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Abstract

In this Master thesis, we studied the estimation of the intrinsic shape of galaxy clus-
ters through multi-wavelength observations. The cluster shape has an influence on
the distance and mass estimation of the cluster. It plays an important role in high-
precision cosmology. We used parametric models and presented common electron den-
sity models and temperature profiles to describe the intracluster medium and derived
expression in terms of well known functions for the X-ray surface brightness and the
Sunyaev-Zel’dovitch temperature decrement. We showed that X-ray surface bright-
ness measurements are not enough to estimate the cluster shape. Then, we produced
observations and fitted them with different models to estimate the elongation of the
cluster. We observed that a simple isothermal model is often a good choice to fit a
polytropic cluster if the average error on the temperature profile and on the central
temperature decrement are σT (r) ∼ 2 keV and σ∆T0/∆T0 ∼ 10%. Otherwise, the
elongation is overestimated by the isothermal model. Assuming the same errors, we
showed that a simple isothermal β-model is a good choice to estimate the elongation of
a cluster with a central cusp in the electron density. We observed that one can ignore
a cool core in the measured temperature profile under centrain circumstances if one
wants to estimate the cluster shape.
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1 Introduction

Observations reveal that galaxies are not regularly distributed in space. Rather, they
tend to form groups or clusters of galaxies. Groups, clusters and superclusters make
up the large scale structure of the universe.

Galaxies provide only a small fraction of the total mass of a cluster. X-ray as-
tronomy reveals that galaxy clusters are intensive sources of X-ray radiation, that is
emitted by hot gas between the galaxies, the ICM (intracluster medium). Due to the
dynamics of the cluster members, the properties of the X-ray emission, and the ob-
served gravitational lensing data, it seems that dark matter is dominating the mass of
clusters.

Galaxy clusters play a remarkable role in cosmology. They are the largest gravi-
tationally bound structures in the Universe and can be observed up to high redshift.
Therefore, they are an often used probe for cosmological tests and the evolution of
large scale structure or for providing an estimate for cosmological parameters. More-
over, galaxy clusters can act as gravitational lenses which can reveal a view on objects
beyond the range of present day telescopes.

Clusters of galaxies are not spherical symmetric. Their intrinsic shape and orienta-
tion provides information about the evolution of the mass distribution in the universe,
since they have been strongly influenced by the statistical properties of the large-scale
primordial density field. Hence, their intrinsic structure probes the cosmic structure
formation, because it can show how material aggregates form large-scale structures.
Moreover, cluster mass estimations and distance measurements depend on the cluster
shape, since the cluster distance obtained through multi wavelength observations and
the elongation of the cluster degenerate. So, the intrinsic shape of a cluster is an
important parameter.

The goal of this thesis is to investigate methods for the estimation of the three
dimensional shape of galaxy clusters, more precisely of the ICM, through the combi-
nation of X-ray wave band observations and analysis of the Sunyaev Zeldovich effect.
We use a parametric approach. We try to understand the dependence of an estima-
tion of the intrinsic shape on the used models and measurements of the observable
quantities. Therefore, first, we derive expressions for the observable quantities. Then,
we simulate the observable data of the clusters and fit them with different models
and profiles. At last, we could determine their elongation along the line of sight and
estimate the effect of different assumptions.

In this introducing section 1, we briefly review general features of galaxy clusters
and their observation at different wave lengths. We give some theoretical background
of high energy astrophysics and discuss how we can describe the measured data. In
section 2, we present a set of models to describe the gas density and the temperature
profile of galaxy clusters. They are important to express the observed data in terms of
the properties of the ICM. In section 3, we find analytic expressions for the observable
quantities of clusters in the case of some of the models. In section 4, we use those
expressions to simulate cluster observations, we test our method and examine the
effect of different assumptions on the elongation. In section 5, we summarise the most
important results we obtained and future prospects are mentioned.

1.1 Galaxy clusters

For many years, only observations in the wave band of visible light were possible.
The optical appearance of galaxy clusters invites to classify them. Hence, we will
briefly introduce some ideas of classification. Present day telescopes allow to go a step
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further and to observe clusters in a wider spectrum from the X-ray to the micro wave
band. This provides a lot of new information. We will shortly present some of these
instruments.

1.1.1 Optical classification

The most famous compilation of galaxy clusters is the Abell-catalogue published by
George Abell in 1958. To identify the clusters he looked for overdensities in the galaxy
distribution on the plane of the sky. Observations were first limited to the northern
sky and then extended to the southern sky. The resulting ACO-catalogue (named after
Abell, Corwin & Olowin, 1989, [Abell]) includes 4076 clusters.

To arrange this huge amount of objects properly, a classification is desirable. Pos-
sible criteria are the number of cluster members or the magnitude of the clusters, both
used in the ACO-catalogue (six richness classes and seven distance classes). The
morphology of the galaxy distribution in the clusters is also used to classify them in
several ways. So-called regular clusters are compact, are often dominated by a central
galaxy and have a large number of members. On the other hand, the irregular clusters
are not compact, have no dominant central galaxies, but they often have pronounced
substructures and hold not as much cluster member as the regular ones. Thus, regular
clusters can be seen as relaxed while irregular ones still undergo evolution [Schneider].
Of course, there is a smooth transition between regular and irregular cluster. These
properties show that the morphological classification is connected to physical differ-
ences.

Galaxies are the dominant part of the clusters in the optical wave band. Never-
theless, most of the gravitational mass of a cluster is dark matter. Baryonic matter
makes up only a small part of the total mass. The largest part of the baryonic matter,
e.g. around 30% of the total mass in the case of the Coma cluster [Jetzer 03], is not
bound in stars of galaxies but scattered in between. This is the intracluster medium,
hot ionized gas, mostly hydrogen. Observations in the X-ray wave band reveal this
crucial component of the galaxy clusters. It is assumed that the ICM is a mixture of
primordial gas and gas that is ejected from galaxies. It is very hot (∼ 108K) and has
a low density (10−3 atoms/cm3). Several heating mechanisms are proposed to explain
such large gas temperature: if gas falls into the cluster, its kinetic energy will be con-
verted to thermal energy due to friction and scattering. Also the constant movement
of the galaxies in the cluster causes friction between galaxies and gas. Moreover, su-
pernova explosions in the cluster galaxies can heat up the gas and are important for
the enrichment of the ICM. The high temperature leads to an almost fully ionized gas.

1.1.2 Observation

Present day X-ray observatories

Since most of the X-rays are absorbed by atoms and molecules of Earth’s atmosphere,
observations of the ICM were not possible before space-based X-ray observatories like
UHURU (1970) or ROSAT (1990) were build.

The most important X-ray instruments in space today are the Chandra X-ray
Observatory and the X-ray Multi-Mirror Mission, XMM-Newton, both launched in
1999. A combination of the very fine angular resolution of Chandra and the large field
of view of XMM-Newton is a powerful tool to reveal the complex structure and physics
of the ICM.
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Chandra X-ray observatory NASA’s Chandra was boosted into an elliptical high-
earth orbit that allows long-duration uninterrupted exposures of celestial objects like
clusters. The Chandra telescope is operating in the energy band between 0.1−10 keV .
X-rays from distant clusters of galaxies can be imaged and spectra measured as a
function of position within the cluster. The ACIS (AXAF1 Charged Coupled Imaging
Spectrometer) consists of two CCD arrays with a field of view of 16′ × 16′, respective
8′ × 48′ and a spatial resolution of 0“49. Another important instrument is the High
Resolution Camera (HRI) with a field of view of 30′×30′ and a comparable resolution.

XMM-Newton ESA’s XMM-Newton telescope operates in an energy range of 0.1−
15 keV . There are three co-aligned telescopes. They provide images over a 30′×30′ field
of view with a moderate spatial resolution of 5′′ using the European Photon Imaging
Camera (EPIC). High-resolution spectral information is provided by the Reflection
Grating Spectrometer (RGS). The gratings, mounted under two telescopes, deflect
about half of the X-ray light onto an array of EPIC CCD detectors. An additional
telescope is a co-aligned 30 cm optical/UV telescope (called Optical Monitor). Hence,
one can measure in the X-ray and in the optical/UV band at once. In figure 1, we
show a cross section of this observatory.

Figure 1: A sketch of the interior of XMM-Newton. On the left, we see the three mirror modules,
two of them are equipped with grating arrays. The Optical Mirror is hidden behind the lower module.
On the right, there are the EPIC cameras and the spectrometers. From [XMM].

Sunyaev-Zeldovich measurements

One way to detect galaxy clusters and to get information about their ICM is to use the
Sunyaev-Zeldovich effect (SZ-effect or SZE), see section 1.2.2. This effect is usually
measured in the microwave band. Microwaves easily penetrate the atmosphere and
ground-based observation is possible. The SZE does not explicitly depend on the
redshift of the cluster, and it is almost not sensitive to the used cosmological model,
see section 1.2.4. Therefore, it could be a tool to detect all clusters in a given region
of the sky because there is almost no limitation due to large distances2. On the other

1Advanced X-ray Astrophysics Facility
2Since the SZE signal is almost independent of redshift, the limit of such surveys is the cluster

mass limit. If the clusters are small, the temperature of the gas is small and therefore, the SZ-effect
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hand, measurements in the X-ray band depend on the redshift and become more faint
with increasing distance as show in figure 2.

Figure 2: These three clusters at increasing redshift (from left to right) illustrate an advantage of
the SZ measurements (large images) compared with X-ray surface brightness map (small images).
Clusters a large distances become fainter in the X-ray band while the temperature decrement is not
affected by the redshift. It is therefore a powerful tool to search for distant clusters. From [SZA].

Planck The European Planck satellite was launched in May 2009 and is operating
in the 30− 857GHz wave band. Its mean objective is to measure the fluctuations of
the Cosmic Microwave Background (CMB). Another result will be the measurement
of the distortion of the CMB spectrum, the SZ-effect, in thousands of galaxy clusters,
see [Planck] for details.

Owens Valley Radio Observatory The Owens Valley Radio Observatory (OVRO)
in California is the largest university-operated radio observatory in the world. Beside
other instruments, there are a 40m telescope and a 5, 5m telescope both constructed
in between 1965 and 1968 that are used primarily for studies of the CMB radiation
and therefore also for observations of the SZE of known X-ray clusters. First results
on this topic were published in 1995, see [Herbig].

1.2 Remarks on astrophysics

Electromagnetic signals provide the only observational constraints on properties of
galaxy cluster. Therefore, we will briefly discuss some important processes in high
energy astrophysics, see [Jetzer 03] and references there in. Moreover, we will shortly
introduce gravitational lensing, a tool which is very important to observe the total
cluster mass. Finally, we discuss projection effects in astronomy and how we can
combine the projected quantities which are observed at different wavelength to tell
something about the shape of galaxy clusters.

1.2.1 Bremsstrahlung and X-ray surface brightness

Bremsstrahlung is radiation emitted in the encounter between an electron and a nu-
cleus; in general, it is emitted whenever a charged particle is accelerated or decelerated.
Therefore, if there is hot ionized gas in the Universe, it emits bremsstrahlung.

Electrons in a hot ionized gas at temperature T whose velocity distribution is
Maxwellian emit a continuum spectrum of thermal bremsstrahlung. The velocity dis-
tribution is as follows:

ne(v) = 4πne

(
me

2πkBT

)3/2

v2e
−mev2
2kBT (1)

decreases, [Gioia].
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where ne is the number density of electrons, which is in general a function of position,
me is the rest mass of an electron and kB the Boltzmann constant.

I(w, v) is the radiation spectrum, a function of particle velocity and radiation
frequency. It is given as

I(w, v) =
Z2e6N

12π3ε30c
3m2

e

1
v
lnΛ (2)

in the case of high energetic but still non-relativistic electrons, where N is the number
density of nuclei and Λ = 8πε0mev

3

Ze2ω for low electron velocities (v < Z c/137), and
Λ = 2mev

2

h̄ω for high velocities (v ≥ Z c/137). Z is the atomic number of the involved
nucleus. ε0 is the electric constant, commonly known as vacuum permittivity.

The spectral emissivity of the plasma, kν , defined as the emitted energy per unit
time, frequency and volume, is given as

kν =
∫ ∞

0

ne(v) I(w, v) dv ∝ Z2 1√
kBT

g(ν, T )Nnee
−hν
kT , (3)

where g is the averaged Gaunt factor, a quantum mechanical factor related to the
number of states. Typically, g ' 1.2. Therefore, the spectrum is nearly an exponential
function of the frequency ν.

By integrating the spectral emissivity kν over the frequency we find the total energy
loss rate of the plasma:

−
(
dE

dt

)
∝ Z2T 1/2gNne. (4)

A cluster of galaxies or more precisely the intracluster medium is a source of thermal
bremsstrahlung. A typical X-ray spectrum of intracluster gas with its characteristic
exponential shape is show in figure 3. Moreover, if the metallicity of the plasma is
not zero, strong emission lines occur above the bremsstrahlung spectrum. Processes
contributing to X-ray line emission from a diffuse plasma include collisional excitation
of valence or inner shell electrons and radiative recombination. These emission lines,
especially the so-called Fe K line at 7keV , can be used to determine the redshift of
the clusters. Moreover, in addition with the position of the exponential cut off of the
X-ray spectrum and its shape, they are good tools to determine the temperature of
the gas.

X-ray surface brightness Observations in the keV -regime performed by instru-
ments like Chandra reveal a map of the galaxy cluster that is produced by bremsstrahl-
ung and line emission in the intracluster medium. This surface brightness is given by

SX =
1

4π (1 + z)4

∫
los

n2
eΛ(Te, Z) dl. (5)

According to (4), the total emissivity is proportional to n2
e, assuming ne ' N . Λ(Te, Z)

is called the cooling function of the intracluster medium. It is usually a power law
of the temperature, i.e. Λ(Te, Z) ∼ Λ(Z)Tαe , whereas α depends on the energy
band of the instrument, the electron temperature and the metallicity of the gas.
Usually, if Te > 2.5 keV , the emission is mainly due to bremsstrahlung and Λ̃ =
3.0×10−27 erg cm3 s−1K−α and α = 0.5, [Sarazin]. Ettori [Ettori 00] derived α in the
case of different energy windows, temperature regimes and metallicities, which should
lead to a more appropriate cooling function, see appendix. Λ also embodies the aver-
aged Gaunt factor. The factor of 4π arises from the assumption that the emissivity
is isotropic, while the (1 + z)4 factor takes into account the cosmological expansion of
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Figure 3: X-ray emission of a hot plasma. Three different gas temperatures are shown, (1 keV ,
3 keV , 9 keV ). The radiation of the hotter gas reaches higher energies. We see the exponential cutoff.
In addition, the line emission is taken into account. It gains importance if the temperature is lower.
The photoabsorbtion is neglected since the H column density is 0 cm−2. From [Schneider].

spectral surface brightness and energy.

1.2.2 Compton scattering and Sunyaev-Zeldovich effect

Compton scattering describes high energy photons which scatter on electrons. Usually,
if the electrons are nearly at rest, a fraction of the momentum is transferred from the
photon to the electron, i.e. the frequency of the photon decreases. If the energy of
the incoming photon is low enough to ignore the momentum transfer, this process is
called Thompson scattering.

For a stationary electron, the change of the photon wavelength ∆λ is given as:

∆λ
λ

=
h̄ω

γmec2
(1− cosα), (6)

where λ is the wavelength and h̄ω the energy of the incoming photon, γ is the common
relativistic factor and α is the scattering angle.

If low energy photons hit ultrarelativistic electrons, the photons acquire energy
from the electrons. This process is called inverse Compton scattering because the
electrons lose energy rather than the photons.

