

d
a0 [ei]

a [ej ]
0 [el]

c + Γ0
0cΓ

0
0b [ei]

0 [ej ]
b [el]

c + Γ0
dcΓ

d
0b [ei]

0 [ej ]
b [el]

c

+Γ0
0cΓ

0
ab [ei]

a [ej ]
b [el]

c + Γ0
dcΓ

d
ab [ei]

a [ej ]
b [el]

c
}
xiFx

j
F

= −2
{

Γ0
00Γ

0
ab [ei]

a [ej ]
b [el]

0 + Γ0
dcΓ

d
a0 [ei]

a [ej ]
0 [el]

c + Γ0
dcΓ

d
0b [ei]

0 [ej ]
b [el]

c

+Γ0
0cΓ

0
ab [ei]

a [ej ]
b [el]

c + Γ0
dcΓ

d
ab [ei]

a [ej ]
b [el]

c
}
xiFx

j
F

= −2
1

a3

[
HHδabδai δbj(Vl −Bl) +HδdcHδdaδai δcl (Vj −Bj) +HδdcHδdb δbjδcl (Vi −Bi)

+(A,c −HBc)Hδabδai δbjδcl +Hδdc(HδabBd + Cda,b + Cdb,a − C
,d

ab )δai δ
b
jδ
c
l

]
xiFx

j
F

=
1

a3
[
−2H2δij(Vl −Bl)− 2H2δil(Vj −Bj)− 2H2δjl(Vi −Bi)

−2HδijA,l − 2HCli,j − 2HClj,i + 2HCij,l]xiFx
j
F

(151)

and the forth term is

−4Γ0
σβΓσγα [ei]

α [ej ]
β [el]

γ xiFx
j
F =

1

a3
[
−4H2δil(Vj −Bj)− 4H2δij(Vl −Bl)− 4H2δjl(Vi −Bi)

−4HδilA,j − 4HCji,l − 4HClj,i + 4HCil,j ]xiFx
j
F

(152)
Finally we get:

∂x0

∂xlF
(Q) =

1

a
(Vl −Bl)−

1

a2
[
Hδil − 2HδilA+B(i,l) + C ′il

]
xiF

− 1

6a3
[
H′δij(Vl −Bl)− 2HδijA,l +B(i,j),l + C ′ij,l + 2HCij,l + 2H′δli(Vj −Bj)

−4HδliA,j + 2B(l,i),j + 2C ′li,j + 4HCli,j − 2H2δij(Vl −Bl)
−2H2δil(Vj −Bj)− 2H2δjl(Vi −Bi)− 2HδijA,l − 2HCli,j − 2HClj,i
+2HCij,l − 4H2δil(Vj −Bj)− 4H2δij(Vl −Bl)− 4H2δjl(Vi −Bi)
−4HδilA,j − 4HCji,l − 4HClj,i + 4HCil,j ]xiFx

j
F

=
1

a
(Vl −Bl)−

1

a2
[
Hδil − 2HδilA+B(i,l) + C ′il

]
xiF

− 1

6a3
[
(H′ − 6H2)δij(Vl −Bl) + 2(H′ − 6H2)δli(Vj −Bj)− 4HδijA,l − 8HδliA,j

+B(i,j),l + C ′ij,l + 2B(l,i),j + 2C ′li,j
]
xiFx

j
F

(153)
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The kl component is

∂xk

∂xlF
(Q) = [el]

k
P − Γkαβ

∣∣∣
P

[ei]
α
P [el]

β
P x

i
F

− 1

6

[
Γkαβ,γ + 2Γkγα,β − 2ΓkσγΓσαβ − 4ΓkσβΓσγα

]
P

[ei]
α
P [ej ]

β
P [el]

γ
P x

i
Fx

j
F

(154)

The zeroth order term is

[el]
k =

1

a
(δkl − Ckl − εklhΩh) (155)

The first order term is

− Γkαβ

∣∣∣
P

[ei]
α
P [el]

β
P x

i
F = −

{
Γk00 [ei]

0 [el]
0 + Γka0 [ei]

a [el]
0 + Γk0b [ei]

0 [el]
b + Γkab [ei]

a [el]
b
}
xiF

= − 1

a2

[
Hδkaδai (Vl −Bl) +Hδkb δbl (Vi −Bi)

+(HδabBk + Cka,b + Ckb,a − C
,k

ab )δai δ
b
l

]
xiF

= − 1

a2

[
Hδki (Vl −Bl) +Hδkl (Vi −Bi) +HδilBk + Cki,l + Ckl,i

−C ,k
il

]
xiF

(156)
Calculate the second order term by parts, the first term is

Γkαβ,γ [ei]
α [ej ]

β [el]
γ xiFx

j
F

=
{

Γk00,0 [ei]
0 [ej ]

0 [el]
0 + Γka0,0 [ei]

a [ej ]
0 [el]

0 + Γk0b,0 [ei]
0 [ej ]

b [el]
0 + Γk00,c [ei]

0 [ej ]
0 [el]

c

+Γkab,0 [ei]
a [ej ]

b [el]
0 + Γka0,c [ei]

a [ej ]
0 [el]

c + Γk0b,c [ei]
0 [ej ]

b [el]
c + Γkab,c [ei]

a [ej ]
b [el]

c
}
xiFx

j
F

=
1

a3

[
(HδabBk

,c + Cka,bc + Ckb,ac − C
,k

ab,c )δ
a
i δ
b
jδ
c
l

]
xiFx

j
F

=
1

a3

[
HδijBk

,l + 2Ck(i,j),l − C
,k

ij,l

]
xiFx

j
F

(157)
The second term is

2Γkγα,β [ei]
α [ej ]

β [el]
γ xiFx

j
F =

1

a3

[
2HδilBk

,j + 4Ck(i,l),j − 2C ,k
il,j

]
xiFx

j
F

(158)
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The third term is

− 2ΓkσγΓσαβ [ei]
α [ej ]

β [el]
γ xiFx

j
F

= −2
{

Γkσ0Γ
σ
00 [ei]

0 [ej ]
0 [el]

0 + Γkσ0Γ
σ
a0 [ei]

a [ej ]
0 [el]

0 + Γkσ0Γ
σ
0b [ei]

0 [ej ]
b [el]

0

+ΓkσcΓ
σ
00 [ei]

0 [ej ]
0 [el]

c + Γkσ0Γ
σ
ab [ei]

a [ej ]
b [el]

0 + ΓkσcΓ
σ
a0 [ei]

a [ej ]
0 [el]

c

+ΓkσcΓ
σ
0b [ei]

0 [ej ]
b [el]

c + ΓkσcΓ
σ
ab [ei]

a [ej ]
b [el]

c
}
xiFx

j
F

= −2
{

Γk00Γ
0
ab [ei]

a [ej ]
b [el]

0 + Γkd0Γ
d
ab [ei]

a [ej ]
b [el]

0 + Γk0cΓ
0
a0 [ei]

a [ej ]
0 [el]

c

+ΓkdcΓ
d
a0 [ei]

a [ej ]
0 [el]

c + Γk0cΓ
0
0b [ei]

0 [ej ]
b [el]

c + ΓkdcΓ
d
0b [ei]

0 [ej ]
b [el]

c

+Γk0cΓ
0
ab [ei]

a [ej ]
b [el]

c + ΓkdcΓ
d
ab [ei]

a [ej ]
b [el]

c
}
xiFx

j
F

= −2
{

Γk0cΓ
0
ab [ei]

a [ej ]
b [el]

c
}
xiFx

j
F

= −2
1

a3

[
(Hδkc +

1

2

(
B ,k
c −Bk

,c

)
+ Ck′c )(Hδab − 2HδabA+B(a,b) + C ′ab + 2HCab)

(δai − Cai − εaihΩh)(δbj − Cbj − εbjhΩh)(δcl − Ccl − εclhΩh)
]
xiFx

j
F

= −2
1

a3

[
H2δijδ

k
l + (

1

2
B ,k
l −

1

2
Bk

,l + Ck′l )Hδij +Hδkl (−2HδijA+B(i,j) + C ′ij + 2HCij)

+H2δkl δaj(−Cai − εaihΩh) +H2δkl δib(−Cbj − εbjhΩh) +H2δkc δij(−Ccl − εclhΩh)
]
xiFx

j
F

=
1

a3

[
−2H2δijδ

k
l +Hδij(−B ,k

l +Bk
,l − 2Ck′l ) + 4H2δijδ

k
l A− 2Hδkl (B(i,j) + C ′ij)

−4H2δkl Cij + 4H2δkl Cij + 2H2δijC
k
l + 2H2δijε

k
lhΩh

]
xiFx

j
F

=
1

a3

[
2H2(−δijδkl + 2δijδ

k
l A+ δijC

k
l + δijε

k
lhΩh) +Hδij(−B ,k

l +Bk
,l − 2Ck′l )

−2Hδkl (B(i,j) + C ′ij)
]
xiFx

j
F

(159)
and the forth term is

− 4ΓkσβΓσγα [ei]
α [ej ]

β [el]
γ xiFx

j
F

=
1

a3

[
4H2(−δilδkj + 2δilδ

k
jA+ δilC

k
j + δilε

k
jhΩh) + 2Hδil(−B ,k

j +Bk
,j − 2Ck′j )

−4Hδkj (B(i,l) + C ′il)
]
xiFx

j
F

(160)
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Finally we get:

∂xk

∂xlF
(Q) =

1

a
(δkl − Ckl − εklhΩh)

− 1

a2

[
Hδki (Vl −Bl) +Hδkl (Vi −Bi) +HδilBk + Cki,l + Ckl,i − C

,k
il

]
xiF

− 1

6a3

[
HδijBk

,l + 2Ck(i,j),l − C
,k

ij,l + 2HδilBk
,j + 4Ck(i,l),j − 2C ,k

il,j

+2H2(−δijδkl + 2δijδ
k
l A+ δijC

k
l + δijε

k
lhΩh) +Hδij(−B ,k

l +Bk
,l − 2Ck′l )

−2Hδkl (B(i,j) + C ′ij) + 4H2(−δilδkj + 2δilδ
k
jA+ δilC

k
j + δilε

k
jhΩh)

+2Hδil(−B ,k
j +Bk

,j − 2Ck′j )− 4Hδkj (B(i,l) + C ′il)
]
xiFx

j
F

=
1

a
(δkl − Ckl − εklhΩh)

− 1

a2

[
Hδki (Vl −Bl) +Hδkl (Vi −Bi) +HδilBk + Cki,l + Ckl,i − C

,k
il

]
xiF

− 1

6a3

[
2Ck(i,j),l − C

,k
ij,l + 4Ck(i,l),j − 2C ,k

il,j

+2H2(−δijδkl + 2δijδ
k
l A+ δijC

k
l + δijε

k
lhΩh) +Hδij(−B ,k

l + 2Bk
,l − 2Ck′l )

−2Hδkl (B(i,j) + C ′ij) + 4H2(−δilδkj + 2δilδ
k
jA+ δilC

k
j + δilε

k
jhΩh)

+2Hδil(−B ,k
j + 2Bk

,j − 2Ck′j )− 4Hδkj (B(i,l) + C ′il)
]
xiFx

j
F

(161)
We have written down all the components of the derivative ∂xµ

∂xαF
(Q). The derivative shows the

relation between the global coordinates and the Fermi normal coordinates. If we set all the
perturbations to 0 the result is the case of non-perturbed Robertson-Walker space-time.
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8.3 The Riemann tensor in FNC

The Riemann tensor in FNC is defined as RFαβγδ = [eα]µP [eβ]νP [eγ ]κP [eδ]
λ
P Rµνκλ. Bring in the

four tetrads and the Riemann tensor based on the perturbed Robertson-Walker metric. First,
we calculate the 0l0m component.

RF0l0m = [et]µ [el]
ν [et]

κ [em]λRµνκλ (162)

= [et]0 [el]
0 [et]

0 [em]0R0
000 + [et]a [el]

0 [et]
0 [em]0Ra000 + [et]0 [el]

b [et]
0 [em]0R0

b00

+ [et]0 [el]
0 [et]

c [em]0R0
0c0 + [et]0 [el]

0 [et]
0 [em]dR0

00d + [et]a [el]
b [et]

0 [em]0Rab00

+ [et]a [el]
0 [et]

c [em]0Ra0c0 + [et]a [el]
0 [et]

0 [em]dRa00d + [et]0 [el]
b [et]

c [em]0R0
bc0

+ [et]0 [el]
b [et]

0 [em]dR0
b0d + [et]0 [el]

0 [et]
c [em]dR0

0cd + [et]a [el]
b [et]

c [em]0Rabc0

+ [et]a [el]
b [et]

0 [em]dRab0d + [et]a [el]
0 [et]

c [em]dRa0cd + [et]0 [el]
b [et]

c [em]dR0
bcd

+ [et]a [el]
b [et]

c [em]dRabcd

= [et]0 [el]
b [et]

0 [em]dR0
b0d

= − 1

a2
(δbl − Cbl − εblhΩh)(δdm − Cdm − εdmhΩh)

[H′δbd −
(
HA′ + 2H′A

)
δbd −A,bd +B′(b,d) +HB(b,d) + C ′′bd +HC ′bd + 2H′Cbd]

= − 1

a2
[H′δlm −

(
HA′ + 2H′A

)
δlm −A,lm +B′(l,m) +HB(l,m) + C ′′lm +HC ′lm + 2H′Clm

+(−Cbl − εblhΩh)δdmH′δbd + δbl (−Cdm − εdmhΩh)H′δbd]

=
1

a2
[−H′δlm + (HA′ + 2H′A)δlm +A,lm −B′(l,m) −HB(l,m) − C ′′lm −HC ′lm − 2H′Clm

+H′(Clm + εmlhΩh + Clm + εlmhΩh)]

=
1

a2
[−H′δlm(1− 2A) +HA′δlm +A,lm −B′(l,m) −HB(l,m) − C ′′lm −HC ′lm]
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The 0lim component is

RF0lim = [et]µ [el]
ν [ei]

κ [em]λRµνκλ

= [et]0 [el]
0 [ei]

0 [em]0R0
000 + [et]a [el]

0 [ei]
0 [em]0Ra000 + [et]0 [el]

b [ei]
0 [em]0R0

b00

+ [et]0 [el]
0 [ei]

c [em]0R0
0c0 + [et]0 [el]

0 [ei]
0 [em]dR0

00d + [et]a [el]
b [ei]

0 [em]0Rab00

+ [et]a [el]
0 [ei]

c [em]0Ra0c0 + [et]a [el]
0 [ei]

0 [em]dRa00d + [et]0 [el]
b [ei]

c [em]0R0
bc0

+ [et]0 [el]
b [ei]

0 [em]dR0
b0d + [et]0 [el]

0 [ei]
c [em]dR0

0cd + [et]a [el]
b [ei]

c [em]0Rabc0

+ [et]a [el]
b [ei]

0 [em]dRab0d + [et]a [el]
0 [ei]

c [em]dRa0cd + [et]0 [el]
b [ei]

c [em]dR0
bcd

+ [et]a [el]
b [ei]

c [em]dRabcd

= [et]0 [el]
b [ei]

c [em]0R0
bc0 + [et]0 [el]

b [ei]
0 [em]dR0

b0d + [et]0 [el]
b [ei]

c [em]dR0
bcd

+ [et]a [el]
b [ei]

c [em]dRabcd

=
1

a2
{H′δbcδbl δci (Vm −Bm)−H′δbdδbl δdm(Vi −Bi)

− [2Hδb[cA,d] −Bb,[cd] +
1

2
(Bd,bc −Bc,bd)− 2C ′b[c,d]]δ

b
l δ
d
mδ

c
i

+H2 (δac δbd − δadδbc) δbl δdmδci (Va −Ba)}

=
1

a2
[H′δli(Vm −Bm)−H′δlm(Vi −Bi)− 2Hδl[iA,m] +Bl,[im] −

1

2
(Bm,li −Bi,lm)

+ 2C ′l[i,m] +H2δlm(Vi −Bi)−H2δli(Vm −Bm)]

=
1

a2
[
−(H2 −H′)δli(Vm −Bm) + (H2 −H′)δlm(Vi −Bi)− 2Hδl[iA,m]