Consider a hot thin plasma, e.g. the hot intergalactic gas in clusters of galaxies.
Photons which pass through this medium will lose or acquire energy. In the non-
relativistic regime in which kTe � mec

2 and h̄ω � mec
2 (Te is the electron gas

temperature, ω the angular frequency of the photon), the overall energy change of a
photon ∆ε is

∆ε
ε

= − h̄ω0

mec2
+ 4

kTe
mec2

, (7)

where h̄ω0 describes the photon energy before the scattering event.
A detailed description of how the energy spectrum of the photons gets modified

requires the use of the Boltzmann equation. In the non-relativistic regime, the energy
transfer will be small. Therefore, the Boltzmann equation can be expanded to the
second order in ∆ε, leading to an approximation which is known as Kompaneets equa-
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tion. It is used to describe the distortions of the spectrum of the cosmic microwave
background radiation, figure 4. The CMB intensity increases at frequencies above 218
GHz and decreases at lower frequencies.

Figure 4: The Sunyaev-Zeldovich effect leads to a distortion of the cosmic microwave background
radiation spectrum. This distortion is shown for a fictional cluster around 1000 times more massive
than a typical massive galaxy cluster. The SZE causes a decrease in the CMB intensity at frequencies
lower than 218GHz and an increase at higher frequencies. From [Reese 03].

Thermal Sunyaev-Zeldovich effect In 1970, Sunyaev and Zeldovich [SZ 70] have
found the following temperature decrement in the Rayleigh Jeans region (hν � kBT )
of the CMB spectrum:

∆T
TCMB

= −2y, (8)

where y is called the Comptonisation parameter. It is given by

y =
∫
los

σT kB
mec2

neTe dl. (9)

σT is the Thompson cross section. The integration is along the line of sight (’los’).
If Te does not depend on the position, y is proportional to the optical depth and is
therefore also called Compton optical depth.

If the CMB photons are scattered as they propagate to the Earth through regions
of very hot plasma, as in the case of clusters of galaxies, the temperature decrement
is called Sunyaev Zeldovich Effect (SZ effect or SZE). It is typically of the order
∼ 1mK at frequencies in the Rayleigh-Jeans regime and provides information about
the electron density in the ICM and is a good tool to detect clusters: Galaxy clusters
cast shadows below 218 GHz and shine above.

In general, the measured temperature decrement is given by

∆TSZ
TCMB

= fSZ(ν, Te)
σT kB
mec2

∫
los

neTe dl. (10)

fSZ(ν, Te) gives the frequency dependence of the temperature decrement and also
accounts for relativistic corrections at frequency ν, this results in a change of the
prefactor compared to equation (8)3. The integrand is proportional to the gas pressure,
P ∝ ne Te. We remark that this decrement does not depend explicitly on the redshift.

3More precisely, in the Rayleigh-Jeans limit fSZ(ν, Te)→ −2, [Reese 02]
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Figure 5: The galaxy cluster Abell 963 is member of the Abell-catalogue. The apparent cluster
center of A963 is located at (RA,Dec.) = (10h17m03s.62), 39◦02′48′′.84) in 2000, the redshift of the
brightest cluster galaxy is z = 0.206. Due to the strong gravitational lensing effect, two giant arcs
appear at the north and south of the cluster. These are distorted, multiple images of two galaxies at
z = 0.771 (north) and z = 1.958 (south). From [Elser].

1.2.3 Gravitational lensing

In this thesis, we won’t use this powerful tool to analyse clusters. Nevertheless, it is
worth mentioning. More information can be found in [Elser] and references therein.

One of the statements of General relativity is the deflection of light rays when they
propagate through a gravitational field. Gravitational lensing occurs when light of a
bright source far away, for example quasars, is bended around a massive object like a
galaxy cluster. In this case, the gravitational field is similar to an optical lens.

Hence, a fundamental difference to X-ray emission and SZ effect is that gravita-
tional lensing does not probe the electron density but maps the total mass of the
cluster. Usually, this mass can be related to the ICM if the gas is assumed to be
in hydrostatic equilibrium with the gravitational potential of the cluster. After esti-
mating the total mass of the cluster, one can get information about the dark matter
component.

There are two methods to estimate the the cluster mass. In strong lensing, the
surface mass density is obtained by fitting the multiple images of the background
source, figure 5. In weak lensing, analysis of the statistical distortion of the background
images reveals the projected lens mass.

1.2.4 Distance measures in cosmology

Galaxy clusters belong to the farthest objects, we can observe today. Those large
distances have to be handled with care. In cosmology there are many ways to spec-
ify the distance between two points [Hogg]. Because of the expanding Universe, the
distances between comoving objects are constantly changing. The concept of distance
in curved spacetime are more complicated than in the Euclidean case. For a quan-
titative description, we have to assume that our Universe is described through the
Friedmann-Robertson-Walker metric.

The Hubble constant H0 is the factor of proportionality between recession speed v
and distance d in the expanding Universe. The Hubble distance is defined as

DH ≡
c

H0
= 9.26× 1025 h−1m, (11)

where 0.6 < h < 0.9 and c is the speed of light. The mass density ρ and the value of
the cosmological constant Λ are dynamical properties of the Universe. They are often
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rescaled in a dimensionless form, depending on H0 and their present day values, ΩM
and ΩΛ. The third parameter, the ’curvature of space’ ΩK is defined by the relation

ΩM + ΩΛ + ΩK = 1. (12)

This allows several combinations of parameters whereas ΩM is larger than zero. Com-
mon models are for instance the high lambda model (ΩM ,ΩΛ,ΩK) = (0.2, 0.8, 0) or
the Einstein-de-Sitter model (ΩM ,ΩΛ,ΩK) = (1, 0, 0).

The angular diameter distance DA is defined as the ratio of an object physical
transverse size at a redshift z to its angular size. The angular diameter distance from
the observer to an object at redshift z depends on the cosmological parameters and is
given as

DA(z) =
1

1 + z

c

H0|ΩK0|
SK

(∫ z

0

|ΩK0|
H(z′)

dz′
)
, (13)

where H(z′) =
√

ΩM0(1 + z′)3 + ΩK0(1 + z′)2 + ΩΛ0. The subscript 0 denotes the
present value. SK(x) is defined as sin(x) if the Universe is closed, ΩK0 < 0, SK(x) =
sinh(x) if the Universe is open, ΩK0 > 0, and SK(x) = x if the metric is flat, ΩK0 = 0.

1.2.5 Multiwavelength approach

X-ray surface brightness, Sunyaev-Zeldovich temperature decrement and gravitational
lensing are especially powerful tools if we combine them. This helps to determine
properties of the cluster or to estimate cosmological parameters.

A combination of SZ-effect and X-ray emission measurements yields an estimate of
the distance to the cluster and therefore a determination of the Hubble constant. It is
enough to focus on the central values. The temperature decrement is proportional to

∆TSZ,0
TCMB

∝ ne,0Te,0L, (14)

where L is the cluster’s length along the line of sight. We obtain this, if we substitute
the integration along the line of sight by a multiplication. It is inversely proportional
to the elongation e∆. The X-ray brightness in contrary is proportional to

SX0 ∝ n2
e,0L. (15)

We can determine Te through a X-ray spectrum analysis. We can eliminate ne in (14)
and (15) and get

∆TSZ,0 ∝
√
SX0L. (16)

Next, we assume spherical symmetry of the cluster. Therefore, we can equalise the
length L along the line of sight and a width R on the plane of the sky, L = R = θDA.
θ is the angular diameter of the cluster (13). Hence:

DA =
L

θ
∼ R

θ
∝ ∆T 2

SZ,0

1
SX0

. (17)

This proportionality allows to estimate the angular diameter distance of the cluster
if we know the central temperature decrement, the X-ray surface brightness and the
ICM temperature. Therefore, a determination of the Hubble constant, DA ∝ 1/H0 is
possible, see the previous section.

Of course, the assumption that the cluster is spherical is often not justified. Then,
the elongation and the angular diameter distance, respectively the Hubble constant are
degenerate and we can’t determine both at once. This degeneracy can be broken only
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with information about the cluster potential provided by gravitational lensing and
an additional constraint given by the assumption of hydrostatic equilibrium which
connects the pressure and the gas density, [Fox & Pen 02].

Instead, if the cosmological parameters are known, we can determine the elongation
of the cluster thought X-ray surface brightness and temperature decrement observa-
tions. If the cluster is not spherical, an additional factor 1/

√
f occurs, see section 3.1.

It is related to the elongation and the projected length scale lp. We get

SX0 ∝ n2
e,0

lc√
f

= n2
e,0

lp
e∆
, (18)

∆TSZ,0 ∝ ne,0
lc√
f

= ne,0
lp
e∆
. (19)

If we calculate
SX0

∆T 2
SZ,0

∝ lp
e∆

e2
∆

l2p
=
e∆

lp
, (20)

we can solve for e∆, whereas ne0 drops out. If the angular diameter distance in
lp = θpDA is not known, we can not determine the elongation, as mentioned above.
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2 Electron density models and temperature profiles

Galaxy clusters consist of up to thousands of galaxies, the ICM and a large amount of
DM. As described above, beside optical observations, measurements in the X-ray and
micro wave band are important. Those rays originate from the ICM. To characterise
the shape of the ICM, it is often described by models. These parametrisations of ne
are of crucial importance for the goal of this thesis, because it allows us to find simpler
expressions for the X-ray surface brightness and the SZ temperature decrement. This
will result in advantages in the calculations.

The following section introduces the most important models that are used to de-
scribe electron densities in galaxy clusters in recent research. We will give the motiva-
tion for each model, their benefits and disadvantages. In addition, we will also present
different temperature profiles.

2.1 Electron density models

During the last decades, several models have been proposed to parameterize the gas
density profile in clusters, from the simple β-model (1976) with two free parameters
to the model proposed by Vikhlinin (2006) with 10 independent free parameters.

Here, the models are introduced assuming spherical symmetric density distributions
described by radius r. They are generalised to ellipsoidal distributions by changing
r → ζ, whereas ζ is the ellipsoidal radius.

2.1.1 β-model

Cavaliere & Fusco-Femiano noted in 1978 that ”...gas and galaxies distributions con-
forms to the same gravitational potential, the former can be directly related to the
latter...” [Cavaliere].

Hydrostatic equilibrium4 of the gas implies

1
ρgas(r)

dPgas(r)
dr

= −∇Φ(r), (21)

whereas Φ(r) is the cluster gravitational potential, Pgas(r) ∝ ρ(r)T (r) is the radial gas
pressure and ρgas(r) is its density. Moreover, let the gas distribution be isothermal,
T (r) = T .

If we assume an ’isothermal’ distribution of the galaxies, i.e. their radial velocity
dispersion is independent of the radial distance to the center, hydrostatic equilibrium
implies

1
ρgal(r)

dPgal(r)
dr

= −∇Φ(r), (22)

where Pgal(r) is the radial pressure that is connected to the radial velocity dispersion
of the galaxies P ∝ 〈v2〉 and ρgal(r) = 〈m〉n(r) is the mean mass of a galaxy times
the number density.

Comparing equations (21) and (22), it follows

ρgas(r) ∝ [ρgal(r)]β , (23)

4 The gas is in hydrostatic equilibrium, i.e. the gravitational forces due to the cluster potential is
balanced by the pressure force, if the time required for a sound wave in the ICM to cross the cluster is
short compared to the probable age of a cluster unless the gravitational potential varies on a shorter
time scale or the gas is heated or cooled more rapidly than this. Usually, gas cools due to emission.
This time scale is inverse proportional to the gas density and may be small close to the dense cluster
center, [Schneider].
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whereas β is a parameter that depends essentially on gas temperature and velocity
dispersion of the galaxies along the line of sight σv,

β ∝ σ2
v/Tgas. (24)

Let’s introduce a special kind of density model that describes an isothermal distribution
of galaxies, the so called King model :

ρgal(r) = ρ0

(
1 + (r/rc)

2
)− 3

2
, (25)

where rc is the core radius.
Including the connection between gas and galaxy density, we get a gas density

profile, called β-model

ρgas(r) = ρ0

(
1 + (r/rc)

2
)− 3β

2
, (26)

whereas β and rc parameterize this distribution. Here, we normalized ρβ0 → ρ0.
In general, we assume that the gas is hot and nearly fully ionized. Therefore, the

gas density ρgas may be considered as tracer of the electron number density ne. Hence:

ne(r) = ne0

(
1 + (r/rc)

2
)− 3β

2
. (27)

The β-model is widely used. It has only two degrees of freedom (or three, if we
count the central electron density too). They have a physical background: the core
radius determines the border of the core, i.e. the radius of the change of slope of the
profile, where the density is not flat anymore. The β parameter describes the slope
of the density decrement. Degeneracies among those two parameters are obvious, an
increase of the β-parameter can almost be compensated by an increase of the core
radius. Figure 6 illustrates the dependence of ne on the two parameters.

rc=1, Β=0.6

rc=1, Β=0.8

rc=0.7, Β=0.6

0.001 0.01 0.1 1 10 100
radius in rc0.001

0.01

0.1

1

10
normalised ne

Figure 6: β-model and its dependence on the slope parameter β and the core radius rc. The electron
density is normalized. The radial coordinates are given in units of rc.

Since there is a relatively simple dependence on the radius, analytic expressions of
the projected quantities are easily to find if this model is used. This simplicity holds
also disadvantages, of course.

� Due to its small number of free parameters, this model it is often not able to
provide a good fit to the data.

� Isothermality is not observationally confirmed, e.g. so called cool cores have been
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observed. Moreover, if β < 2/3, an increasing temperature with cluster radius is
required to guarantee an asymptotic baryon fraction that is consistent with the
Universe [Xue], which is in contradiction to isothermality and the model is not
self consistent.

� The so called β-discrepancy is still not fully explained. It describes a mismatch
between the measured and fitted β parameter. Measurements of the gas temper-
ature and the velocity dispersion of the galaxies provide a value of β = βspec ' 1
as one would expect in the isothermal case. If the β-model profile is fitted to
an X-ray surface brightness map, the slope is β = βfit ' 0.65, [Sarazin]. Low-
accuracy temperature measurements and an anisotropic velocity distribution of
the galaxies might cause this discrepancy.

Fortunately, there are many ways to improve and generalize this model, what we
will show below.

2.1.2 Double β-model

In order to improve the model, we add a second β-model, with a new central density
ne0,2, new core radius rc,2 and new slope-parameter β2. It is especially useful to
represent the excess of X-ray emission that is observed at the central region of several
clusters and that can not be accounted for by the flat core of the single β-model.

This model is called double β-model or 2β-model. The electron density is given by

ne,2β(r) =
[
n2
e0,1

(
1 + (r/rc,1)2

)−3β1

+ n2
e0,2

(
1 + (r/rc,2)2

)−3β2
] 1

2

. (28)

Conventionally, rc,1 describes the core radius of the central emission region, rc,2 is the
core radius of the overall distribution, the length scale. Therefore, to mimic a central
excess of emission, usually β1 ≥ β2. In figure 7, we see how the two separate β-models
add to the double β-model. Since the emissivity of the ICM is proportional to n2

e, the
X-ray surface brightness is expressed in terms of the square of the electron density.
Therefore, the double β-model is defined through the sum of the squares of two density
profiles: n2

e = n2
e1 + n2

e2 and not through the ordinary sum.

ne,2 Β

ne,Β1

ne,Β2

0.001 0.01 0.1 1 10 100
radius in rc0.001

0.01

0.1

1

10
normalised ne

Figure 7: A profile plot of a 2β-model. The single β models with their slopes β1 and β2 and different
core radii and central electron densities add to a 2β-model. The parameters are (β1 = 0.8, β2 =
0.6,

ne0,1
ne0,1+ne0,2

= 0.7,
rc,1
rc,2

= 0.3). The electron density is normalized. The radial coordinates are

given in units of rc = rc,2.
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2.1.3 Pratt & Arnaud model

Pratt and Arnaud [P & A 02] proposed an alternative parameterization to describe
the gas density profile close to the cluster center. We will call this model PA-model for
short. At large radii, it behaves similar to a β-model, but there is a power-law-type
cusp at the center:

ne,PA(r) = ne0 (r/rc)
−η
2

(
1 + (r/rc)

2
)− 3β

2 + η
4
. (29)

The additional parameter η describes the slope at small radii5. Figure 8 presents the
behaviour of the profile if η is changed.

If η = 2, β = 1, this profile varies from ne(r) ∝ r−1 at small radii to ne(r) ∝ r−3

at large radii. In this case, it is identical to the Navarro Frenk White (NFW) profile,
which describes dark matter halos, [NFW].

Η=0.5

Η=0.8

0.001 0.01 0.1 1 10 100
radius in rc0.001

0.01

0.1

1

10

normalised ne

Figure 8: A profile plot of a PA-model and its dependence on the slope parameter η. It controls the
strength of the central peak. The electron density is normalized and β = 0.6. The radial coordinates
are given in units of rc.

2.1.4 Vikhlinin model

Observed X-ray brightness profiles reveal a change of slope at a certain distance r = rs
relative to the power-law at smaller radii, [Vikhlinin 99]. Starting from the PA-Model,
in 2006 Vikhlinin et al. [Vikhlinin 06] added a radial dependent factor to describe this
change:

ne(r) = ne0,1 (r/rc,1)−
η
2

(
1 + (r/rc,1)2

)− 3β
2 + η

4
(1 + (r/rs)

κ)−
ε
2κ . (30)

Three additional parameters are introduced: rs gives the distance where the change
happens, ε describes the amplitude of the change of slope and κ controls the width of
the transition region.

In order to gain additional modeling freedom near the central cluster region, they
added a second β-model, similar as in the case of the double β-model and take the

5In the original Pratt & Arnaud paper, they add a factor of 2 to this parameter: ne,PA(r) =

ne0(r/rc)−η
(
1 + (r/rc)2

)−3β /2+η/2
. In order to get a similar parametrisation as in the following

models, we changed it.
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sum of their squares.

ne,V ik(r) =
[
n2
e0,1 (r/rc,1)−η

(
1 + (r/rc,1)2

)−3β1+ η
2

(1 + (r/rs)
κ)−

ε
κ

+n2
e0,2

(
1 + (r/rc,2)2

)−3β2
] 1

2

.

(31)

This model has ten independent degrees of freedom, which allow to gain better fits.
On the other hand, these parameters are strongly correlate and therefore degenerate.
Moreover, the introduction of a sum due to the additional β-model part avoids an at
least semi-analytic treatment if we are concerned with the integrals appearing in the
observable quantities.

2.1.5 Vikhlinin-Ettori model

In a recent paper of Ettori et al., [Ettori 09], they used the Vikhlinin model without
the additional β term. That’s why we will call this reduced model Vikhlinin-Ettori
model or VE-model:

ne,V E(r) = ne0 (r/rc)
− η2
(

1 + (r/rc)
2
)− 3β

2 + η
4

(1 + (r/rs)
κ)−

ε
2κ . (32)

Figure 9 illustrates its profile. A huge advantage of this form is that there are sim-
plifications if we calculate the observed quantities. Thus, we will always prefer this
model.

Κ=0.4

Ε=3

fs=10

0.001 0.01 0.1 1 10 100
radius in rc0.001

0.01

0.1
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10

normalised ne

Figure 9: A profile plot of a VE-model and its dependence on the parameters η, κ and the radius
at which the slope changes in units of rc: fs = rs/rc. The lines denote the model if we exchange
the initial parameter with the one that is corresponding to the line. The parameters of the initial
model (drawn through line) are (β = 0.6, rc = 0.6, fs = 5, ε = 1, κ = 0.5). The electron density is
normalized. The radial coordinates are given in units of rc.

2.1.6 Hierarchical structure

It is obvious that the above models are based on each-other as frequently mentioned:
Each step increases the degree of detail and therefore each improvement adds a number
of new degrees of freedom.

An adequate choice of the parameters reduces the models and we can go backwards
step by step. This could be an advantage because if we work with a complex model,
we can simply drop some parameters and get the result of a simpler model at the same
time.
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model β 2β PA VE Vikhlinin
slopes β β1 β β β1

- β2 - - β2

- - η η η
- - - ε ε
- - - κ κ

radii rc rc,1 rc rc rc,1
- rc,2 - - rc,2
- - - rs rs

densities ne0 ne0,1 ne0 ne0 ne0,1
- ne0,2 - - ne0,2

#parameters 3 6 4 7 10

Table 1: Comparison of the degrees of freedom of the models in section 2.1. #parameters gives the
number of degrees of freedom.

β-model → Pratt & Arnaud-model → Vikhlinin-Ettori-model
↓ ↓

2β-model → Vikhlinin-model

Table 2: Schematic hierarchical structure of the electron density model denotes their affinities.

This hierarchy allows to give some general statements about the properties of those
profiles, which are also illustrated in figure 10, where we assume the same model
parameters for all models. The asymptotic slope is always β in the case of the PA-
model and β2 in the case of the 2β-model. So, their asymptotic behaviour can be
modeled with the β-model. The VE-model has a slope change in the outer regions and
has therefore a different slope. Close to the center, the PA-model and the VE-model
form a peak, whereas the β- and 2β-model are flat.

Β model

2Β model

PA model

VE model

0.001 0.01 0.1 1 10 100
radius in rc0.001

0.01

0.1

1

10
normalised ne

Figure 10: A comparison of the radial profile of the for introduced electron density models. The
central electron density is normalized with ne0,β . The model parameters are rc = 1, β = 0.6, η =

0.5, β1 = 0.8, β2 = 0.6,
ne0,1

ne0,1+ne0,2
= 0.7,

rc,1
rc,2

= 0.3, rs/rc = 5, ε = 1, κ = 0.5. Beside the VE-model,

the slope at large radii is identical. The VE- and PA-model form a similar peak at the center.

2.2 ICM temperature profiles

Beside the electron density, the temperature profile of the ICM is involved in both the
X-ray surface brightness and the SZ-effect. Recent observations have revealed that
the temperature is neither constant along the radius nor described by a simple linear
function. In some clusters, there is a so called cool core. The high density of the
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gas close to the cluster center forces an increase in emission of the gas, energy is lost
through radiation and the ICM cools. Since the temperature profile influences the
observable quantities, it can be crucial to take it into account correctly. But simplified
profiles have also their advantages.

Temperature measurements of galaxy clusters have usually a low resolution. The
spectroscopic temperature Tspec is obtained from interpreting the measured spectra
of the ICM. It is not simple to define a counterpart of this quantity if we describe a
simulated cluster, [Mazzotta]. The most common temperature function used is the so
called emission-weighted temperature function defined as

Tew =
∫

Λ(T,Z)n2TdV∫
Λ(T,Z)n2dV

. (33)

Mazzotta et al. have shown that it is better to use a so called spectroscopic like
temperature function defined as

Tsl =
∫
WTdV∫
WdV

. (34)

where W is the weighting function

W =
n2

T 3/4
. (35)

Compared to the weighting of Tew, where Λ ∝
√
T , W weights inversely by the temper-

ature. Thus, if the cluster thermal structure is complex, Tew will substantially differ
from Tspec. This is due to the fact that Tspec is a projected temperature obtained
by fitting a thermal model to the observed photon spectrum while Tew fully exploit
the three dimensional information carried by the gas particles an therefore defines a
physical temperature. Therefore, Tsl gives a better approximation of Tspec and should
be preferred when a cluster observation is simulated.

2.2.1 Isothermal

The simplest gas temperature profile is described by

Te,iso(r) = C (36)

where C is a constant positive number.

The advantages of this profile are:

� The overall gas temperature is directly given by the bremsstrahlung continuum.

� Isothermality is physically consistent with the derivation of the β-model density
distribution which guarantees simple analytic cluster quantities.

� The integrals along the line of sight involved in the projected quantities Sx and
∆TCMB become just functions of the electron density to the first and second
power.

Unfortunately, clusters of galaxies are often far from isothermal. The temperature
is often decreasing from the center to the outer regions, there are substructures and
sometimes a cool cluster core is observed.
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2.2.2 Polytropic model

A gas in a polytropic state with number density n(r) fulfils

n(r)
n0

=
(
T (r)
Te0

)γ
, (37)

where γ is the polytropic index. There are two important values: γ = 1 describes a
isothermal gas, while γ = 5

3 gives an adiabatic gas. Adiabatic gas does not exchange
energy with the surrounding environment.

The temperature profile is therefore connected to the gas density profile

Te,poly(r) = Te0

(
n(r)
n0

)γ−1

. (38)

If the electron density decreases outwards, the temperature will do the same. Figure
11 illustrates the situation in the case of a β-model electron distribution. Therefore,
the polytropic profile catches a crucial feature of the observed temperature distribution
and is able to model non-constant cluster temperature profiles.

polytropic T-profile

0.001 0.01 0.1 1 10 100
radius in rc0.001

0.01

0.1
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10

T Hr L

T0

Figure 11: This is a normalized polytropic profile in the case of the β-model with parameters
(rc = 1, β = 0.6). Hence, the change of slope of the temperature profile happens also at r = rc.

2.2.3 Vikhlinin temperature model

Accurate measurements reveal that the polytropic model is in fact a poor approxi-
mation of the temperature profiles at large radii. Moreover, there is a temperature
decrement towards the center. Vikhlinin et al. [Vikhlinin 06] proposed a temperature
profile that takes into account these observed features:

Te,V ik(r) = T0
(x+ Tmin/T0)

(x+ 1)
(r/rt)−a

(1 + (r/rt)b)
c
b
, (39)

where x = (r/rcool)acool . The first quotient describes the temperature behavior in the
central cooling region. Tmin characterizes the decrement due to the cool core, whereas
rcool gives the radius of this core. The second quotient represents the profile outside
the cool core: a broken power law described by a, b and c with a change of slope at
r = rt, rt is the truncation radius.

There are nine free parameters. Analysing 13 clusters, Vikhlinin et al. found an
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average temperature profile, which is constraining the parameters

T (r) = 1.35Tew
(x/0.045)1.9 + 0.45

(x/0.045)1.9 + 1
1

(1 + (x/0.6)2)0.45
, (40)

where Tew is the averaged emission weighted temperature and x = r/r500
6. Using

this averaged profile, we reduce the number of degrees of freedom in (39), whereas we
change the powers 1.9→ 2 and 0.45→ 0.5:

Te,fit(r) = T0
(r/rcool)2 + Tmin/T0

(r/rcool)2 + 1
1

(1 + (r/rt)2)1/2
. (41)

To see its dependence on T , rcool and other the other parameters, we plot the profile
in figure 12 with different parameter configurations.

Tmin=0.5T0

fcool=0.2

ft =6

0.001 0.01 0.1 1 10 100
radius in rc0.001
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Figure 12: These are normalized Vikhlinin temperature profiles. The drawn through line is a profile
with (Tmin = 0.1T0, rcool/rc = 0.05, rt/rc = 4). The other lines show how the profile changes if we
vary a particular parameter.

6r∆ is the radius at which the averaged density of the cluster inside this radius equals the over-
density ∆ given by

∆ =
3M(< r∆)

4πρcr3
∆

,

where ρc is the critical density at cluster redshift.
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Figure 13: Any rotation can be described using three angles. From left to right, the most common
definition of the Euler angles is illustrated. The (x, y, z)-system is the intrinsic frame, while the
observer’s frame (x′, y′, z′) is aligned with the line of sight so that the observer is along the z′-
direction. We see that this is achived by the first two rotations, the third rotation allows to orientate
the x′ and y′ on the plane of the sky. From [MathWorld]

3 Projected quantities of ellipsoidal clusters

The goal of this section is to derive analytic expressions7 for the X-ray surface bright-
ness, see equation (5), and the SZ temperature decrement, see equation (10). For this
purpose, we use combinations of the electron density models ne and temperature pro-
files we introduced in the previous section. We will see that the integrand involved in
the X-ray surface brightness map and the CMB-temperature decrement is proportional
to a real positive power of the electron density and the temperature profile.

If it is possible to simplify these integrals, e.g. express them in terms of well
known functions, it becomes much more easier to fit these models to the observational
data. Although the fully numerical treatment is always possible, it costs more of
computational power.

3.1 The geometry of clusters

First, we introduce quantities that help us to describe the intrinsic geometry of a
cluster and the connection to its shape and orientation on the plane of the sky.

Projected ellipsoids In general, galaxy clusters can be assumed to have ellipsoidal
shape, [Sereno 07] and references there in . More precisely, the electron density dis-
tribution of a cluster, which is responsible for the X-ray and SZE data, is constant on
similar, concentric triaxial ellipsoids. In a Euclidean coordinate frame centered on the
center of mass of a cluster and whose coordinate axes are aligned with its principal
axes, the ICM profile can be described by one radial variable

ζ2 = e2
1x

2
1,int + e2

2x
2
2,int + e2

3x
2
3,int, (42)

where xi,int is a vector component in this intrinsic coordinate frame, and ei is the
inverse of a scalelength lc, in some units, along each axis. Without loss of generality,
we can fix e3 = 1. Therefore, this defines our scalelength.

When viewed from an arbitrary direction, quantities constant on similar ellipsoids
project themselves on similar ellipses. To relate the intrinsic frame xi,int of the galaxy
cluster to the observer’s frame xi,obs we use the three Euler angles θEu, φEu and ψEu.

Usually, we will assume that the x3,obs-axis is aligned with the direction connecting
the observer to the cluster center. A rotation through the first two angle is sufficient
to achieve this. The third rotation angle ψEu helps to adjust the x1,obs and x2,obs

axes on the plane of the sky. It is the angle between the projection of the major axis
7Let us define ‘analytic expression’ so that we exclude integrals.
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Figure 14: Comparison of the angles ψEu and Ψ on the plane of the sky. The third Euler’s angle
gives the orientation of the major axis of the ellipsoid, here x1,int, relative to the observer’s frame. Ψ
indicates the orientation of the axes of the projected ellipsoid (dashed arrows) relative to this frame.
If the ellipsoid is axisymmetric, this angles will coincide.

Figure 15: A comparison of a ellipsoidal cluster in the intrinsic coordinate frame xint, left figure,
and its projection on the plane of the sky, right figure. We see that the intrinsic axis x3,int does in
general not correspond with the axes of the projected ellipsoid.

of the ellipsoid and the x2,obs. Sometimes, we can assume that x1,obs and x2,obs are
aligned with the axes of the projected ellipsoids. Otherwise, we introduce the angle
Ψ to describe the rotation of the observer frame. Figure 14 compares these angles Ψ
and ψEu in the plane of the sky.