+B[i,m]l + 2C ′l[i,m]

]

(163)
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The iljm component is

RFiljm = [ei]µ [el]
ν [ej ]

κ [em]λRµνκλ

= [ei]0 [el]
0 [ej ]

0 [em]0R0
000 + [ei]a [el]

0 [ej ]
0 [em]0Ra000 + [ei]0 [el]

b [ej ]
0 [em]0R0

b00

+ [ei]0 [el]
0 [ej ]

c [em]0R0
0c0 + [ei]0 [el]

0 [ej ]
0 [em]dR0

00d + [ei]a [el]
b [ej ]

0 [em]0Rab00

+ [ei]a [el]
0 [ej ]

c [em]0Ra0c0 + [ei]a [el]
0 [ej ]

0 [em]dRa00d + [ei]0 [el]
b [ej ]

c [em]0R0
bc0

+ [ei]0 [el]
b [ej ]

0 [em]dR0
b0d + [ei]0 [el]

0 [ej ]
c [em]dR0

0cd + [ei]a [el]
b [ej ]

c [em]0Rabc0

+ [ei]a [el]
b [ej ]

0 [em]dRab0d + [ei]a [el]
0 [ej ]

c [em]dRa0cd + [ei]0 [el]
b [ej ]

c [em]dR0
bcd

+ [ei]a [el]
b [ej ]

c [em]dRabcd

= [ei]a [el]
b [ej ]

c [em]dRabcd

=
1

a2
{(δia + Cia − εaihΩh)(δbl − Cbl − εblhΩh)(δcj − Ccj − εcjhΩh)(δdm − Cdm − εdmhΩh)

[H2 (δac δbd − δadδbc) (1− 2A)

+
1

2
H
(
δbd
(
B ,a
c +Ba

,c

)
− δbc

(
B ,a
d +Ba

,d

)
+ 2δacB(b,d) − 2δadB(b,c)

)
+H

(
δbdC

a′
c − δbcCa′d + δacC

′
bd − δadC ′bc + 2H (δacCbd − δadCbc)

)
+ 2Ca(b,d),c − 2Ca(b,c),d + C ,a

bc ,d − C
,α

bd ,c]}

=
1

a2
{H2(δijδlm − δimδlj)(1− 2A)

+
1

2
H(δlm(Bj,i +Bi,j)− δlj(Bm,i +Bi,m) + 2δijB(l,m) − 2δimB(l,j))

+H(δlmC
′
ji − δljC ′im + δijC

′
lm − δimC ′lj + 2H(δijClm − δimClj))

+ 2Ci(l,m),j − 2Ci(l,j),m + Clj,im − Clm,ij
+H2(Cia − εaihΩh)(δaj δlm − δamδlj) +H2(−Cbl − εblhΩh)(δijδbm − δimδbj)
+H2(−Ccj − εcjhΩh)(δicδlm − δimδlc) +H2(−Cdm − εdmhΩh)(δijδld − δidδlj)}

=
1

a2
[2H2δi[jδm]l(1− 2A) +H(δlmB(i,j) − δljB(i,m) + δijB(l,m) − δimB(l,j))

+ 2H(δl[mC
′
j]i + δi[jC

′
m]l) + 2Ci[m,j]l + 2Cl[j,m]i]

(164)
We have written down the Riemann tensor in FNC and we are now prepared to write down the
metric of FNC gFµν under the background of the perturbed Robertson-Walker space-time. The
metric has the form of

gF00(Q) = η00 −RF0l0mxlFxmF ,

gF0a(Q) = η0a −
2

3
RF0lamx

l
Fx

m
F ,

gFab(Q) = ηab −
1

3
RFalbmx

l
Fx

m
F .

(165)

Therefore, the metric is

gF00(Q) = η00 −
1

a2
[−H′δlm(1− 2A) +HA′δlm +A,lm −B′(l,m) −HB(l,m) − C ′′lm −HC ′lm]xlFx

m
F

(166)

gF0a(Q) = η0a −
2

3a2
[−(H2 −H′)δli(Vm −Bm) + (H2 −H′)δlm(Vi −Bi)− 2Hδl[iA,m]

+B[i,m]l + 2C ′l[i,m]]x
l
Fx

m
F

(167)
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gFab(Q) = ηab −
1

3a2
[2H2δi[jδm]l(1− 2A) +H(δlmB(i,j) − δljB(i,m) + δijB(l,m) − δimB(l,j))

+ 2H(δl[mC
′
j]i + δi[jC

′
m]l) + 2Ci[m,j]l + 2Cl[j,m]i]x

l
Fx

m
F

(168)
So far, we have finally got the specific form of the metric in FNC when the background space-
time is the perturbed Robertdon-Walker space-time. We applied the FNC to the research of
cosmology. We find that for a comoving observer on a time-like geodesic, we are able to find
a locally inertial coordinate in which that in the neighborhood of the comoving observer the
metric is the Minkowski metric plus some deviations.

8.4 The limitation of FNC

We have mentioned that the FNC can only be applied in the neighborhood of the comoving
observer. However, how big this patch in which the metric is close to the Minkowski metric is
not discussed carefully. For this purpose, we first ignore the perturbations since they are defined
to be small. What we get is then the FNC metric under the Robertson-Walker space-time
background.

gF00(Q) = η00 − (H2 − ä

a
)δlmx

l
Fx

m
F

gF0a(Q) = η0a

gFab(Q) = ηab −
2

3
H2δi[jδm]lx

l
Fx

m
F

(169)

From Eq.(169) we find the condition that guarantees the metric to be close to Minkowski is

H2x2F<1 → xF<H
−1 (170)

Thus, the patch that can be studied by FNC is much smaller than the Hubble horizon H−1.
This is the limitation of applying FNC to the study of cosmology. This is also the motivation
for the construction of the conformal Fermi coordinates. In Part V we will discuss the CFC in
detail and see how the CFC solves the problem that exist in FNC.[40]

Part V

Conformal Fermi Coordinates

In Part IV we have constructed the FNC and we know that the basic formalism and analytical
formula hold in any arbitrary space-time meaning that we can apply any global metric to NFC.
However, the drawback of FNC is that when we want to apply it to cosmology we use Robertson
Walker metric as the global metric. However, Robertson-Walker metric brings H2 to the Rie-
mann tensor which we have seen in Eq.(96). This brings a problem to the size of the patch that
can be covered by FNC because for xF>H

−1 the deviation of the FNC metric from Minkowski
space is too large. Thus the scale that can be studied is limited.

In order to solve this problem we use a ’trick’ to take the scale factor out. The general
idea is that we consider a conformal global metric and define the CFC coordinate based on this
conformal metric. The CFC is first introduced in [41]. The Conformal Fermi coordinates are
coordinates of a local observer that describes the space-time in a neighborhood of her worldline
as a Robertson-Walker space-time. The corrections from the unperturbed Robertson-Walker
space-time grow quadratically in the distance from the worldline when we apply perturbations
to the metric. Depending on the structure of the space-time, the corrections can stay small on
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scales much larger than the Hubble horizon. Thus, these coordinates share all the advantages
of FNC but are valid on super-horizon scales.

The main idea is very similar to the construction of the NFC. But we define the conformal
metric g̃µν(x) and set up the orthonormal tetrads [ẽα]µ and the coordinates xiF basing on the
conformal metric g̃µν(x). We will now construct CFC in detail.

9 Basic Formalism and Analytical Formula

We would like to construct the conformal Fermi coordinates for a more general case. At this
point we will not apply the Robertson-Walker metric to the back ground. Instead we will define
a new CFC scale factor aF which is not yet related to the scale factor a in the Robertson-Walker
metric. Therefore, we will consider an arbitrary ’global metric’ gµν(x) and the ’global coordinate’
xµ = {t, xi}. The same as what we have done in the construction of NFC we consider a free fall
observer which determines a time-like central geodesic xµ(τ).

Now we want to construct a conformal space-time. We consider a space-time scalar aF . And
define a ’conformal proper time’ ηF through

dηF = a−1F (τ)dτ (171)

Where the scale factor aF (τ) is parameterized by the proper time τ along the time-like central
geodesic. By integrating this differential equation we get the relation between the ’conformal
proper time’ ηF and the ’proper time’ τ . So we can also write the scale factor as aF (ηF ). In NFC
we chose the proper time to be the time coordinate, in CFC instead we choose the conformal
proper time ηF to be the time coordinate.