The axial ratio, the ratio between the major and minor axis of the projected ellip-
soid on the plane of the sky, depends on the intrinsic geometry and on the orientation
of the ellipsoid and is given as

ep =

√√√√√jζ + lζ +
√

(jζ − lζ)2 + 4k2
ζ

jζ + lζ −
√

(jζ − lζ)2 + 4k2
ζ

≥ 1, (43)

where jζ , kζ and lζ are in general defined as

2jζ = e2
1 + e2

2 + (e2
1 − e2

2)(cos 2ϕ(cos2 ψEu cos2 θEu − sin2 ψEu)

− cos 2θEu sin 2ϕEu sin 2ψEu)

+ (2e2
1e

2
2 − (e2

1 + e2
2)e2

3) cos2 ψEu sin2 θEu, (44)
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4kζ = (e2
1 + e2

2 − 2e2
1e

2
2) sin2 θEu sin 2ϕEu

−(e2
1 − e2

2)[2 cos θEu cos 2ψEu sin 2ϕEu

+(1 + cos2 θEu) cos 2ϕEu sin 2ψEu], (45)

2lζ = e2
1 + e2

2 + (−e2
1 − e2

2 + 2e2
1e

2
2) sin2 ψEu sin2 θEu

+ (e2
1 − e2

2) (cos 2θEu sin 2ϕEu sin 2ψEu

− cos 2ϕEu(cos2 ψEu − cos2 θEu sin2 ψEu)). (46)

One can show that the ellipticity does not depend on the third Euler’s angle, which is
obvious since this angle simply rotates the projected ellipsoid in the plane of the sky.
Therefore, we can set ψEu = 0 to obtain the simplified coefficients to express ep:

jζ(ψEu = 0) ≡ j = e2
1 e

2
2 sin2 θEu + e2

1 cos2 θEu cos2 ϕEu + e2
2 cos2 θEu sin2 θEu, (47)

kζ(ψEu = 0) ≡ k = (e2
1 − e2

2) sinϕEu cosϕEu cos θEu, (48)

lζ(ψEu = 0) ≡ l = e2
1 sin2 ϕEu + e2

2 cos2 ϕEu. (49)

The orientation of the projected ellipsoid relative to the axes of the observer’s frame
in terms of jζ , kζ and lζ is given as

Ψ =
1
2

arctan

 2kζ

jζ +
√

4k2
ζ + (jζ − lζ)2 − lζ

 . (50)

If the observer’s frame is orientated along the isophotes, (51) describes the angle
between the projection of the x3,int axis and x2,obs, see y′ in the right panel of figure
13. This angle is ψEu and can be expressed in terms of (47-49).

Ψ =
1
2

arctan
(

2k
j − l

)
. (51)

It vanishes if the ellipsoid is axisymmetric.

Any length scale lc, e.g. the core radius rc in the case of the β-model, is projected
onto the plane of the sky as

θp = θc

(
ep
e1 e2

)1/2

f1/4, (52)

where θc = rc/DA is the angular core radius and θp its projected counterpart. DA

describes the angular diameter distance between observer and cluster and f is defined
as

f = e2
1 sin2 θEu sin2 ϕEu + e2

2 sin2 θEu cos2 ϕEu + cos2 θEu. (53)

Moreover, one can define the elongation

e∆ ≡
rp
rc

√
f =

(
ep
e1 e2

)1/2

f3/4, (54)

which is inversely proportional to the size of the ellipsoid along the line of sight. If
e∆ < 1 the cluster is more elongated along the line of sight than wide in the plane of
the sky, for example.
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The elliptical radius on the plane of the sky, given by the projection of the ellipsoidal
radius in the intrinsic coordinate frame, expressed in the observer’s frame is given as

ξ2 = (x1,obs cos Ψ + x2,obs sin Ψ)2 f

e2
∆

(55)

+e2
p(−x1,obs sin Ψ + x2,obs cos Ψ)2 f

e2
∆

. (56)

where we rotated the observer coordinate frame with the angle Ψ. If the orientation
of the intrinsic frame is known and we can do a rotation so that Ψ = 0, this expression
simplifies as follows

ξ2 = (x2
1,obs + e2

px
2
2,obs)

f

e2
∆

. (57)

Alternatively, we can express ξ in terms of coefficients that describe the ellipticity of
the projection:

ξ2 =
1
f

(
jζx

2
1,obs + 2kζx1,obsx2,obs + lζx

2
2,obs

)
. (58)

These affinities can be sketched as follows: the coefficients jζ , kζ and lζ in equa-
tion (58) can be expressed through a symmetric 2 × 2 matrix which we can always
diagonalize

ξ2 =
1
f

( x1,obs x2,obs )

(
jζ kζ
kζ lζ

)(
x1,obs

x2,obs

)
(59)

=
1
f

( x1,obs x2,obs )

(
λ1 0
0 λ2

)(
x1,obs

x2,obs

)
. (60)

Its eigenvalues λ1 and λ2 are the coefficients in (57). Therefore, the quotient λ1/λ2

gives e2
p.

Projected spheroids Spheroids are axisymmetric ellipsoids. In the case of spheroidal
models whose polar axis is aligned with x3,int, we define ei ≡ (1/qint, 1/qint, 1) for a
prolate cluster, ei ≡ (qint, qint, 1) for an oblate one. qint ≥ 1 describes the intrinsic
axis ratio. The general quantities become more simple expressions. The elongations
(54) reduce to

e∆,pro =

√
1− (1− q2

int) cos2 i

qint
, (61)

e∆,obl =

√
1 +

(
1
q2
int

)
cos2 i. (62)

3.2 Projection effects

In astronomy, any intrinsic volume density, e.g. the electron density, can just be
observed as its projection on the plane of the sky. If the ICM density profile is mono-
tonically decreasing with radius, the connection between this intrinsic quantity FV (ζ),
where V denotes the volume density which is a function of the elliptical radius ζ, and
its projection FS(ξ) is given by integration along the line of sight, see [Stark]:

FS(ξ) =
∫
los

FV (ζ) dl =
2√
f

∫ ∞
ξ

FV (ζ)ζ√
ζ2 − ξ2

dζ, (63)
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where the index S refers to the surface density and ξ is the ellipsoidal radius projected
on the plane of the sky (57).

As introduced in section 1.2, physical effects like bremsstrahlung, line emission,
Compton scattering and the deflection of light due to masses provide observable quan-
tities like the X-ray brightness map of a cluster or gravitational lensing effects.

X-ray surface brightness and the temperature decrement are of fundamental impor-
tance in this thesis. Fitting a suitable model for ne(r) and T (r) to the observational
data gives parameters that describe the electron density. The central temperature
decrement ∆TSZ,0 and the central surface brightness SX0 provide two further con-
straint. Moreover, particular combinations of these observations allow to constrain
e.g. the elongation of a galaxy cluster along the line of sight.

The structures of both expressions are similar, see (5) and (10). If one compares
the involved integrals, there is a fundamental form:∫

los

nme T
b
e dl, (64)

where the real powers m and b take into account

� the linear or quadratic dependence of the SZE or of the surface brightness on
the electron density: ne and n2

e.

� the temperature profile

� the cooling function Λ ∝ Tα

and other properties of the gas that are described through a power of T or n. This is a
motivation to give a catalogue of at least semi-analytic expression for combinations of
different electron density models and temperature profiles to provide a well-arranged
list and show model independent properties of these observable quantities.

It is obvious that we can get some information about the intrinsic shape of a cluster
directly through analysing its projected shape if we assume that the cluster can be
described by an ellipsoid. From X-ray surface brightness observations, we can estimate
the orientation Ψ on the plane of the sky relative to the observers coordinate frame
axes. If we compare the major and minor axes of the projected ellipse, the ellipticity ep
can be measured. Spectroscopic X-ray measurements reveal the projected temperature
profile of the gas Te(r) and its metallicity Z(r).
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3.3 Isothermal and polytropic gas

Now, we want to calculate the projected quantities in the case of a polytropic tempera-
ture profile. The isothermal gas is just a limiting case of the polytropic gas. Therefore,
any polytropic model will also include the isothermal case, Te,iso = Te,poly|γ=1. The
temperature profile of gas in a polytropic state is just a power law of the electron
density: Te,poly(r) ∝ ne(r)γ−1. Thus, the surface brightness is given as

SX =
1

4π (1 + z)4

∫
los

n2
eΛ(Te, Z) dl

=
Λ̃(Z)

4π (1 + z)4

∫
los

n2
eT

α
e dl

=
Λ̃(Z)Tαe0

4π nα(γ−1)
e0 (1 + z)4

∫
los

n2
en

(γ−1)α
e dl

=
Λ(Te0, Z)

4π nα(γ−1)
e0 (1 + z)4

∫
los

n2+α(γ−1)
e dl,

(65)

where we assumed in the first step that the metallicity Z is radial independent and
the cooling function depends only on the radius through a power of the temperature,
Λ(Te(r), Z) = Λ̃(Z)Tα(r).

Under the same assumptions, the temperature decrement due to the SZ-effect sim-
plifies as follows:

∆TSZ
TCMB

= fSZ(ν, Te)
σT kB
mec2

∫
los

neTe dl

= fSZ(ν, Te)
Te0

nγ−1
e0

σT kB
mec2

∫
los

nen
(γ−1)
e dl

= fSZ(ν, Te)
Te0

nγ−1
e0

σT kB
mec2

∫
los

nγe dl.

(66)

If we compare the final expressions of SX and ∆TSZ , it is essential to calculate the
integral of an arbitrary real positive power m of the electron density ne,∫

los

nme dl. (67)

m → 2 + α(γ − 1) gives the integral included in the X-ray surface brightness of a
polytropic gas, m → γ describes the integrand of the temperature decrement. The
prefactor is model independent, but depends on other assumptions. Numerical meth-
ods are more or less unavoidable, but our goal is to simplify the integrals as much as
possible, e.g. to express them in terms of well known functions, like B, Γ and hyper-
geometric functions, see appendix C. Different density models will lead to different
integrals. Therefore, we will spend a paragraph on each of them. At the end, we will
conclude with a catalogue which reveals their differences and similarities, see appendix
F.

3.3.1 β model

Let’s first calculate the integral without the additional prefactors. The integration
along the line of sight can be rewritten in terms of the elliptic radius as shown in
equation (63).
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∫
los

nme,β dl =
2√
f

∞∫
ξ

nme,β(ζ)
ζdζ√
ζ2 − ξ2

=
2√
f

∞∫
ξ

nme0

(
1 + (ζ/rc)

2
)− 3mβ

2 ζdζ√
ζ2 − ξ2

=
√
π√
f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

nme0 r
3mβ
c

(
ξ2 + r2

c

) 1
2−

3mβ
2

=
√
π√
f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

nme0 rc

(
1 +

ξ2

r2
c

) 1
2−

3mβ
2

. (68)

The third line follows from [G & R], equation 3.196.2, see appendix (A-16) if we
assume that 3mβ > 1. Since m ≥ 1, this is fulfilled if β > 1/3 which is usually always
true.

The central value (ξ = 0) is given by:∫
los

nme,β(0) dl =
√
π√
f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

nme0 rc. (69)

In order to give the complete X-ray surface brightness is useful to split it into a central
and radial dependent part. The central part contains all physical constants. It follows
from (65) that the polytropic case demands a change of the power m→ 2 + α(γ − 1).
With this substitution8 we get:

SX = SX0

(
1 +

ξ2

r2
c

) 1
2−

3mβ
2

= SX0

(
1 +

ξ2

r2
c

) 1
2−3β− 3

2α(γ−1)β

, (70)

where all dimensional terms are included in

SX0 ≡ Λ̃(Z)
4π (1 + z)4

√
π√
f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

Tαe0 n
α(1−γ)+m
e0 rc

=
Λ̃(Z)

4π (1 + z)4

√
π√
f

Γ[−1/2 + 3β + 3/2α(γ − 1)β]
Γ[3β + 3/2α(γ − 1)β]

Tαe0 n
2
e0 rc. (71)

The temperature decrement can also be split into two parts. From (66), the change
of the power is m→ γ.

∆TSZ = ∆T0

(
1 +

ξ2

r2
c

) 1
2−

3γβ
2

, (72)

where the central value is defined as

∆T0 ≡ TCMB fSZ(ν, Te)
σT kB
mec2

√
π√
f

Γ[−1/2 + 3γβ/2]
Γ[3γβ/2]

Te0 ne0 rc. (73)

In the case of these central observable quantities of a polytropic β-model, the power m
and the β-parameter appear always as a product and never alone. This means that they
are degenerate. But m, respectively γ and also β are restricted on a limited interval
and hence, also this degeneracy is limited. If the whole SX -profile can be measured,

8In order to keep it clear we avoid this substitutions sometimes. But in such case the correct choice
should be easily done.
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this degeneracy is broken. Moreover, if an additional temperature measurement of the
cluster is available, γ can be estimated independently.

3.3.2 2β model

In this case, we are not able to find a simpler form of the integral, due to the square
root of the sum. To get a form that is similar to the β-model expression we introduce
the following parameters: the total central electron density ne0 ≡ ne0,1 + ne0,2, an
electron density fraction fe ≡ ne0,1/ne0, whereas we choose a definition with ne0,1,
and the fraction of the core radius fr = rc,1/rc,2, which can be interpreted as the inner
core radius in units of the overall scale length. Then:

∫
los

nme,2β dl =
2√
f

∞∫
ξ

nme,2β(ζ)
ζdζ√
ζ2 − ξ2

=
2√
f

∞∫
ξ

 n2
e0,1(

1 + (ζ/rc,1)2
)3β1

+
n2
e0,2(

1 + (ζ/rc,2)2
)3β2


m
2

ζdζ√
ζ2 − ξ2

=
2√
f

∞∫
ξ

 n2
e0(fe)2(

1 + (ζ/rc,1)2
)3β1

+
n2
e0(1− fe)2(

1 + (ζ/rc,2)2
)3β2


m
2

ζdζ√
ζ2 − ξ2

.

I change the variable of integration, ζ/rc,2 = x, hence dζ = rc,2dx. Thus:

∫
los

nme,2β dl =
2n2

e0 rc,2√
f

∞∫
ξ/rc,2

 (fe)2(
1 + (x/fr)

2
)3β1

+
(1− fe)2

(1 + x2)3β2


m
2

xdx√
x2 − ξ/r2

c,2

.

At last, the surface brightness is written as

SX =
Λ̃(Z)

4π (1 + z)4

2√
f
Tαe0 n

α(1−γ)+m
e0 rc,2

×
∞∫

ξ/rc,2

 (fe)2(
1 + (x/fr)

2
)3β1

+
(1− fe)2(

1 + (x)2
)3β2


m
2

xdx√
x2 − ξ/r2

c,2

.

(74)

A polytropic gas is given by m → 2 + α(γ − 1). In the case of m = 2, that is
if the gas is isothermal, the model simplifies strongly and reduces to the sum of two
β-models, which we can integrate one after another.

SX =
Λ̃(Z)

4π (1 + z)4

2√
f
Tαe0 n

α(1−γ)+m
e0 rc,2

×

[
Γ[−1/2 + 3mβ1/2]

Γ[3mβ1/2]
fe

2

(
1 +

ξ2

fr
2rc,22

)(1−3mβ1)/2

+
Γ[−1/2 + 3mβ2/2]

Γ[3mβ2/2]
(1− fe)2

(
1 +

ξ2

rc,22

)(1−3mβ2)/2
]
.

(75)
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The temperature decrement is (m→ γ)

∆TSZ = TCMB fSZ(ν, Te)
σT kB
mec2

2√
f
Te0 ne0 rc,2

×
∞∫

ξ/rc,2

 (fe)2(
1 + (x/fr)

2
) 3β1

2

+
(1− fe)2(

1 + (x)2
) 3β2

2


γ
2

xdx√
x2 − ξ/r2

c,2

.

(76)

3.3.3 PA-model

Starting from the model with the additional cusp, we get:

∫
los

nme,PA dl =
2√
f

∞∫
ξ

nme,PA(ζ)
ζdζ√
ζ2 − ξ2

=
2√
f

∞∫
ξ

nme0 (ζ/rc)
−mη

2

(
1 + (ζ/rc)

2
)− 3mβ

2 +mη
4 ζdζ√

ζ2 − ξ2

=
√
π√
f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

nme0
r3mβ
c

ξ3mβ−1

×2F1

[
−1

4
m(η − 6β),−1

2
(1− 3mβ),

3mβ
2

,−r
2
c

ξ2

]
. (77)

The last line is given by [G & R], equation 3.197.2, see appendix, if we assume
that 3mβ > 1 and mη < 4, that is generally fulfilled9. The PA-model nme,PA(ζ) has
a cusp at ζ = 0. The integral

∫
los
nme,PA dl or in particular the last argument in 2F1

seems to diverge if ξ → 0. A way to find a more useful expression is by using the Euler
hypergeometric transformations (A-6). Starting from (77), we get:∫

los

nme,PA dl =
√
π√
f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

nme0
r3mβ
c

ξ3mβ−1

×2F1

[
−1

4
m(η − 6β),−1

2
(1− 3mβ),

3mβ
2

,−r
2
c

ξ2

]

=
√
π√
f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

nme0
r3mβ
c

ξ3mβ−1

(
1 +

r2
c

ξ2

)− 3nβ
2 + 1

2

×2F1

[
mη

4
,−1

2
(1− 3mβ),

3mβ
2

,
−r2

c/ξ
2

−r2
c/ξ

2 − 1

]

9e.g. [P & A 02] estimate a PA-model to describe A1413 with parameters β = 0.69 and η = 2 ·0.68
that fulfill 3mβ = 3 · 0.69 > 1 with m = 1 and mη = 4 · 0.68 < 4 with m = 2, the chosen m represent
the extreme values in the isothermal case.
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=
√
π√
f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

nme0r
3mβ
c (ξ2)−

3mβ
2 + 1

2

(
1 +

r2
c

ξ2

)− 3mβ
2 + 1

2

×2F1

[
mη

4
,−1

2
(1− 3mβ),

3mβ
2

,
r2
c

r2
c + ξ2

]

=
√
π√
f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

nme0r
3mβ
c (r2

c + ξ2)
1
2−3mβ

2

×2F1

[
mη

4
,−1

2
(1− 3mβ),

3mβ
2

,
r2
c

r2
c + ξ2

]
. (78)

This should be the preferred formulation of the initial integral because it is good to
handle at the center. When ξ → 0, we get:∫

los

nme,PA(0) dl =
√
π√
f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

nme0rc 2F1

[
mη

4
,

1
2

(3mβ − 1),
3mβ

2
, 1
]
. (79)

A feature of the hypergeometric function 2F1[a, b, c; z], as explained in the ap-
pendix, is the fact that it is always finite if the absolute value of the last argument z is
smaller than 1. When z = 1, it is only finite if the other arguments fulfill a+ b < c. If
we take a look at (78) and (79), we see that a problem occurs if ξ → 0. The condition
for avoiding an infinite integral is given by

mη

4
+

1
2

(3mβ − 1) <
3mβ

2
(80)

⇔ mη

4
<

1
2

(81)

⇔ mη < 2 (82)

Therefore, we have to limit the η parameter even more in order to calculate the
integral in (77). This is not always fulfilled, for example in the case of the surface
brightness m = 2 and η > 1, that is also mentioned in [P & A 02].

An other way to get the central value is as follows10. We expand the integral for
small dimensionless x ≡ ξ/rc � 1 around 0 and assume that x is real.

IPA(x) ' x−‘mη2

(
nme0
√
πrcΓ [−1/2 +mη/4]x√

fΓ [mη/4]

+
mnme0

√
πrc(η − 6β)Γ [(−3/2 +mη/4)]x3

4
√
fΓ [−1 +mη/4]

+O[x]4
)

+
(
nme0rcΓ [1/2−mη/4] Γ [−1/2 + 3mβ/2]√

fΓ [−mη/4 + 3mβ/2)]

+
nme0rcΓ [−1/2−mη/4] Γ [1/2 + 3mβ/2]x2

2
√
fΓ [−mη/4− 3mβ/2)]

+O[x]4
)
.

(83)

The lowest order term (third line) is independent of x. It describes the value of IPA(ξ)
at the very center:

lim
x→0

IPA(x) =
1√
f

Γ[1/2−mη/4]Γ[3mβ/2− 1/2]
Γ[−mη/4 + 3mβ/2]

nme0 rc. (84)

Transformations reveal that equation (84) is identical to (79) if mη < 2, see (A-9).

10Of course, a integration at the center would lead to the same result: limx→0 IPA(x) =∫
losn

m
e,PA(0) dl.
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We conclude that the X-ray surface brightness of this model is given by

SX =
Λ̃(Z)

4π (1 + z)4

√
π√
f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

Tαe0n
α(1−γ)+m
e0

×r3mβ
c (r2

c + ξ2)
1
2−

3mβ
2 2F1

[
mη

4
,−1

2
(1− 3mβ),

3mβ
2

,
r2
c

r2
c + ξ2

]
(85)

=
Λ̃(Z)

4π (1 + z)4

√
π√
f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

Tαe0n
2
e0rc

×
(

1 +
ξ2

r2
c

) 1
2−

3mβ
2

2F1

[
mη

4
,−1

2
(1− 3mβ),

3mβ
2

,
r2
c

r2
c + ξ2

]
, (86)

where we isolated the dimensional quantities in the first line of equation (86). A
substitution m→ 2 + α(γ − 1) gives the polytropic case. If ξ = 0, we get:

SX0 =
Λ̃(Z)

4π (1 + z)4

√
π√
f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

Tαe0n
α(1−γ)+m
e0 rc

× 2F1

[
mη

4
,−1

2
(1− 3mβ),

3mβ
2

, 1
]
. (87)

Equivalently, the central value, motivated by (84), is given by

SX0 =
Λ̃(Z)

4π (1 + z)4

1√
f

Γ[1/2−mη/4]Γ[3mβ/2− 1/2]
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Tαe0n
α(1−γ)+m
e0 rc. (88)

The temperature decrement follows in a similar manner:

∆TSZ = TCMB fSZ(ν, Te)
σT kB
mec2

√
π√
f

Γ[−1/2 + 3γβ/2]
Γ[3γβ/2]

Te0 ne0rc

(
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) 1
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2
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c

r2
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]
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(89)
Its central value is

T0 = TCMB fSZ(ν, Te)
σT kB
mec2

1√
f

Γ[1/2−mη/4]Γ[3mβ/2− 1/2]
Γ[−mη/4 + 3mβ/2]

Te0 ne0 rc. (90)

As usual, a polytropic gas requests m→ γ.
The results at the center are restricted to mη < 2.

3.3.4 VE-model

The increasing complexity of the models leads to difficult tasks, if we want to simplify
the integrals along the line of sight. Therefore, we focus on the Vikhlinin-Ettori model
and ignore the more complex Vikhlinin-model. Moreover, assumptions have to be done
and particular solutions have to be considered.

According to [G & R], equation 3.259.3, see appendix, there is a solution of the
integral along the line of sight if

� we concentrate our attention on the central value (ξ = 0),

� we assume that the radius rs at which the slope in the outer regions is changing
and the core radius rc 6= rs are of the same power (γ = 2),
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� the parameters are fixed by particular limits11: mη < 2 and 3mβ + ε/2 > 1,

� we substitute r/rc → x and dR→ rc dx.

Under these conditions, we get

∫
los
ne,V E(0)m dl =

2√
f

∞∫
0

nme,V E(ζ)dζ

=
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0
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ε
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1
4
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]
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(91)
Thus, the central values of X-ray surface brightness and temperature decrement are
given by

SX0 =
Λ̃(Z)

4π (1 + z)4
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(92)

where m→ 2 + α(γ − 1) and

TSZ,0 = TCMB fSZ(ν, Te)σT kBmec2
1√
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(93)

where we choose m→ γ.

The general X-ray surface brightness is given by

SX =
Λ̃(Z)Tαe0

4π nα(γ−1)
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(94)

11Here, we have a very strong limit on η, similar to the PA-model at the center. Unfortunately, a
more general treatment seems not possible.
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where fs = rs/rc. The temperature decrement is

∆TSZ
TCMB

= fSZ(ν, Te)
σT kB
mec2

2√
f
Te0 ne0 rc (95)

×
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. (96)

3.3.5 Checking the results

Due to the similarities of the different models, an adequate choice of the parameters
should reproduce the results of the simpler models, see section 2.1.6.

If ε→ 0, the VE-model reduces to the PA-model:

[
∫
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nme,V E(0) dl]|ε→0 =
1√
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=
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since 2F1[0, a, b; z] = 1.
Taking the two limits of two parameters, ε→ 0 and η → 0, we recognize the central

value of the integrated β-model:

[
∫
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=
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In the third equation we used the alternative representation derived through the hyper-
geometric transformations, see equation (91). Further, 2F1[a, 1/2, b, 1 − (rc/rs)−2] =
rc/rs if a, b > 0 and Γ[1/2] =

√
π.

3.4 General temperature profile

To improve our models of the projected quantities, it is time to include more accurate
temperature profiles, e.g. the Vikhlinin temperature profile Te,V ik and its simplified
counterpart Te,fit, both introduced in section 2.2.3. In most of the polytropic cases, it
was possible to simplify the integrals along the line of sight. If we include Te,V ik, the
integrand is more complex. Hence, it makes sense to start with the fitted simplified
temperature profile Te,fit and the β-model to describe the electron density profile to
keep the integration as simple as possible.
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If we recall equation (64), we have to solve

∫
los

nme,βT
b
e,fit dl =

2√
f

∞∫
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nme,β(ζ)T be,V ik(ζ)
ζdζ√
ζ2 − ξ2

, (97)

beside some prefactors. If m → 1 and b → 1, we get the temperature decrement, if
m → 2 and b → α, it gives the X-ray surface brightness. We write down the full
expression and its central value:
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(98)

We will focus on the center, ξ → 0. Moreover, we restrict the integral to the rele-
vant cases, X-ray surface brightness and SZ temperature decrement, to simplify the
problem.

In case of ∆TSZ (m → 1 and b → 1), there is a unmanageable solution to the
integral, computed by Mathematica. The surface brightness SX is more difficult to
calculate since, in the case of a cooling function Λ(Te) ∝ T

1/2
e , the power is given by

b = α = 1/2.
However, in order to get an analytic solution, we tried to derive a temperature

profile from Te,fit(r) that leads to easier integrals but has the same features as Te,fit(r):
A cool core at the center with a non-zero depth and width and a decreasing temperature
at large radii. Our first idea was inspired by the PA-model. This model that describes
a electron density distribution has a central cusp to mimic the high densities in the
center of particular clusters. We assumed that this profile describes the temperature
profile if we flip its cusp so that it mimics the cool core. This would lead to a simpler
integrand. Unfortunately, to avoid zero temperature at the center, adding a constant
is necessary. This results in a integration that is as difficult as in the case of the other
T (r)-model.

The original profile Te,V ik(r) has highly degenerate parameters. We can use this
ambiguity to modify it in a way that the integral is analytically solvable. If we set
Te,fit(r) → T̃e,fit(r) = T 2

e,fit(r), we reduce the integrand to the same expression as
in the case of the temperature decrement, which is solvable. But does this modified
profile still contain the requested features? As shown in an example in figure 16, there
is a set of parameters that satisfies Te,fit(r) ∼ T̃e,fit(r). Therefore, this seems to be
an alternative profile.

Several facts suggest that including an accurate but complex temperature profile
like Te,V ik or Te,fit is a good point to stop searching for analytic expressions and to
start integrating numerically:

� Using T̃e,fit(r), the calculated integral and therefore SX and ∆TSZ become very
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Figure 16: A comparison of Te,fit(R) (drawn though line) and T̃e,fit(R) (dashed line). Both profiles

have the same parameters with exception of the truncation radius rt. In addition, T̃e,fit(R) is scaled
with a suitable factor. We see that features like a cool core an the slope at large radii are similar.
The units are arbitrarily chosen.

complex and confusing expressions that are far beyond the beauty of a isothermal
β-model. It’s hard to see an advantage.

� Although we can use T̃e,fit(r) to simplify the X-ray surface brightness integral,
we still have to include Te,fit(r) to calculate the temperature decrement. If we
use two different temperature models performing a multi wavelength analysis,
the procedure will not be self-consistent.

� The Vikhlinin temperature profile in its most general form we introduced, TV ik(r),
can’t be included in a analytic treatment.

� There seems to be a disproportionality if we use such an accurate temperature
profile combined with the simple β-model which is based on a constant temper-
ature profile. But including better density profiles would unavoidable lead to a
preference of numerical methods.

In the following sections, we will give the X-ray surface brightness and temperature
decrement in terms of an dimensional prefactor and an integral with a non-dimensional
integrand. This leads to expressions similar to the polytropic case.

3.4.1 β model

The Vikhlinin temperature profile adds two new length scales, rcool and rt, into the
expressions for the observable quantities. Nevertheless, the core radius is still the best
choice for the overall length scale. Therefore, we write the other radii in units of rc:
fcool = rcool/rc and ft = rt/rc. Moreover, to keep the amount of free parameters low,
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we use the averaged profile Te,fit(r). Thus, the surface brightness can be written as:
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In the fourth equation, we substituted ζ/rc → x and changed the integration vari-
able suitably. Therefore, the integrand becomes a-dimensional, and all dimensional
information is in front of if.

The temperature decrement is obtained in a similar way, but we have to set m→ 1
and α→ 1. Hence,

∆TSZ
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= fSZ(ν, Te)
σT kB
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(100)

3.4.2 2β model

Similar to the polytropic case, I introduce fractions to simplify the integral: the total
central electron density ne0 ≡ ne0,1 +ne0,2, an electron density fraction fe ≡ ne0,1/ne0
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and the fraction of the core radius fr = rc,1/rc,2.
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Then, the temperature decrement is given as
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3.4.3 PA model

Not surprisingly, we can simplify the quantities in a similar way also in the case of the
PA-model. Let us skip the step in between. They are very similar to the β-model:
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∆TSZ
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3.4.4 VE model

We finish with the long expressions including the VE-model.

SX =
Λ̃(Z)

4π (1 + z)4

2√
f

∞∫
ξ

n2
e,V E(ζ)Tαe,vik(ζ)

ζdζ√
ζ2 − ξ2

=
Λ̃(Z)

4π (1 + z)4

2n2
e0 T

α
0√

f
rc

∞∫
ξ/rc

x1−η(1 + (x)2)−3β+ η
2 (1 + (x/fs)

κ)−
ε
κ

× [Tmin/T0 + (x/fcool)2]α

[1 + (x/fcool)2]α
1

[1 + (x/ft)2]α/2
dx√

x2 − (ξ/rc)2
, (104)

∆TSZ
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where fs = rs/rc.

3.5 On the deprojection of X-ray surface brightness

We already introduced a multi wave length approach to estimate the elongation of a
cluster through combination of X-ray observations and temperature decrement mea-
surements. But, without taking account for gravitational lensing or assuming given
cosmological parameters, the degeneracy among elongation and distance can not be
broken. Disregarding the temperature decrement of the SZE might lead to additional
uncertainties. Or is it possible to estimate the true cluster shape just with observations
in the X-ray band?

Chakrabarty et al. [Chakrabarty 08] proposed in 2008 a new method to determine
the intrinsic shape of galaxy clusters due to X-ray measurements without using SZE
data. They project the cluster X-ray surface brightness profile under peculiar assump-
tions about geometry and inclination that correspond to four extreme scenarios. An
intercomparison of the different deprojected emissivity profiles should lead to the sig-
nature of the true cluster shape. SZE data might improve the inclination, but the
shape determination should be possible by implementing the X-ray brightness alone.

3.5.1 Analytic counterexample: prolate vs. oblate cluster

With a simple counterexample we will show that a unique determination of axial
ratios and orientation of an ellipsoid representing the electron density of a galaxy
cluster is not possible using only X-ray brightness profiles and the method described
by Chakrabarty does not work in general. We start with a simple β-model (see section
2.1). This is a model that describes the electron density of the cluster parameterized by
two parameters θc and β and its central electron density. In addition, we are assuming
an isothermal plasma with constant metallicity.