Now we need to define the slices of constant ηF . By using the CFC scale factor aF we define
a ’conformal metric’ g̃µν(x) to take the scale factor out of the global metric around the time-like
central geodesic.

g̃µν(x) ≡ a−2F (τ)gµν(x) (172)

Consider a spatial hypersurface passing through a point P (τ) on the time-like central geodesic.
The infinitesimal space-time interval between two events from a point P (τ) to a point Q(τ ;xi)
on the space-like geodesic is

ds2 = a2F (τ)g̃ab(x)dxadxb = gab(x)dxadxb (173)

While the conformal infinitesimal space-time interval between two events from a point P (τ) to
a point Q(τ ;xi) on the space-like geodesic is

ds̃2 = g̃ab(x)dxadxb (174)

We define the four tetrads as in the construction of FNC. But this time we define the four
tetrads [ẽα]µ also in the conformal space-time. Which implies

[ẽα]µ = aF (ηF )[eα]µ (175)

The tangent vector ∂xµ(s)
∂s̃

∣∣∣
0

can then be written by a composition of the spatial tetrads which

is a set of the local coordinate bases.

∂xµ(s)

∂s̃

∣∣∣∣
0

= βa[ẽa]
µ (176)

Where ds̃ =
√
g̃ab(x)dxadxb.
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As what has been done for the FNC we expand the global coordinate xµ(s̃Q) of a point Q
on a space-like geodesic through point P around point P .

xµ (s̃Q) = xµ(0) + s̃Q
∂xµ(s̃)

∂s̃

∣∣∣∣
0

+
1

2
s̃2Q
∂2xµ(s̃)

∂s̃2

∣∣∣∣
0

+
1

6
s̃3Q
∂3xµ(s̃)

∂s̃3

∣∣∣∣
0

(177)

Define CFC coordinate xiF base on conformal metric g̃ab.

xiF = βis̃Q (178)

We can see clearly that this definition makes sense by considering βi = (1, 0, 0). This special
case just gives xiF = (s̃Q, 0, 0). Where the conformal proper space-time interval between event
P and event Q is

s̃Q =

∫ √
g̃ab(x)dxadxb (179)

Now with these definitions, we are able to rewrite the global coordinate xµ(s̃Q) in terms of
the CFC coordinate.

sQ
∂xµ(s)

∂s

∣∣∣∣
0

= a−1F (τ)sQ
∂xµ(s)

∂s̃

∣∣∣∣
0

= s̃Qβ
i[ẽi]

µ = aF (τ)xiF [ei]
µ

1

2
s2Q
∂2xµ(s)

∂s2

∣∣∣∣
0

=
1

2
s2Qa

−2
F (τ)

∂2xµ(s)

∂s̃2

∣∣∣∣
0

= − 1

2
s̃2QΓ̃µαβ

dxα

ds̃

dxβ

ds̃

∣∣∣∣
P

= −1

2
s̃2QΓ̃µαββ

i[ẽi]
αβj [ẽj ]

β = −1

2
a2F (τ)Γ̃µαβ [ei]

α [ej ]
β xiFx

j
F

1

6
s3Q
∂3xµ(s)

∂s3

∣∣∣∣
0

=
1

6
s̃3Q
∂3xµ(s)

∂s̃3

∣∣∣∣
0

= −1

6
s̃3Q

d

ds̃

(
Γ̃µαβ

dxα

ds̃

dxβ

ds̃

)
P

= −1

6
s̃3Q

(
Γ̃µαβ,γ − 2Γ̃µσαΓ̃σβγ

)
P
βi[ẽi]

αβj [ẽj ]
ββk[ẽk]

γ

= −1

6
a3F (τ)

(
Γ̃µαβ,γ − 2Γ̃µσαΓ̃σβγ

)
P

[ei]
α [ej ]

β [ek]
γ xiFx

j
Fx

k
F

(180)

Where
[ẽa]

µ = aF (τ)[ea]
µ (181)

Thus xµ(Q) can be written in terms of CFC coordinate

xµQ =P + aF (τ) [ei]
µ
P x

i
F −

1

2
a2F (τ)Γ̃µαβ

∣∣∣∣
P

[ei]
α
P [ej ]

β
P x

i
Fx

j
F

− 1

6
a3F (τ)

[
Γ̃µαβ,γ − 2Γ̃µσαΓ̃σβγ

]
P

[ei]
α
P [ej ]

β
P [ek]

γ
P x

i
Fx

j
Fx

k
F

(182)

Where the Christoffel symbol with a tilde is based on conformal metric g̃µν(x) = a−2F (x)gµν(x).
The metric should satisfied g̃µν g̃

µν = δµµ . To raise the index we simply get

g̃µν(x) = a2F (x)gµν(x) (183)

Use Γ̃µνρ = 1
2 g̃
µσ (g̃νσ,ρ + g̃ρσ,ν − g̃νρ,σ) we get

Γ̃µαβ = Γµαβ − a
−1
F ∇βaF δ

µ
α − a−1F ∇αaF δ

µ
β + a−1F ∇λaF g

µσgαβ

= Γµαβ − δ
µ
α∇β ln aF − δµβ∇α ln aF + gαβg

µλ∇λ ln aF

= Γµαβ + Cµαβ

(184)
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Where Cµαβ := −δµα∇β ln aF − δµβ∇α ln aF + gαβg
µλ∇λ ln aF The gradient of aF (τ) along the

central geodesic is along the time direction

D ln aF
Dxµ

= − (ln aF )′ [ẽ0]µ (185)

The second derivatives
∇α∇β ln aF = ∇α

[
− (ln aF )′ [ẽ0]β

]
= −

D
[
(ln aF )′ [ẽ0]β

]
Dxα

= (ln aF )′′ [ẽ0]β [ẽ0]α

(186)

Where we have used the fact that the covariant derivative just reduces to the ordinary derivative
when acting on a scalar field. With the first and second derivatives, we are able to compute the
Riemann Tensor.

R̃µνρσ := Γ̃µνσ,ρ − Γ̃µνρ,σ + Γ̃ενσΓ̃µρε − Γ̃ενρΓ̃
µ
σε

= Γµνσ,ρ + Cµνσ,ρ − Γµνρ,σ − Cµνρ,σ + (Γενσ + Cενσ)(Γµρε + Cµρε)− (Γενρ + Cενρ)(Γ
µ
σε + Cµσε)

= Rµνρσ + Cµνσ,ρ − Cµνρ,σ + ΓενσC
µ
ρε + ΓµρεC

ε
νσ + CενσC

µ
ρε − ΓενρC

µ
σε − ΓµσεC

ε
νρ − CενρCµσε

= Rµνρσ + Cµνσ;ρ − Cµνρ;σ − CενρCµσε + CενσC
µ
ρε

(187)
Where we have used

Cµνσ;ρ = Cµνσ,ρ + ΓµρεC
ε
νσ − ΓερνC

µ
εσ − ΓερσC

µ
εν (188)

− Cµνρ;σ = −Cµνρ,σ − ΓµσεC
ε
νρ + ΓεσνC

µ
ερ + ΓερσC

µ
εν (189)

Where

Cµνσ;ρ =
D

Dxρ
[−δµν∇σ ln aF − δµσ∇ν ln aF + gνσg

µλ∇λ ln aF ]

= −δµν∇ρ∇σ ln aF − δµσ∇ρ∇ν ln aF + gνσg
µλ∇ρ∇λ ln aF

+ gνσ;ρg
µλ∇λ ln aF + gνσg

µλ
;ρ∇λ ln aF

= −δµν∇ρ∇σ ln aF − δµσ∇ρ∇ν ln aF + gνσg
µλ∇ρ∇λ ln aF

(190)

Cµνρ;σ =
D

Dxσ
[−δµν∇ρ ln aF − δµρ∇ν ln aF + gνρg

µλ∇λ ln aF ]