We assume a prolate cluster with inclination θ = 0, i.e. its major axis along the line
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of sight. According to section 3.1, its intrinsic axial ratio is qint and its projected axial
ratio is ep,pro = 1. The other observable parameters, projected angular core radius
θp, and therefore θc. The central surface density SX0 and the slope β are arbitrarily
chosen. The orientation of the projection does not give additional information, since
j and k in (51) are equal and therefore, ψEu is not defined.

The projection of an oblate cluster with its minor axis along the line of sight has
the property: ep,obl = 1. If it is at the same position in the plane of the sky and has
the same observable features as the prolate one introduced above, we can’t distinguish
between these two ellipsoids12.

Under the conditions above, the elongations, equations (61) and (62), reduce to:

e∆,pro = qint,pro, (106)

e∆,obl =
1

qint,obl
. (107)

But e∆ can not be measured and therefore can’t help to limit the model. The subscripts

pro or obl denote the quantity of the prolate or oblate clusters.
Equation (52) describes the dependence of the projected core radius on the intrinsic

parameters. If we equalise this radius θc in the case of a prolate and an oblate cluster
in consideration of f = 1 and ep = 1 we get

θc,pro qint,pro = θc,obl / qint,obl. (108)

In the case of a simple β-model, the central surface brightness is given as SX0 ∝
n2
e0θc/

√
f , up to a prefactor that is independent on geometric cluster parameters, see

equation (71). If we equalise the prolate and oblate expression for SX0, we get

θc,pro n
2
e0,pro = θc,obl n

2
e0,obl. (109)

These equations depend on intrinsic, not directly measurable parameters and are there-
fore degenerate in a sense that we are free to choose values for these parameters as
long as they satisfy equations (108) and (109). And as long as these equations are
satisfied, we observe the same SX0 and θp for both clusters.

The central surface brightness SX0 is the only model dependent observable. In the
case of a general model, SX0 is a product of an intrinsic length scale (e.g. the core
radius), the square of the normalisation of the central electron density, a geometrical
factor f and a factor that depends only on model dependent parameters, see equation
(130). The latter two cancel in (109) since fobl = fpro = 1 and the model dependent
values (p1, p2, ...) are equal. Therefore this counterexample is model independent.

In this simple example, we are not able to determine the shape of this cluster
starting from the ’observed’ quantities, e.g. we can not distinguish between oblate and
prolate. Therefore, the method described in Chakrabarty et al. (2007) is not general.

3.5.2 Degeneracies of the triaxial β model

In the case of an arbitrary triaxial β-model, there are four observable parameters, which
we collected in equations (110) to (113), dropping the slope β. In the second equation
of each line, we express the dependence on axis ratios and orientation as functions fi to
highlight the dependence of this observable quantities on non-geometrical parameters,

12 The same angular diameter distance DA was assumed for both possible solutions to focus on
the intrinsic degeneracies. In general, this is a parameter inversely proportional to the Hubble con-
stant. Without additional (external) measurements (SZE, gravitational lensing), it could lead to a
degeneracy with the cluster geometry (i.e. e∆). But let’s keep the eye on the intrinsic degeneracies.



3 PROJECTED QUANTITIES OF ELLIPSOIDAL CLUSTERS 43

that means parameters which are not connected to shape or orientation of the cluster.
We assume that Ψ = 0, so that ψ = ψEu. Ψ would just require a more complex
function of jζ , kζ and lζ , which are a function of ψEu.
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1
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)
= fψ(e1, e2, θ, ϕ) (110)
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√
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f
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The intrinsic core radius θc is the intrinsic scale parameter of the model. Due to the
normalization by the central electron density ne0, every observed value of SX0 can be
achieved by a suitable choice of θc, which can be expressed as a function of of the
geometrical factors, i.e. there is a degeneracy between ne0, θc and cluster shape as
showed in the example above.

An analytic expression of this degeneracies can be achieved as follows: Assuming
fβ = 1, equation (113) is:

SX0 = n2
e0

θc√
f
. (114)

θp depends on several intrinsic quantities (112), whereas only the projected axial ratio
ep can be directly measured. If we assume the ratio of this quantities as a unique
observable quantity:

θ̂p ≡
θp√
ep

= θc

(
1

e1 e2

)1/2

f1/4, (115)

we can multiply SX0 and θ̂2
p and thus define a new parameter Υ build by the intrinsic

quantities,

Υ ≡ SX0

θ2
p

ep
= n2

e0

θ3
c

e1 e2
. (116)

The left hand side of this equation depends only on observed quantities and the right
hand side is just a function of intrinsic axial ratios, ne0 and θc, independent of the
orientation angles.

This means, starting from a set of observed parameters (ψ, ep, θp, SX0), multiple
cluster scenarios are possible as long as this combination of parameters equals for each
cluster. More precisely: if we are comparing clusters A and B, their parameters have
to fulfil:

n2
e0,A

θ3
c,A

e1,A e2,A
= n2

e0,B

θ3
c,B

e1,B e2,B
. (117)

The suitable orientation angles are then determined by the equations of ψ and ep.
Some numerical examples will explain this situation, e.g. section 3.5.3, example 2.

Let’s assume that two cluster candidates A and B have the same central electron
density and the same core radius, that means

e1,A e2,A = e1,B e2,B . (118)

That means that in this very peculiar case, we can’t even uniquely determine the set
of intrinsic axis ratios (e1, e2, e3) since they are degenerate.
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shape e1 e2 ϕ θ θc ne0
prolate 1.8 1.8 - 0 3.6 1.666
oblate 0.8 0.8 - 0 1.6 2.5

Table 3: Numerical example 1. The ’observed’ values are (ep, θp, SX0)=(1, 2, 10), and e3 = 1. The
angles are measured in radians.

3.5.3 Numerical examples

In the following examples, we will use the β-model to describe the electron density
profile. Equations (110 - 113) characterising the observable parameters can be decou-
pled into a pair of equations that depend only on axis ratios and orientation, the (ψ,
ep)-system, and a pair that depends on the core radius, central electron density and
slope β: the (θp, SX0)-system. Therefore, assuming that the observational quantities
and two initial parameters are known, the remaining geometrical parameters are given
by the first two equations. In a second step, the (θp, SX0)-system defines θc and
ne0. Our goal is to find multiple cluster configuration that fit a single set of observed
quantities. Finally, the equality of the solutions is easily tested by inserting them into
equations (110) to (113). We use arbitrary units and set fβ = 1.

Example 1: prolate vs. oblate This example is identical to the scenario in section
3.5.1. An arbitrarily chosen axis ratio of an axisymmetric ellipsoid aligned with the
line of sight (θ = 0) should fit the observed values if θc and ne0 are appropriate.

For such particular initial conditions, e1 = e2 obeys the spheroidal shape, therefore
k=0 ((48) and j=l (47) and (49)). On the other hand, the third Euler angle ψ =
(1/2)tan(2k/(j − l)) is not well defined in this case, so we will ignore equation (110).
Moreover, ep = 1 becomes a fix ’observable’ quantity.

The (ψ, ep)-system reduces to
e1 = e2, (119)

ep = 1. (120)

Therefore, in the spheroidal case, we can freely choose e1 = e2 = qint,pro > 1 for a
prolate or 0 < e1 = e2 = 1/qint,obl < 1 for an oblate cluster model, see table 3. There
is no ϕ-dependence in ep or f anymore, hence we ignore ϕ. Finally, we have to choose
values of SX0 and ne0 to complete the set of ’observed’ quantities. Solving equation
(112) for θc gives in consideration of f = 1

θc = θp
√
e1 e2, (121)

and than solving equation (113) for ne0

ne0 =
√
SX0

θc
. (122)

For these two spheroidal scenarios, we can find two sets of solutions, see table 3. This
shows that one can’t distinguish between an oblate and prolate model in this special
scenario.

In addition, qint, ne0 and θc of the prolate and oblate model fulfill equations (108)
and (109), of course.

Example 2: simple orientation In a more general case, assuming triaxial models,
we calculate two solutions of the first pair of equations and insert them into the second
pair to get a proper core radius and a suitable central electron density (table 5).
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sinϕ = 0 θ = -2.449 2.449 -0.692 0.692

Table 4: Example of the structure of the (θ, ϕ)-solution, if the initial values (e1, e2)=(0.3, 0.5). The
simple degeneracies are obvious.

shape e1 e2 ϕ θ θc ne0 Υ
triaxial 0.4 0.7 0 0.745 0.8 2.339 10
triaxial 0.3 0.5 0 2.449 0.6 2.635 10
oblate 0.4 0.4 0 1.237 0.8 1.767 10

Table 5: Numerical example. The ’observed’ values are (ψ, ep, θp, SX0)=(0, 2, 2, 5), fβ = 1 and
e3 = 1. The angles are measured in radians. The equality of Υ, equation (116), documents the
degeneracies among the parameters.

Solving the (ψ, ep)-system becomes more complex. In order to eliminate the inverse
tangent, we convert this system into

ψ̂ ≡ tan(2ψ) =
2k
j − l

, (123)

ep =

√
j + l +

√
(j − l)2 + 4k2

j + l −
√

(j − l)2 + 4k2
. (124)

A simple set of ’observed’ quantities is (ψ, ep, θp, SX0)=(0, 2, 2, 5). In this case,
ψ = ψ̂ = 0. Solving with suitable13 initial values e1 and e2, several solutions (θ, ϕ)
exist. In the case of (e1, e2)=(0.3, 0.5), among several complex solutions, two couples
of real results are given in the following table 4. Out of this solutions, we choose groups
of real parameters which solve the (ψ, ep)-system, e.g. table 5. In the triaxial case,
the (θp, SX0)-system leads to the intrinsic core radius and the central electron density:

θc = θp

(
e1 e2

ep

)1/2 1
f1/4

, (125)

ne0 =
√
SX0

θc
f1/4. (126)

Inserting the computed core radius in (126) provides complete sets of parameters to
describe triaxial clusters with β-model electron density shape (the slope is given by
fβ=1), table 5. We add an axisymmetric, oblate cluster which is also able to reproduce
the ’observed’ values.

Example 3: triaxial In order to get the most general example, we start with initial
orientations (ϕ, θ) but compared with example 2, we choose ψ 6= 0, respectively ψ̂ 6= 0,
e.g. (ψ, ep, θp, SX0)=(0.155, 2.6, 2, 5), hence ψ̂ = 0.32. Therefore, we get a cluster
that is rotated by all Euler’s angles and therefore, it describes that most general case
concerning the orientation.

The (ψ̂, ep)-system, equations (123) and (124), can be numerically solved. Keeping
in mind the degeneracies among the orientations, unique solutions (e1, e2) are found.
As before, inserting these solutions in (125) and (126) gives suitable values of θc and
ne0, see table 6.

In order to compare these general shaped cluster with a spheroid, we substitute
the equation of ψ̂ with the condition that e1 = e2 and proceed similar to the first

13 In this example, the existence of a real solution depends on the choice of the initial values of e1
and e2, respectively on ep. To reproduce the quantities on the plane of the sky, one of the intrinsic
axis ratios ei should be at least as small as the projected one. Moreover, extreme values may not
represent a physical cluster.
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shape e1 e2 ϕ θ θc ne0 Υ
triaxial 1.669 4.506 1.1 0.8 2.440 1.994 7.692
triaxial 2.684 6.026 1.3 0.3 4.353 1.228 7.692
prolate 8.182 8.182 1.3 0.3 6.294 1.437 7.692
unphysical 5.933 38.160 0.7 0.3 6.308 2.633 7.692

Table 6: Numerical example. The ’observed’ values are (ψ, ep, θp, SX0)=(0.155, 2.6, 2, 5), and
e3 = 1. The angles are measured in radians. The equality of Υ, equation (116), documents the
degeneracies among the parameters.

example. Despite of its additional symmetry, the prolate cluster is able to reproduce
the ’observed’ quantities as good as the triaxial one even though the orientations are
identical. This reflects the degeneracy among these parameters, documented by Υ.

In this example, not every orientation leads to physical solutions. Line 4 in table
6 describes are highly elongated cluster since e3 = 1 and is not a solution to take into
account. If θ = 0.3 is fixed and ϕ → 0, no solution exists. Therefore, we might limit
the range of orientation.

3.5.4 Model independent statements

Every parametric model uses a scale factor whose projection is defined as (52).
In general, it holds, [Stark]:

FS(ξ) =
2√
f

∫ ∞
ζ

FV (ζ)ζ√
ζ2 + ξ2

dζ (127)

if the intrinsic volume density FV is monotonically decreasing with radius. FS is its
projection on the plane of the sky as a function of the elliptical radius. All geometrical
aspects are packed into the prefactor 1/

√
f . The integral in ζ is proportional to an

intrinsic scale length lc. The size of the ellipsoid along the line of sight can be expressed
in terms of the intrinsic scale length. Its projected counterpart is:

lp = lc
e∆√
f

= lc fθ(e1, e2, θ, ϕ). (128)

Therefore, the X-ray surface brightness SX can be written as

SX = SX0 · fSx(ξ, lc, p1, p2, ...), (129)

where ξ = Dd

√
θ2

1 + e2
p θ

2
2 (lc/lp) denotes the radial dependence and the central surface

brightness SX0 is

SX0 = n2
e0

lc√
f
· fSX0(lc, p1, p2, ...). (130)

lp, p1, p2 etc. are model dependent parameters which are obtained by fitting the X-ray
brightness14. SX0 has the same structure as in the β-model case (113) and we can
adapt equation (116) to describe degeneracies model independent.

Therefore, X-ray brightness measurements are not enough to constrain the shape
and orientation of a ellipsoidal galaxy cluster because the set of observable quantities
is to small to eliminate all degeneracies.

14The prefactors depending on e.g. the redshift and metallicity of the cluster are also packed into
fSX0 . See section 3 to know how the prefactors vary under different model assumptions.
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4 On the estimation of the elongation

In the previous sections, we introduced different models for electron densities and tem-
perature profiles and we derived analytic expressions for the X-ray surface brightness
and the temperature decrement for some combinations of those models. Now, we will
use those results.

In this section, we will examine the estimation of the cluster elongation. Our
goal is to derive a method to estimate the cluster elongation and to understand the
dependence of the accuracy of the estimated elongation on the quality of the observed
quantities. If we know these dependences, we can decide which model we should use
to examine the cluster elongation in consideration of the accuracy of the different
measurements. Hence, we can avoid to use a complex model to fit the data whenever
a simpler model can give a comparable estimation of the elongation. The X-ray surface
brightness profile provides orientation and ellipticity of the projected cluster and also
the parameters that describe the electron density. Spectroscopic measurements give
the temperature profile of the ICM and the SZ-effect provides the central temperature
decrement. We do not use the SZ data to constrain the model parameters since the
astrometric precision is usually much worse than in the X-ray measurements. If we
know all those values we can estimate the elongation.

We will not use real observational data. Instead, we will perform simulations of
the projected quantities, where we mimic an accuracy similar to observatories like
Chandra, and analyse the dependence of the fitted parameters and of the elongation
on the initial data. So, we can make statements about the needed accuracy of the data
or about the level of precision that electron density or temperature parameters should
have to guarantee a desired accuracy of the estimated elongation.

First, we describe the steps we have to do. We start with the simulation of the
projected quantities, that means SX(r),∆T0 and Te(r). Then, with certain fitting
procedures we constrain the model and temperature parameters. We combine these
values to end up with the elongation and its uncertainty. To illustrate the simulations
and present some details, we give an example of the whole procedure where we will
focus on the polytropic β-model. We report on peculiarities of the other models in
the following paragraphs. Then, we vary the assumptions about the precision of the
measurements and the used models to examine several cases. At last, we make some
final considerations.

Chandra observation of Abell 1995 A measurement made by Chandra in 2000 of
the galaxy cluster Abell 1995 gives data that represents a typical cluster observation.
Dr. de Filippis recently analysed the measurement and provided us with the X-ray
observation files, with a reduced binned map and a extracted X-ray surface brightness
profile, figure 17. In addition, we received measurements of the temperature profile,
see table 7. We will use these observations as reference so that our simulated values
and their errors are in the correct order of magnitude.

ri [arcsec] 17.5 26.25 35.0 43.75 53.63 65.44 81.18 108.73
T (ri) [keV ] 6.45 8.25 7.32 8.51 8.47 7.79 6.80 13.4
σT (ri) [keV ] 2.00 1.99 1.31 2.11 2.36 1.74 1.69 10.6

Table 7: The measured temperature profile of A1995. ri denote the semi major-axes of the annuli.
The average error on this estimations is σT (r) ∼ 2 keV , if we skip the outermost annulus.
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Figure 17: TOP: A surface brightness profile of Abell 1995, binned in annuli. The width of an
annulus is 0.15′. The averaged total photon count in a superpixel embodied in the central annulus is
Nc ∼ 23 cts. BOTTOM: The error on the annuli.

4.1 X-ray surface brightness

4.1.1 Simulation

A simulation of a X-ray surface brightness map is performed in several steps.

� First, we pick a useful set of intrinsic parameters that define the shape and
orientation of the ‘observed’ cluster. We choose a model which describes the
electron density and define an appropriate set of parameters. Then, we decide to
assume an isothermal gas or to include a radial depending temperature profile as
e.g. in the case of a polytropic gas and choose the required parameters. Moreover,
we have to make assumption about the energy band of the simulated observation,
the cooling function, the cluster distance and other initial parameters.

� Next, we have to decide which method of projection we want to use to get the
map, i.e. how we compute the observational quantities introduced in section 3.2.
This is just a question of computation time but does not affect the result. There
are several ways to proceed: The easiest one it the direct numerical integration
along the line of sight, but it takes more time than other methods. If we convert
the integral into a function of the elliptical radius as shown in (63), we can choose
to express this radius in terms of the ellipticity or in terms of the coefficients jζ ,
lζ and kζ , (56) or (58). Following section 3, it makes sense to use the analytic
expressions of the integrals that we have derived as much as possible to reduce
computation time.
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� We have to decide which size and resolution our simulated map should have. The
resolution gives the distance between two simulated points; this can be equal to
the pixel size of a real detector, for example. If we decrease size and/or increase
resolution, we also increase the number of simulated data points which is of
crucial importance for the computing time in the following steps.

� Then, in order to simulate maps like they are observed through the Chandra
telescope we have to add noise to the data that is reflecting the statistical un-
certainties of the measurement.

Finally, we end up with a map that provides realistic features. Of course, we do
not simulate substructures. Figure 18 gives an example of a simulated map, with noise
and without.

Figure 18: LEFT: A simulated X-ray surface brightness map with a field of view of 2.5′ × 2.5′ and
a pixel size of 2“ × 2′′. RIGHT: The same cluster but with noise. The cluster parameters are the
same that we use in section 4.5: (e1 = 1.5, e2 = 1.3, e3 = 1, θEu = 60◦, ϕEu = 20◦, ψEu = 30◦, θc =
1′, β = 0.6, γ = 1.3, α = 0.25).

Initial parameters This simulation should represent a typical cluster, as it can be
observed by Chandra or other observatories. We can distinguish between four groups
of parameters:

� geometrical parameters, that control the intrinsic shape and orientation of the
cluster:
e1, e2, θEu, ϕEu, ψEu.

� model parameters that describe the chosen electron density model:
ne0, rc1, β1, ....

� temperature parameters that contain information about the temperature profile:
T0, γ, Tmin, rcool, ...

� additional parameters, like the energy band of observation, the physical con-
stants, the distance parameters:
α,Λ, z, ...

We consider Chandra measurements of true clusters which provide a true X-ray surface
brightness to obtain an estimate of the number of photons an observatory can actually
detect, so that we have to be sure that our set of parameter is consistent with this
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Figure 19: The error on the total number of measured photons N per annulus σN provided by the
data file compared with

√
N . Both are in the same order of magnitude.

counts. Thus, instead of choosing ne0 as an initial parameter, we decide to calculate
ne0 with respect to those measurements. More precisely, we compute ne0 so that the
central X-ray surface brightness equals the value in A1995.

Noise There are different methods to reproduce noise. Usually, we can assume that
the observed values of the photon counts are distributed Poisson-like around the total
expected number of photons that are measured at one pixel of the CCD sensor during
the exposure time. If the exposure time or the X-ray flux are high enough, that means,
if the total number of counts everywhere is larger then ∼ 10, the Poisson distribution
can be replaced by a Gaussian distribution. This number is connected to the total
exposure time, to the sensitivity of the detector, to the binning and to the received
flux, of course. But usually, there are not enough photons per pixel observed.

The A1995 data consists of a pure observation map and a binned map, where the
detector pixels (0′′5 × 0′′5) are binned into areas with 2′′ × 2′′ to obtain a higher
photon count, let us call them superpixel. Moreover, the A1995 data includes a list
that represents the measured photons per second per arcmin2 arranged in annuli with
a width of 0.14′, figure 17. It also provides the error on the measurements of each
annuli. Taking into account the exposure time and the resolution, we can calculate
the total number of photons N measured in an annuli. Figure 19 compares the given
error on N , σN , this is the error on the A1995 measurements, with

√
N - this is the

standard deviation of a Poissonian distribution with mean N . The comparison of the
two errors in figure 19 shows that they are of the same order of magnitude, as expected.

Conversion We take the Chandra observation of Abell 1995 as a reference and
we assume that the central surface brightness in our simulation equals the measured
photon count in the central bin. Therefore, we have to estimate a conversion factor C
which allows to convert a flux, SX [erg/cm2/sec] to a count rate, SX [counts/sec] and
vice versa. C can be obtained through the webPIMMS-application15, which evaluates
this instrument dependent conversion factor. We assume that the simulated count
of our central pixel is the ‘observed’ count rate, and webPIMMS gives the central
surface brightness in the desired cgs-units. Since the cluster emissivity depends on the
temperature, we have to include the cluster temperature in the webPIMMS-application
obtained by analysing a ‘measured’ temperature profile, see below.

15 http://heasarc.gsfc.nasa.gov/Tools/w3pimms.html
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We also use this conversion to complete our set of initial parameters. The central
surface brightness is a function of the central electron density ne0. Assuming typical
values for all the other initial parameters, we can calculate the central electron density
of the cluster that is consistent with the Abell 1995 measurements.

4.1.2 Fitting Procedure

Starting from the simulated X-ray surface brightness map obtained as described above,
we want to fit a suitable electron density model and temperature profile. Thus, we
obtain quantities like the central surface brightness SX0, the ellipticity ep and orienta-
tion Ψ of the cluster ellipse and parameters that describe the electron profile like the
projected core radius or a slope parameter. We tried several methods to get a good
fit.

Due to the fact that we only obtained analytic expressions for the X-ray surface
brightness if we assumed a polytropic gas instead of a more complex temperature
gradient, we limit the fitting procedure to the polytropic gas models. The Vikhlinin
temperature profile would be in conflict with our attempt to realise a low computing
time procedure whereas we fit an expression that consists of ‘elementary’ functions.

Shape and orientation There are at least five free parameters (SX0, ep, Ψ, rp, β
and additional model dependent parameters). If we want to estimate all parameters
at once, the fitting procedure fails. Hence, we split the set of parameters into two
groups: parameters that describe the shape and orientation of the ellipse (ep, Ψ) and
parameters that control the electron density model (SX0, rp, β, ...). First, we try to
estimate ep and Ψ.

With an arbitrary set of model parameters, we try to obtain ep and Ψ through a
fit of the simulated surface brightness map. This is motivated by the fact that those
parameters are independent of the model parameters and a change in rc would not
affect the ellipticity, for example. But without suitable model parameters, we are not
able to estimate shape and orientation correctly. We execute the fitting procedure
several times, always changing the initial parameters rp and β a little bit. At the end,
the ellipticity and the orientation are widely scattered, their variance is very large.
This is not a good method to obtain ep and Ψ.

Bartelmann and Schneider [Bartelmann] use the tensor of second brightness mo-
ments Qij to analyse the projected shape of galaxies. This tensor is defined by

Qij =
∫
d2θ qS [SX(~θ)](θi − θ0,i)(θj − θ0,j)∫

d2θ qS [SX(~θ)]
, i, j ∈ {1, 2}. (131)

SX(~θ) is the X-ray surface brightness at the angular position ~θ. qS [SX(~θ)] is a suitably
chosen weight function. In our case, qS [SX(~θ)] = SXH(SX−SX,min), whereas H is the
Heaviside step function. This weighting guarantees that the center of light ~θ0 within
the limiting isophote SX,min is given by

~θ0 =
∫
d2θ qS [SX(~θ)]~θ∫
d2θ qS [SX(~θ)]

, i, j ∈ {1, 2}. (132)

Then, we quantify the shape of the projection by the complex ellipticity

χ =
Q11 −Q22 + 2iQ12

Q11 +Q22
. (133)
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This can be parametrised by the axis ratio q and the position angle Ψ of the elliptical
isophotes:

χ =
1− q2

1 + q2
e2iΨ. (134)

Therefore, the ellipticity ep = 1/q is obtained by solving this equation

|χ| = 1− q2

1 + q2
(135)

and the orientation by using the fact that the imaginary part of a complex number z
equals the absolute value of z times the sinus of the phase of z,

sin(2Ψ) =
Imχ
|χ|

. (136)

The correct signature of Ψ is given by the signature of the imaginary part of χ.

Since our simulation consists of discrete data points, we have to replace the integral
in Qij by a sum. Moreover, we can assume that the center of light ~θ0 = (0, 0). Then,
the tensor reads

Qij =
Σmk=1Σml=1SX(θ1,k, θ2,l)H(SX(θ1,k, θ2,l)− SX,min)θi,kθj,l

Σk=1Σl=1SX(θ1,k, θ2,l)H(SX(θ1,k, θ2,l)− SX,min)
, i, j ∈ {1, 2}. (137)

m gives the number of bins along the simulated field of view. θj,l denotes the jth

component of the position of the lth bin measured in the direction of the jth axis.
From (135) and (136), we are able to estimate the orientation and shape of the cluster
on the plane of the sky. The only free parameter is SX,min. It makes sense to check
if the SX,min is of the right order of magnitude before ep and Ψ are estimated. We
vary the surface brightness SX,min in a wide range and observe the behaviour of those
estimations. In this way, we exclude the very noisy outer regions. Usually, as soon
as SX,min is higher than a particular value, ep and Ψ are more or less constant till
SX,min → SX,max, the maximum of the SX map, where we start to exclude too many
points, figure 20.

Model dependent parameters Through the separated estimation of ellipticity
and orientation, we can change from fitting a two dimensional map to fitting a radial
profile. The estimation of ep and Ψ allows us to bin the X-ray surface simulation.
That means that we will gather data points that are in a given range of radius, those
regions are called annulus. Figure 21 shows a set of annuli drawn on a X-ray surface
brightness map. I will shortly explain the algorithm which enables to bin the data.

Let us define an annulus Aj as the set of points that are enclosed by two elliptical
radii rj and rj+1. This radii are defined as

rj ≡
aj ep√

1− (1− e2
p)2 cos[α−Ψ]2

(138)

where ep and Ψ are ellipticity and orientation of the cluster on the plane of the sky
and α is the free polar angle. aj is the length of the inner semi-major axis of the jth

elliptical annulus. In our case, it is limited to the half size of the simulation map nsize
and connected to the number of annuli nannu, we want to obtain:

aj =
nsize
nannu

j (139)
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psi

Figure 20: The choice of the limiting surface brightness SX,min affects the estimation of ellipticity
and elongation. As long as SX,min is in a certain interval, in the examples above between SX,min =
[5, 15], the estimation is close to the true value.

Figure 21: Some annuli drawn on a simulated X-ray surface brightness map.
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Therefore, the simulated point, SX(xi, yi) is part of Aj , if

rj ≤
√
x2
i + y2

i < rj+1 (140)

where α = arctan(yi/xi) in rj . If j = 0, then r0 = 0. With these tools, we can
map the surface brightness onto a profile along the major axis of the projected ellipse.
We do this to split the fitting procedure into two parts whose parameters are almost
independent. The binning by the annuli allows us to assume that the error on the
total photon count Nj per annulus Aj is normal distributed, since the total number
of photons per annuli is usually high enough, even in the outer regions - at least if
we do not draw too small annuli. The error on the averaged photon count N̄pix per
superpixel located in an annulus Aj is given by

√
N̄pix/np, where np is the number of

superpixel in Aj . The factor n−1/2
p has to be included because N̄pix is a mean of all

superpixel in an annulus.
On the other hand, we lose information when we bin the data if the cluster is not

elliptical. Thus, the number of annuli should be as high as possible in consideration
of the increase of the computing time and the limited number of simulated points.

In the following, S̄X,j is the mean of all SX,i in an annuli Aj . This mean and the
standard deviation in each annuli leads to a surface brightness profile similar as shown
in the left panel of figure 17. There are some points worth mentioning:

� In the profile above, we assumed that the position of the mean of each annuli is
in between its outer and inner limit. There are always less points in the inner
half of an annulus than in the outer half, since the size of this areas are not equal.
Hence, we tried to take the median of the positions of all points in an annulus
to represent its position in the profile. But this leads just to a small change in
the central part. Again, a good balance between the resolution and the number
of annuli can prevent this change almost completely.

� If the number of annuli is too small, there may be a deviation between the profile
obtained above and the true profile along the major axis. The true profile simply
gives the value of the X-ray surface brightness at a given radius. The binned
profile gives S̄X,j , which represents all SX,i in the interval rj < r ≤ rj+1. Thus,
we should compare the binned data with

SX,int =

∫ 2π

0

∫ rj+1

rj
SX(r′) r′ dr′ dϕ∫ 2π

0

∫ rj+1

rj
r′ dr′ dϕ

=

∫ 2π

0

∫ rj+1

rj
SX(r′) r′ dr′ dϕ

π(r2
j+1 − rj2)

(141)

A suitable number of annuli helps to prevent this detour and we usually can
compare the means with the true profile. This is also important when we try to
fit the profile. If there is a large discrepancy between the means and the true
profile, we can not use the analytic expressions we derived in this thesis to mimic
the annuli since these continuous formulae do not take into account the discrete
mean of a given interval.

The X-ray surface brightness profile allows to estimate the central surface brightness
and model parameters as core radii and slopes. We use the NonlinearModelFit-
function provided by Mathematica 7.0 to obtain the correct parameters.

4.2 Temperature profile

The simulation of a realistic temperature profile and a suitable fitting procedure to
estimate the parameters are easily realized compared to the surface brightness. Now,
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Figure 22: TOP LEFT: A logarithmic plot the temperature profile of Abell 1995, see table 7. BOT-
TOM LEFT: A simulated profile assuming a polytropic gas. The circle indicate the true polytropic
profile with T0 = 8.61 keV and γ = 1.3. TOP RIGHT: A logarithmic plot of a profile with a cool core
added, A478 in [Vikhlinin 06]. BOTTOM RIGHT: The same profile as in the panel at top right, but
with larger error bars at the center.

we have to take into account the difference between the physical temperature of the
cluster and the spectroscopic temperature that we can measure. Therefore, we intro-
duced the spectroscopic-like temperature Tsl in section 2.2. It gives the temperature
that is actually measured.

4.2.1 Simulation

A1995 provides a measurement of the temperature profile. The low resolution and the
large error bars, especially in the outer regions, are a realistic reference if we want
to simulate a T -profile, figure 22. We simulate either polytropic profiles or profiles
that include a cool core, TV ik(r). Hence, we need additional information about the
measurements of a cool core cluster. [Vikhlinin 06] provides a lot of such observations.
And we add the measurements of the core of A478 to the profile of A1995.