= −δµν∇σ∇ρ ln aF − δµρ∇σ∇ν ln aF + gνρg
µλ∇σ∇λ ln aF

+ gνρ;σg
µλ∇λ ln aF + gνρg

µλ
;σ∇λ ln aF

= −δµν∇σ∇ρ ln aF − δµρ∇σ∇ν ln aF + gνρg
µλ∇σ∇λ ln aF

(191)

CενρC
µ
σε = (−δεν∇ρ ln aF − δερ∇ν ln aF + gνρg

ελ∇λ ln aF )

(−δµσ∇ε ln aF − δµε∇σ ln aF + gσεg
µω∇ω ln aF )

= 2∇ρ ln aF δ
µ
σ∇ν ln aF + δµν∇ρ ln aF∇σ ln aF + δµρ∇ν ln aF∇σ ln aF

− gνρgελ∇λ ln aF δ
µ
σ∇ε ln aF − gνρgελ∇λ ln aF δ

µ
ε∇σ ln aF

− gσεgµω∇ω ln aF δ
ε
ν∇ρ ln aF − gσεgµω∇ω ln aF δ

ε
ρ∇ν ln aF

+ gνρg
ελ∇λ ln aF gσεg

µω∇ω ln aF

(192)
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CενσC
µ
ρε = 2∇σ ln aF δ

µ
ρ∇ν ln aF + δµν∇σ ln aF∇ρ ln aF + δµσ∇ν ln aF∇ρ ln aF

− gνσgελ∇λ ln aF δ
µ
ρ∇ε ln aF − gνσgελ∇λ ln aF δ

µ
ε∇ρ ln aF

− gρεgµω∇ω ln aF δ
ε
ν∇σ ln aF − gρεgµω∇ω ln aF δ

ε
σ∇ν ln aF

+ gνσg
ελ∇λ ln aF gρεg

µω∇ω ln aF

(193)

To compute the CFC metric, we need to compute the derivatives of the coordinate transfor-
mation

∂xµ

∂x0F
(Q) =

∂xµ

∂ηF
(P ) +

∂

∂ηF

[
aF (τ) [ei]

µ
P

]
xiF −

1

2

∂

∂ηF

[
aF (τ)2Γ̃µαβ

∣∣∣
P

[ei]
α
P [ej ]

β
P

]
xiFx

j
F +O

(
x3F
)

= aF (τ)[e0]
µ + a′F (τ)[ei]

µxiF − aF (τ)2 Γµαβ

∣∣∣
P

[e0]
α [ei]

β xiF

− aF (τ)a′F (τ) Γ̃µαβ

∣∣∣
P

[ei]
α [ej ]

β xiFx
j
F −

1

2
aF (τ)3 Γ̃µαβ,γ

∣∣∣
P

[e0]
γ [ei]

α [ej ]
β xiFx

j
F

+ aF (τ)3 Γ̃µασ

∣∣∣
P

Γσβγ
∣∣
P

[e0]
γ [ei]

α [ej ]
β xiFx

j
F +O

(
x3F
)

= aF (τ)[e0]
µ +

[
a′F (τ)[ei]

µ − a2F (τ) Γµαβ

∣∣∣
P

[e0]
α [ei]

β
]
xiF

−
[
aF (τ)a′F (τ) Γ̃µαβ

∣∣∣
P

[ei]
α [ej ]

β

+

[
1

2
a3F (τ) Γ̃µαβ,γ

∣∣∣
P
− a3F (τ) Γ̃µασ

∣∣∣
P

Γσβγ
∣∣
P

]
[e0]

γ [ei]
α [ej ]

β

]
xiFx

j
F +O

(
x3F
)

(194)

∂xµ

∂xlF
(Q) = 0 + aF (τ)[ei]

µδil −
1

2
aF (τ)2Γ̃µαβ[ei]

α[ej ]
β
[
δilx

j
F + δjl x

i
F

]
− 1

6
a3F (τ)

[
Γ̃µαβ,γ − 2Γ̃µσαΓ̃σβγ

]
P

[ei]
α [ej ]

β [ek]
γ
(
δilx

j
Fx

k
F + δjl x

i
Fx

k
F + δkl x

j
Fx

i
F

)
= aF (τ)[el]

µ − aF (τ)2Γ̃µαβ[el]
α[ei]

βxiF

− 1

6
a3F (τ)

[
Γ̃µαβ,γ + 2Γ̃µβγ,α − 2Γ̃µγσΓ̃σαβ − 4Γ̃µασΓ̃σβγ

]
[el]

α[ej ]
β[ek]

γxjFx
k
F

(195)

Then we can find the metric of CFC order-by-order in xiF using

gFµν (xF ) =
∂xα

∂xµF

∂xβ

∂xνF
gαβ(x) (196)

However, it is quite lengthy to go through this calculation under the global metric gαβ. So we
try to project various geometric quantities into the ’conformal metric’ g̃αβ. We first find that

gFµν (xF ) =
∂xα

∂xµF

∂xβ

∂xνF
gαβ(x) =

∂xα

∂xµF

∂xβ

∂xνF
a2F (τ)g̃αβ(x) (197)

We will calculate the metric of CFC for each component. First, we expand the conformal metric
around event P .

g̃αβ(Q) = g̃αβ|P + g̃αβ,µ|P [xµQ − x
µ
P ] +

1

2
g̃αβ,µν

∣∣∣∣
P

[xµQ − x
µ
P ][xνQ − xνP ]

= g̃αβ|P + g̃αβ,µ|P [ẽi]
µ
P x

i
F +

1

2

[
g̃αβ,µν − g̃αβ,σΓ̃σµν

]
P

[ẽi]
µ
P [ẽj ]

ν
P x

i
Fx

j
F

(198)
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Where we have used the xµ(Q) in terms of CFC coordinate.

xµQ =P + [ẽi]
µ
P x

i
F −

1

2
Γ̃µαβ

∣∣∣∣
P

[ẽi]
α
P [ẽj ]

β
P x

i
Fx

j
F

− 1

6

[
Γ̃µαβ,γ − 2Γ̃µσαΓ̃σβγ

]
P

[ẽi]
α
P [ẽj ]

β
P [ẽk]

γ
P x

i
Fx

j
Fx

k
F

(199)

And the derivatives of the coordinate transformation

∂xµ

∂x0F
(Q) =

∂xµ

∂ηF
(P ) +

∂

∂ηF
[ẽi]

µ
P x

i
F −

1

2

∂

∂ηF

[
Γ̃µαβ

∣∣∣
P

[ẽi]
α
P [ẽj ]

β
P

]
xiFx

j
F +O

(
x3F
)

= [ẽt]
µ
P − Γ̃µαβ

∣∣∣
P

[ẽi]
α
P [ẽt]

β
P x

i
F −

1

2

[
Γ̃µαβ,γ − 2Γ̃µσβΓ̃σγα

]
P

[ẽt]
γ
P [ẽi]

α
P [ẽj ]

β
P x

i
Fx

j
F

(200)

∂xµ

∂xlF
(Q) = [ẽl]

µ − Γ̃µαβ[ẽl]
α[ẽi]

βxiF

− 1

6

[
Γ̃µαβ,γ + 2Γ̃µβγ,α − 2Γ̃µγσΓ̃σαβ − 4Γ̃µασΓ̃σβγ

]
[ẽl]

α[ẽj ]
β[ẽk]

γxjFx
k
F

(201)

For the 00 component gF00(Q) = ∂xα

∂x0F

∂xβ

∂x0F
a2F (τ)g̃αβ(Q).

The zeroth order term is
a2F (τ)[ẽ0]

α[ẽ0]
β g̃αβ(P ) = −a2F (τ) (202)

The first order term is

a2F (ηF )
(
g̃αβ,ρ − g̃σβΓ̃σρα − g̃ασΓ̃σρβ

)
P

[ẽ0]
α
P [ẽ0]

β
P [ẽi]

ρ
P x

i
F = g̃αβ;µ(P )[ẽ0]

α[ẽ0]
β[ẽi]

µ = 0 (203)

The second order term is

a2F (ηF )

(
1

2
g̃µν,αβ −

1

2
g̃µν,σΓ̃σαβ − 2g̃µγ,αΓ̃γβν − g̃µγΓ̃γαβ,ν + 2g̃µγΓ̃γσβΓ̃σνα + g̃γσΓ̃γαµΓ̃σβν

)
P

[ẽ0]
µ
P [ẽ0]

ν
P [ẽl]

α
P [ẽm]βP x

l
Fx

m
F

= −a2F (ηF )R̃F0`0mx
l
Fx

m
F

(204)

For the 0a component gF0a(Q) = ∂xα

∂x0F

∂xβ

∂xaF
a2F (τ)g̃αβ(Q).

The zeroth order term is
a2F (ηF ) [ẽ0]

α
P [ẽa]

β
P g̃αβ = 0 (205)

The first order term is

a2F (ηF )
(
g̃αβ,ρ − g̃σβΓ̃σρα − g̃ασΓ̃σρβ

)
P

[ẽ0]
α
P [ẽa]

β
P [ẽi]

ρ
P x

i
F = g̃αβ;µ(P )[ẽ0]

α[ẽa]
β[ẽi]

µ = 0 (206)

The second order term is

a2F (ηF )

[
1

2
g̃µν,αβ −

1

2
g̃µν,σΓ̃σαβ − g̃µγ,αΓ̃γβν − g̃νγ,αΓ̃γβµ −

1

2
g̃νγΓ̃γαβ,µ + g̃νγΓ̃γσαΓ̃σµβ + g̃γσΓ̃γαµΓ̃σβν

−1

6
g̃µλ

(
Γ̃λαβ,ν + 2Γ̃λνα,β − 2Γ̃λσνΓ̃σαβ − 4Γ̃λσβΓ̃σαν

)]
P

[ẽ0]
µ
P [ẽa]

ν
P [ẽl]

α
P [ẽm]βP x

l
Fx

m
F

= −a2F (ηF )
2

3
R̃F0lamx

l
Fx

m
F

(207)

For ab component gFab(Q) = ∂xα

∂xaF

∂xβ

∂xbF
a2F (τ)g̃αβ(Q).

The zeroth order term is
a2F (ηF ) [ẽa]

α
P [ẽb]

β
P g̃αβ = a2F (ηF )δab (208)
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The first order term is

a2F (ηF )
(
g̃αβ,ρ − g̃σβΓ̃σρα − g̃ασΓ̃σρβ

)
P

[ẽa]
α
P [ẽb]

β
P [ẽi]

ρ
P x

i
F = g̃αβ;µ(P )[ẽa]

α[ẽb]
β[ẽi]

µ = 0 (209)

The second order term is

a2F (ηF )

[
1

2
g̃µv,αβ −

1

2
g̃µv,σΓ̃σαβ − 2g̃µγ,αΓ̃γvβ + g̃γσΓ̃γαµΓ̃σβv

−1

3
g̃µλ

(
Γ̃λαβ,v + 2Γ̃λvα,β − 2Γ̃λσvΓ̃

σ
αβ − 4Γ̃λσβΓ̃σαv

)]
P

[ẽa]
µ
P [ẽb]

v
P [ẽl]

α
P [ẽm]βP x

l
Fx

m
F

= −a2F (ηF )
1

3
R̃Falbmx

l
Fx

m
F

(210)

To summarize the calculations we have done and at the end we get the metric of CFC to the
quadratic corrections.[40][42]

gF00 (Q) = a2F (ηF )
[
η00 − R̃F0k0l

∣∣∣
P
xkFx

l
F

]
,

gF0a (Q) = a2F (ηF )

[
η0a −

2

3
R̃F0kal

∣∣∣∣
P

xkFx
l
F

]
,

gFab (Q) = a2F (ηF )

[
ηab −

1

3
R̃Fakbl

∣∣∣∣
P

xkFx
l
F

]
.

(211)

Similar to the FNC, we find that the metric in CFC is

gFµν = a2F (ηF )
[
ηµν +O(R̃Fµlνmx

l
Fx

m
F )
]
. (212)

This is very similar to the FNC metric but the benefits of using R̃µlνm here are very significant.
We have mentioned that the Robertson-Walker metric brings H2 to the Riemann tensor, which
brings a problem to the size of the patch that can be covered by FNC because for xF > H−1

the deviation of the FNC metric from Minkowski space is too large. This limits the scale that
can be studied. In the next section, we will show that when considering the Robertson-Walker
metric as the background metric the H2 term can be canceled which solved the problem of the
limited patch in the case of FNC.

10 Linear order calculations

In section 9, Conformal Fermi Coordinate is constructed with some random ’global metric’
gµν(x). When studying cosmological problems we apply the Robertson-Walker metric to the
background space-time. For the real universe we also consider the perturbations in the ’global
metric’. The ’global metric’ is given by

g00 := −a2(1 + 2A), g0a := −a2Ba, gab := a2 (δab + 2Cab) (213)

Now we want to do the linear calculations of R̃F which is based on g̃µν = 1
a2F
gµν .

R̃Fαkβl = R̃µνρσ[ẽα]µ[ẽk]
ν [ẽβ]ρ[ẽl]

σ

=
(
Rµνρσ + Cµνσ;ρ − Cµνρ;σ − CενρCµσε + CενσC

µ
ρε

)
[ẽα]µ[ẽk]

ν [ẽβ]ρ[ẽl]
σ

= RFαkβl +
(
Cµνσ;ρ − Cµνρ;σ − CενρCµσε + CενσC

µ
ρε

)
[ẽα]µ[ẽk]

ν [ẽβ]ρ[ẽl]
σ

(214)
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We have already calculated Rµνσρ[eα]µ[ek]
ν [eβ]σ[el]

ρ with linear order perturbation in section 8.3
so we can easily get

RF0l0m = a2F (ηF )Rµνσρ[e0]µ[el]
ν [e0]

σ[em]ρ

=
a2F (ηF )

a2
[−H′δlm(1− 2A) +HA′δlm +A,lm −B′(l,m) −HB(l,m) − C ′′lm −HC ′lm]

(215)

RF0lim = a2F (ηF )Rµνσρ[e0]µ[el]
ν [ei]

σ[em]ρ

=
a2F (ηF )

a2
[
−(H2 −H′)δli(Vm −Bm) + (H2 −H′)δlm(Vi −Bi)− 2Hδl[iA,m]

+B[i,m]l + 2C ′l[i,m]

] (216)

RFiljm = a2F (ηF )Rµνσρ[ei]µ[el]
ν [ej ]

σ[em]ρ

=
a2F (ηF )

a2
[2H2δi[jδm]l(1− 2A) +H(δlmB(i,j) − δljB(i,m) + δijB(l,m) − δimB(l,j))

+ 2H(δl[mC
′
j]i + δi[jC

′
m]l) + 2Ci[m,j]l + 2Cl[j,m]i]

(217)

Now we are left to calculate the rest terms.(
Cµνσ;ρ − Cµνρ;σ

)
[ẽα]µ[ẽk]

ν [ẽβ]ρ[ẽl]
σ

=
(
−δµσ∇ρ∇ν ln aF + gνσg

µλ∇ρ∇λ ln aF + δµρ∇σ∇ν ln aF − gνρgµω∇σ∇ω ln aF

)
[ẽα]µ[ẽk]

ν [ẽβ]ρ[ẽl]
σ

=
(
gνσg

µλ (ln aF )′′ [ẽ0]λ [ẽ0]ρ − gνρg
µω (ln aF )′′ [ẽ0]ω [ẽ0]σ

)
[ẽα]µ[ẽk]

ν [ẽβ]ρ[ẽl]
σ

= η0αη0βδklH′F
(218)

CενρC
µ
σε[ẽα]µ[ẽk]

ν [ẽβ]ρ[ẽl]
σ

= (2∇ρ ln aF δ
µ
σ∇ν ln aF + δµν∇ρ ln aF∇σ ln aF + δµρ∇ν ln aF∇σ ln aF

− gνρgελ∇λ ln aF δ
µ
σ∇ε ln aF − gνρgελ∇λ ln aF δ

µ
ε∇σ ln aF

− gσεgµω∇ω ln aF δ
ε
ν∇ρ ln aF − gσεgµω∇ω ln aF δ

ε
ρ∇ν ln aF

+ gνρg
ελ∇λ ln aF gσεg

µω∇ω ln aF )[ẽα]µ[ẽk]
ν [ẽβ]ρ[ẽl]

σ

= ηkβηlαH2
F − η0αη0βδklH2

F

(219)

CενσC
µ
ρε[ẽα]µ[ẽk]

ν [ẽβ]ρ[ẽl]
σ

= (2∇σ ln aF δ
µ
ρ∇ν ln aF + δµν∇σ ln aF∇ρ ln aF + δµσ∇ν ln aF∇ρ ln aF

− gνσgελ∇λ ln aF δ
µ
ρ∇ε ln aF − gνσgελ∇λ ln aF δ

µ
ε∇ρ ln aF

− gρεgµω∇ω ln aF δ
ε
ν∇σ ln aF − gρεgµω∇ω ln aF δ

ε
σ∇ν ln aF

+ gνσg
ελ∇λ ln aF gρεg

µω∇ω ln aF )[ẽα]µ[ẽk]
ν [ẽβ]ρ[ẽl]

σ

= ηklηβαH2
F − η0αη0βδklH2

F

(220)

Finally we find the conformal rescaling of the Riemann tensor gives

R̃Fαkβl = RFαkβl +
(
Cµνσ;ρ − Cµνρ;σ − CενρCµσε + CενσC

µ
ρε

)
[ẽα]µ[ẽk]

ν [ẽβ]ρ[ẽl]
σ

= RFαkβl + η0αη0βδklH′F − ηkβηlαH2
F + ηklηβαH2

F

(221)
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By doing the conformal rescaling of the metric we obtain the Riemann tensor in the CFC.

R̃F0l0m = RF0l0m + a−2F δlmH′F

=
a2F (ηF )

a2
[−H′δlm(1− 2A) +HA′δlm +A,lm −B′(l,m) −HB(l,m) − C ′′lm −HC ′lm]

+ δlmH′F

= −
a2F (ηF )

a2
H′δlm + δlmH′F +O(ε)

(222)

R̃F0lim = RF0lim − 0

=
a2F (ηF )

a2
[
−(H2 −H′)δli(Vm −Bm) + (H2 −H′)δlm(Vi −Bi)− 2Hδl[iA,m]

+B[i,m]l + 2C ′l[i,m]

] (223)

R̃Filjm = RFiljm − δimδljH−2F + δijδlmH2
F

=
a2F (ηF )

a2
[2H2δi[jδm]l(1− 2A) +H(δlmB(i,j) − δljB(i,m) + δijB(l,m) − δimB(l,j))

+ 2H(δl[mC
′
j]i + δi[jC

′
m]l) + 2Ci[m,j]l + 2Cl[j,m]i]− δimδljH2

F + δijδlmH2
F

= 2
a2F (ηF )

a2
H2δi[jδm]l − 2δi[jδm]lH2

F +O(ε)

(224)

Where ε is the parameter that quantifies the amplitude of the linear order perturbations and
O(ε) stands for a certain quantity of order ε.

We have found the conformal Riemann tensor under the conformal Fermi coordinates when
choosing the Robertson-Walker metric with perturbations as the background. From the equa-
tion, we find that the CFC scale factor aF (ηF ) is very important here. Our original purpose of
setting up the CFC is to solve the problem of FNC that the Riemann tensor in NFC has the H2

and H′ terms which limits the size of the patch can be covered by FNC. We are able to see if
we simply set aF = a, the conformal Riemann tensor in CFC is only 0 plus small perturbations.
However, it is possible to define the CFC scale factor aF differently.

11 Choice of the CFC scale factor

So far we have only said that aF (ηF ) is a scale factor parameterized by the proper time. But
we have not talked about anything related to the physical meaning of it. Now we will discuss
the choice of this scale factor.

When applying to cosmology it is very natural for us to choose the scale factor a in the
Robertson-Walker metric. Since in Robertson-Walker space-time, if we choose aF = a, the
conformal metric is simply g̃µν = a−2gµν = ηµν . In this case, the H2 and H′ in the conformal
Riemann tensor in CFC are canceled. For the perturbed Robertson-Walker space-time, the
conformal Riemann tensor in CFC is simply 0 plus some perturbations.

R̃F0l0m = 2H′δlmA+HA′δlm +A,lm −B′(l,m) −HB(l,m) − C ′′lm −HC ′lm (225)

R̃F0lim = −(H2 −H′)δli(Vm −Bm) + (H2 −H′)δlm(Vi −Bi)− 2Hδl[iA,m]

+B[i,m]l + 2C ′l[i,m]

(226)

R̃Filjm = −4H2δi[jδm]lA+H(δlmB(i,j) − δljB(i,m) + δijB(l,m) − δimB(l,j))

+ 2H(δl[mC
′
j]i + δi[jC

′
m]l) + 2Ci[m,j]l + 2Cl[j,m]i

(227)
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Therefore, the CFC solves the patch limitation problem in the FNC. Since the conformal Rie-
mann tensor in CFC is only perturbations the patch that can be studied with CFC reaches the
supper-horizon size.

However, we can also define the CFC scale in a different way. For a local observer in the
perturbed Robertson-Walker space-time. The scale factor a is a background expansion factor.
The real expansion of the space observed by the local observer is not a. In fact, the real expansion
factor will be the background scale factor a plus some perturbations.

First, we consider a couple of particles are free-falling in a certain region in the time-space
which will give a bunch of time-like geodesics. We can study the expansion, shear, and rotation
of the particles on these geodesics with respect to proper time τ . We define Bµν = ∇νUµ
which is the velocity shear tensor. This tensor Bµν can be decomposed into the trace part, the
trace-free symmetric part, and the antisymmetric part.

Bµν =
1

3
ϑPµν + σµν + ωµν (228)

Where Pµν = gµν + UµUν . The trace part ϑ contains the information on the expansion of the
bunch of geodesics, σ contains the information on the shear, and ω contains the information on
the rotation. Then we want to see the time evolution of the velocity shear tensor.

DBµν
Dτ

= Uσ∇σBµν = Uσ∇σ∇νUµ

= Uσ∇ν∇σUµ + UσRλµνσUλ

= ∇ν(Uσ∇σUµ)−∇νUσ∇σUµ + UλUσRλµνσ

= −Bσ
νBµσ + UλUσRλµνσ

(229)

Since Uσ∇σUµ = 0 satisfies the geodesic equation.

We find Pµν
DBµν
Dτ =

D(PµνBµν)
Dτ . Where we have used the geodesic equation again. From this

equation, we can get the well-known Raychaudhuri equation.

d

dτ
ϑ = −1

3
ϑ2 − σαβσαβ + ωαβω

αβ −RµβµαU
βUα (230)

Working in the Conformal Fermi Coordinates we have

UµF =
∂xµF
∂τ

=
∂xµF
∂ηF

∂ηF
∂τ

=
1

aF (ηF )
[1, 0, 0, 0] (231)

Since in CFC the space-time is flat on the central geodesic. The Raychaudhuri equation can be
written as

d

dτ
ϑ = −1

3
ϑ2 − σαβσαβ + ωαβω

αβ − (RF )µβµαU
β
FU

α
F

= −1

3
ϑ2 − σαβσαβ + ωαβω

αβ − 1

a2F
(RF )µ0µ0

(232)

Where (RF )µ0µ0 = Rνγνθ[ẽ
µ]ν [ẽµ]ν [ẽ0]

γ [ẽ0]
θ is based on the global metric gµν . Noted that (R̃F )µ0µ0 =

R̃νγνθ[ẽ
µ]ν [ẽµ]ν [ẽ0]

γ [ẽ0]
θ is based on the conformal metric g̃µν = a−2F gµν . The relation between

(RF )µ0µ0 and (R̃F )µ0µ0 is thus

a−2F (RF )µ0µ0 = a−2F (R̃F )µ0µ0 − 3(ḢF +H2
F ) (233)

So that the Raychaudhuri equation in CFC is

d

dτ
ϑ = −1

3
ϑ2 − σαβσαβ + ωαβω

αβ − 1

a2F
(R̃F )µ0µ0 + 3(ḢF +H2

F ) (234)
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By defining HF = d ln aF
dτ := 1

3ϑ, the Raychaudhuri equation in CFC is reduced to

0 = −σαβσαβ + ωαβω
αβ − 1

a2F
(R̃F )µ0µ0 (235)

Where ϑ = ∇µUµ is the velocity divergence. So, one way of interpreting our choice of aF is that
it brings the Raychaudhuri equation into the simple form of Eq.(235)

So far we have not considered any specific global metric. Considering the FLRW metric with
perturbations, we can look at the velocity divergence ϑ in more detail. The global metric is
given by

ds2 = gµνdx
µdxν (236)

Where
g00 := −a2(1 + 2A), g0a := −a2Ba, gab := a2 (δab + 2Cab) (237)

The 4-velocity along the time-like central geodesic is

Uµ =
1

a
(1−A, V a) (238)

In the perturbed FLRW space-time ϑ is given by

ϑ =
1

a

[
3H− 3HA+ Ca′a + ∂aV

a
]

(239)

So that HF = 1
3ϑ is given by

HF =
d ln aF
dτ

=
1

a

[
H−HA+

1

3
Ca′a +

1

3
∂aV

a

]
=
HF
aF

(240)

After some calculations we find

d

dη

aF (ηF )

a(η)
= −aFH

a
+
aFHF
a

dηF
dη

= −aFH
a

+
aFHF
a

dηF
dτ

dτ

dη
=
aF
a

[
1

3
Ca′a +

1

3
∂aVa

]
(241)

Thus, we get the relation between the background scale factor and the CFC scale factor aF
under this definition. The CFC scale factor aF now is the background scale factor a plus some
perturbations.[43]

aF = a+O(ε) (242)

Thus, the conformal Riemann tensor in CFC is also order of ε. Therefore, using Eq.(212) we
find the condition for the metric to be close to Minkowski is

O(R̃Fµlνmx
l
Fx

m
F ) ≈ O(ε)x2F<1 =⇒ xF<[O(ε)]−

1
2 (243)

Comparing to the case in FNC the scale of the xF is much larger.

Part VI

Conclusions

In this thesis, we have constructed the Fermi normal coordinates (FNC) and the conformal
Fermi coordinates (CFC). These are the coordinates of a free-falling observer that describes the
neighborhood as a Minkowski space-time or a Robertson-Walker space-time up to corrections
that grow with the square of the distance from the time-like geodesic of the free-falling observer.
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Fermi normal coordinates are constructed on any background metric gµν . We considered a
free-falling observer who gives a time-like geodesic xµ(τ) which is parameterized by the proper
time. Choose a point P on the geodesic as the origin of the coordinates. There exist four
orthonormal tetrads that fix the coordinate axes there such that the metric on point P on the
geodesic is in the normal form ηµν . By parallel transporting the four tetrads along the central
geodesic, we make sure that the metric fixed by the tetrads on every point on the geodesic
has the form ηµν . For a point Q with definite proper distance sQ that is uniquely connected
by another space like geodesic xµ(s) from xµ(s = 0) = P the Fermi normal coordinates are
defined by xiF = aisQ. Where ai is the components of the tangent vector on the space-like
geodesic at point P when using the spacial tetrads as the base of the vector space. The global
coordinates of the point Q can then be expanded around P with different orders of the Fermi
normal coordinates.

In order to find the metric in FNC we further calculated the derivatives of the coordi-
nate transformation ∂xµ

∂xαF
. By using the coordinates transformation law of tensor gFµν(Q) =

∂xα

∂xµF

∂xβ

∂xνF
gαβ(Q) we found the form of the metric in FNC for arbitrary background space-time.

gF00(Q) = η00 −RF0l0mxlFxmF

gF0a(Q) = η0a −
2

3
RF0lamx

l
Fx

m
F

gFab(Q) = ηab −
1

3
RFalbmx

l
Fx

m
F

(244)

We applied the FNC to the perturbed Robertson-Walker space-time. First, we found the
four tetrads in this background and then calculated the Riemann tensor in FNC by RFαβγδ =

[eα]µP [eβ]νP [eγ ]κP [eδ]
λ
P Rµνκλ. Where The tetrads and the Riemann tensor are based on the

Robertson-Walker metric with perturbations. To the linear order we found

gF00(Q) = η00 −
1

a2
[−H′δlm(1− 2A) +HA′δlm +A,lm −B′(l,m) −HB(l,m) − C ′′lm −HC ′lm]xlFx

m
F

gF0a(Q) = η0a −
2

3a2
[−(H2 −H′)δli(Vm −Bm) + (H2 −H′)δlm(Vi −Bi)− 2Hδl[iA,m]

+B[i,m]l + 2C ′l[i,m]]x
l
Fx

m
F

gFab(Q) = ηab −
1

3a2
[2H2δi[jδm]l(1− 2A) +H(δlmB(i,j) − δljB(i,m) + δijB(l,m) − δimB(l,j))

+ 2H(δl[mC
′
j]i + δi[jC

′
m]l) + 2Ci[m,j]l + 2Cl[j,m]i]x

l
Fx

m
F

(245)
However, Robertson Walker metric brings H2 to the Riemann tensor which brings a problem

to the size of the patch that can be covered by FNC because for xF>H
−1 the deviation of FNC

metric from Minkowski space is too large. Thus the scale that can be studied is limited. This is
the motivation for us to construct the conformal Fermi coordinates.

The construction of the conformal Fermi coordinates is similar to the construction of the
Fermi normal coordinates. We defined a ’conformal metric’ g̃µν(x) ≡ a−2F (τ)gµν(x) to take the
scale factor out of the global metric around the time-like central geodesic. Again we found
the four tetrads but this time based on the conformal metric [ẽa]

µ = aF (τ)[ea]
µ. The CFC

coordinates xiF are defined based on conformal metric xiF = βis̃Q. Where s̃Q is the conformal
proper distance. Following the same procedures we have done for NFC, we were able to find the
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metric in CFC
gF00 (Q) = a2F (ηF )

[
η00 − R̃F0k0l

∣∣∣
P
xkFx

l
F

]
,

gF0a (Q) = a2F (ηF )

[
η0a −

2

3
R̃F0kal

∣∣∣∣
P

xkFx
l
F

]
,

gFab (Q) = a2F (ηF )

[
ηab −

1

3
R̃Fakbl

∣∣∣∣
P

xkFx
l
F

]
.

(246)

We again applied the perturbed Robertson-Walker metric to the background. Calculated
the conformal Riemann tensor in CFC with R̃Fαkβl = R̃µνρσ[ẽα]µ[ẽk]

ν [ẽβ]ρ[ẽl]
σ where R̃µνρσ is the

conformal Riemann tensor based on the perturbed Robertson-Walker metric. To the linear order
we found

R̃F0l0m = RF0l0m + a−2F δlmH′F

=
a2F (ηF )

a2
[−H′δlm(1− 2A) +HA′δlm +A,lm −B′(l,m) −HB(l,m) − C ′′lm −HC ′lm]

+ δlmH′F
R̃F0lim = RF0lim − 0

=
a2F (ηF )

a2
[
−(H2 −H′)δli(Vm −Bm) + (H2 −H′)δlm(Vi −Bi)− 2Hδl[iA,m]

+B[i,m]l + 2C ′l[i,m]

]
R̃Filjm = RFiljm − δimδljH−2F + δijδlmH2

F

=
a2F (ηF )

a2
[2H2δi[jδm]l(1− 2A) +H(δlmB(i,j) − δljB(i,m) + δijB(l,m) − δimB(l,j))

+ 2H(δl[mC
′
j]i + δi[jC

′
m]l) + 2Ci[m,j]l + 2Cl[j,m]i]− δimδljH2

F + δijδlmH2
F

(247)

By choosing the CFC scale factor aF to be the background scale factor a or a plus some per-
turbations we are able to leave the conformal Riemann tensor in CFC only with perturbations
terms. Thus, the CFC solves the patch limitation problem in the FNC. Since the conformal
Riemann tensor in CFC is only perturbations the patch that can be studied with CFC reaches
the supper-horizon size.
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E. Gjerløw, J. González-Nuevo, K. M. Górski, S. Gratton, A. Gregorio, A. Gruppuso,
J. E. Gudmundsson, J. Hamann, F. K. Hansen, D. Hanson, D. L. Harrison, G. Helou,
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A. Mangilli, A. Marchini, M. Maris, P. G. Martin, M. Martinelli, E. Mart́ınez-González,
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