The simulation is performed within a few steps. First, we choose a model that
describes the electron density of the gas and we decide whether the gas is polytropic
or has a feature like a cool core, which is described by TV ik. Then, we calculate the
spectroscopic-like temperature profile Tsl along the major axis of the cluster. Finally,
according to the data from Abell 1995, we resample the profile at several radii assuming
that the given error is normal distributed. Figure 22 provides the measured profile of
Abell 1995 and a simulated polytropic T -profile and a Vikhlinin T -profile with error
bars.

4.2.2 Fitting procedure

In order to predict the parameters that describes the temperature profiles, we have
to fit them with suitable models of Tsl. They are described by integrals of electron
density and temperature. Their structure is similar to the integrals that are included
in the expressions for the projected quantities: X-ray surface brightness and SZ-effect,
as discussed in section 3.2. Since we were not able to give analytic expressions for
arbitrarily powers of ne and T , we will focus on fits with an isothermal and polytropic
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gas.

Isothermal The fit by a constant temperature profile is done by the LinearModelFit-
function provided by Mathematic 7.0. If the cluster is polytropic, the isothermal fit
often underestimates the temperature normalization T0, since it ignores the decrement
of the gas temperature for larger radii. We will see that the isothermal assumption is
often justified if the error on the measured T -profile is large.

Polytropic Now, we fit the simulated temperature profile with a suitable weighted
Tsl. Since the polytropic temperature profile is a function of the electron density, we
have to derive integrals of the form

∫
los
nme dl, which we already discussed in section

3. The spectroscopic temperature Tsl is given by

Tsl =

∫
los
T n2

e/T
3/4 dl∫

los
n2
e T

3/4 dl
=

∫
los
n2
e/T

1/4 dl∫
los
n2
eT
−3/4 dl

=
T0

nγ−1
e0

∫
los
n

2+1/4(γ−1)
e dl∫

los
n

2−3/4(γ−1)
e dl

. (142)

Thus, we can use the expressions derived in section 3.3 with indices m = 2+1/4(γ−1)
or m = 2− 3/4(γ − 1).

Next, we have to obtain the electron density parameters which describe the poly-
tropic profile. We perform a isothermal fit of the surface brightness, γ = 1, and esti-
mate these parameters up to 0th order. Then, with the NonlinearModelFit-function
provided by Mathematica 7.0, we are able to fit the simulated profile under the as-
sumption that the gas is polytropic. To get a better estimate of γ, we can now perform
a polytropic fit of the surface brightness profile. We could iterate several times to im-
prove the estimation of the polytropic index and T0. Moreover, we directly estimate
also the surface brightness parameters. Now, we show that this estimation is similar
to the results we obtain if we use the true electron density parameters.

We give an example in the case of a polytropic β-model. The initial assumptions
are listed in section 4.5. After three iteration steps, we can compare the estimated
elongation e∆,3 with the result obtained by directly inserting the initial values of the
electron density in the polytropic profile, e∆,init:

e∆,true = 1.18

e∆,3 = 1.17± 0.26

e∆,init = 1.15± 0.26

Both elongations are very close to the true value and both have almost the same
standard deviation. Hence, we can avoid this iteration procedure. We directly insert
the initial values without producing wrong results. In our further calculations, we will
always estimate e∆,init, see section 4.5 for an example. Of course, if real observations
are analysed, we can’t use the true values and the iteration procedure is the more
consistent choice.

4.3 Sunyaev-Zeldovich effect

In this case, the simulation is very simple, since we are only interested in the central
value. Due to the higher resolution and astrometric precision of the observations, we
use the X-ray surface brightness map to estimate the electron model parameters.

To get a simulated value of the central temperature decrement, we calculate ∆T0

where we insert our initial set of parameters and the desired electron density and
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Figure 23: This scheme illustrates the steps that lead from initial assumptions to estimations of
the parameters and their errors. On the right hand side, we list the possible electron density and
temperature profiles we could use in the gray shaded step on the left hand side. In the fitting
procedure, we only use the model combinations which we can describe by an analytic expression.

temperature models. Present day observations of the SZE embody an error of 10%
to 20%, see [Bonamente]. Hence, we resample the true value of ∆T0 to obtain the
’observed’ value.

4.4 Combining the simulations

The diagram in figure 23 illustrates how the steps in the previews sections are arranged
to receive the desired parameters and their uncertainties. Moreover, it shows the set
of models that can be implemented in each step. Hence, a lot of ways to proceed
are available. We present the whole procedure illustrated by a polytropic β-model in
section 4.5.

First, we define the initial values and models and perform the simulation of the
X-ray brightness map, the temperature profile and the temperature decrement. Next,
the following steps are performed several times to obtain a consistent estimate of the
final standard deviation of the fit parameters: We resample the temperature profile,
the central temperature decrement and the surface brightness map and proceed as
described above to get a set of parameters. In the polytropic case, we examine the
surface brightness profile with a γ that is obtained through the temperature profile fit.
We also include the elongation into the loop. Hence, after a number of runs that is
high enough, we are able to include experimental noise correctly. The mean and the
standard deviation of the final set of parameters give the values and the corresponding
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ep Ψ e∆

0.7172 56.87 1.184

Table 8: Quantities based on the geometric factors.

uncertainties.

4.5 Estimation of the Elongation: Example

We present an example which should illustrate how we get from the initial assumptions
about our galaxy cluster to final considerations about the estimation of its shape. To
keep it clear, we use the polytropic β-model. More complex temperature profiles and
electron density models are included by using the analytic expressions we derived, but
the way to proceed is exactly the same.

Initial values The physical constants are listed in appendix A. Now, we have to
decide in which energy band we will perform the analysis. The A1995 data we got are
limited to 0.7 − 7 keV , hence this should be a good choice. The parameter α, which
occurs in the approximated cooling function Λ(T,Z) = Λ̃(Z)Tα of a gas, and hence
the cooling function itself depends on the energy window and on the gas temperature
and the metallicity of the plasma.

Let us list the parameters introduced in section 4.1.1 that describes one cluster of
galaxies.

� the geometrical parameters
e1 = 1.5, e2 = 1.3, e3 = 1, θEu = 60◦, ϕEu = 20◦, ψEu = 30◦.

� the model parameters
θc = 1′, β = 0.6.

� the temperature parameters
T0 = 108K = 8.61 keV, γ = 1.3

� additional parameters
α = 0.25,Λ = 3.0× 10−27 erg s cm3/Kα, z = 0.5

We will calculate ne0 based on an initial assumption about the photon counts. The
temperature decreases to T ∼ 4 keV at a radius of r = 4 rc. According to table 17 in
the appendix, we choose α = 0.25, assuming Z = 0.3Z�.

Now, we are already able to compute quantities like the projected ellipticity ep, the
orientation Ψ and the elongation along the line of sight e∆, see table 8. All of them
are just functions of the geometrical parameters.

At the end of this section, we will compare these values with those we will obtain
through the fit.

Overall scaling Next, we use the Abell 1995 data file to calibrate our simulation
of the X-ray surface brightness map. Our goal is to get a photon count per pixel that
is comparable to real measurements. This is important so that we can compute the
Poissonian noise correctly.

According to the binned Chandra data, we calculate the total number of photons
Nc measured in the central superpixel of size apix = 2” × 2”. For this purpose, we
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extract the total exposure time E and the photon count nc per second per arcmin2

in the central annulus,

E = 57497 s, nc = 0.3607
cts

s× arcmin2
, (143)

Nc = E × nc × apix = 23 cts. (144)

Now, we can complete our set of parameters. Starting from nc, we can calculate the
central surface brightness with webPIMMS. We enter our energy band, a galactic hy-
drogen column density (nH ∼ 1021 cm2) and choose a temperature model, for example
the bremsstrahlung model. We assume that the energy band dependence derived in
[Ettori 00] and expressed though parameter α is included in this conversion procedure.
Finally, we receive SX0 in cgs-units.

SX0 = 4.21× 10−12 ergs

cm2 × s
(145)

With this value, we solve the equation of SX0, equation (70) with ζ = 0, for ne0 and
get our last initial parameter

ne0 = 0.0841 cm−3. (146)

This value seems an order of magnitude larger than one would expect16. ne0 ∝ Tα/2

and hence, it depends on the correct choice of α. Ettori et al. provides this parameter
only for few energy windows and cluster temperature ranges, but since ne0 is not of
main interest in this thesis17, we avoid further investigations. Moreover, the central
electron density is also depending on the electron density model choice.

We get a conversion factor C that allows us convert from counts to cgs-units and
vice versa.

C =
SX0

nc
= 1.83× 1013 ergs

cts× arcmin2 × cm2 × s
(147)

We will use this factor to normalise our simulated central X-ray surface density consid-
ering Nc, the central photon count in the superpixel of the Abell 1995 measurement.

4.5.1 X-ray surface brightness simulation

To perform the simulation, we choose a map size of 5′× 5′, divided in 1502 superpixel.
Hence, we get a resolution of 2“, which is identical to the binning in the Abell 1995 file.
Now, we calculate the surface brightness SX,i in each superpixel at position (xi, yi).
From (70) we get

SX(xi, yi) =
Λ̃(Z)

4π (1 + z)4

√
π√
f

Γ[−1/2 + 3β + 3/2α(γ − 1)β]
Γ[3β + 3/2α(γ − 1)β]

(148)

×Tαe0 n2
e0 rc

(
1 +

ξ2
i

r2
c

) 1
2−3β− 3

2α(γ−1)β

, (149)

We use the ellipsoidal radius ξi in the form defined in (56):

ξ2
i = (xi cos Ψ + yi sin Ψ)2 f

e2
∆

+ e2
p(−xi sin Ψ + yi cos Ψ)2 f

e2
∆

. (150)

16[Bonamente] estimate ne0 = 0.009 cm−3.
17 The central electron density cancels out in the expression for the elongation.
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The inverse conversion factor times the exposure time (C−1 · E) change the units of
SX,i into total photon count per superpixel Npix. The maximum is Nc ∼ 23 cts and
located at the center, as we assumed.

Thus, we can use the Mathematica-commands PoissonianDistribution[µ] and
RealInteger[] to extract an integer that is Poissonian distributed around the mean
µ. Thus, the simulated photon count with noise, let us call it the observed photon
count Ñpix, reads

Ñpix = Npix + RealInteger[PoissonianDistribution[Npix]]. (151)

At last, we get a X-ray surface brightness map in units of cts/superpixel, see figure
18.

Temperature profile To simulate the temperature profile we use the spectroscopic-
like Tsl(r), (142). Considering a polytropic β-model, we integrate Tsl(r) along the line
of sight. To obtain a realistic simulation, we simulate the profile at the radii ri of
the A1995 observations. Table 7 lists the radii, the measured temperatures at those
position and their error.

Then, Tsl at radius ri is given by

Tsl(ri) =
T0

nγ−1
e0

∫
los

(
1 +

(
(ri + z′)/r2

c

))− 3β
2 (2+1/4(γ−1))

dz′∫
los

(1 + ((ri + z′)/r2
c ))
− 3β

2 (2−3/4(γ−1))
dz′

. (152)

At the positions ri, we resample Tsl assuming a normal distributed error. Let’s call
this resampled profile the observed temperature profile.

Central temperature decrement Equation (73) gives the central temperature
decrement. With our initial values, whose central electron density we calculated based
on the assumed photon count, we obtain

∆T0 = −11.9mK. (153)

The error σ∆T /∆T is usually around 10%. A wrong estimation of ne0 would lead to a
wrong temperature decrement18. But since we are focusing on the cluster shape, which
is not explicitly depending on ne0, only the relative error on ∆T0 is important. If our
analysis is consitent, this should not play a role. Finally, we extract our observed tem-
perature decrement from a normal distribution with mean ∆T0 and standard deviation
σ∆T .

4.5.2 Fitting procedure

Now, we will estimate the parameters from the analysis of the observed quantities.
To obtain consistent errors we resample all the observed data several times. Thus, we
establish a loop which will estimate the parameters after each resampling.

First of all, we try to estimate the polytropic index from the observed temperature
profile. In the case of the polytropic β-model, Tsl can be written as

Tsl =
T0

nγ−1
e0

Γ[−1/2 + 3βm]
Γ[3βm]

(
1 +

ξ2

r2
c

) 1
2−3βm

|m→2+1/4(γ−1)

Γ[−1/2 + 3βm]
Γ[3βm]

(
1 +

ξ2

r2
c

) 1
2−3βm

|m→2−3/4(γ−1)

(154)

18[Bonamente] found ∆T0 = −0.92mK in A1995.
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initial isothermal polytr. (σ̄) polytr. (1/4σ̄)
T0 [keV ] 8.61 6.7± 0.7 10± 4 8.7± 0.8
γ 1.3 1 1.5± 0.5 1.4± 0.1
BIC (σ̄) 35 39 -
BIC (1/4σ) 70 - 67

Table 9: The fit parameters assuming an isothermal and a polytropic gas. The errors of the
parameters are very large in the polytropic case with σ̄ ∼ 2 keV . To obtain of parameters that
describe a polytropic gas better, we assume that the errors on the temperature measurement are
1/4 of the given ones, σT (r) = 0.5 keV . A comparison with the BIC reveals the one that should be
preferred.

If we use this function to obtain T0 and γ, we have to check if their estimated errors
are not too large. Since the reference errors of the Abell 1995 profile are quite large,
their mean is σ̄ ∼ 2 keV , we are usually not able to fit with a polytropic profile and
we have to change to an isothermal one. Only if we assume that the accuracy of
the measurements reaches a certain level, we can perform a polytropic fit and obtain
the index γ. In addition, we can use the BIC, the Bayesian information criterion, to
estimate the number of parameters we can actually fit.

The formula for the BIC is

BIC = −2 lnL+ k ln(n) (155)

where L is the maximized value of the likelihood function for the estimated model, k
is the number of free parameters of the model and n the number of data points used
in the fit, see [Liddle] and references therein. We used the command in Mathematica.

This facts tells us which temperature profile we have to assume for the rest of the
fitting procedure.

If we perform this fitting with the initial parameters - we skip an iteration procedure
as described in section 4.2.2 - we get the results in table 9. We see that in this case,
we should prefer the isothermal model since the polytropic parameters can not be
estimated. For example, if we assume that the errors on the measurements are 1/4 of
the given errors, σT (r) ∼ 0.5 keV , we are able to fit a polytropic profile. Hence, we fit
once with the polytropic gas and small errors on T (r) and once with the isothermal
assumption, but σT (r) ∼ 2 keV .

From the surface brightness map, we can estimate the ellipticity and the orien-
tation of the projected ellipsoid. This procedure is model independent. With this
information, we produce annuli. Hence, we get a surface brightness profile as shown
in figure 17.

In the fitting procedure of the surface brightness profile, the errors on the annuli
are given by

√
N̄pix/npix, whereas N̄pix is the averaged photon count per superpixel

in an annulus which embodies npix superpixel. We use this information to weight the
fit correctly. A fit provides an estimate of the projected core radius rp, the slope β
and the central surface brightness in units of total counts per superpixel. We use the
conversion factor C and the size of a superpixel to get an expression in cgs-units, SX0.

To get the elongation of a polytropic β-model, we insert rc/
√
f = rp/e∆ in (71)

and (73). Out of them, we calculate SX0/∆T0 and solve for e∆. Here, we used that
the surface brightness and temperature decrement depend differently on the electron
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ep Ψ rp[arcmin] β

true 0.71 56.87 0.946 0.6
isothermal 0.719± 0.014 55.6± 1.7 0.95± 0.02 0.62± 0.01
polytr. (σ1/4) 0.719± 0.014 55.6± 1.7 0.93± 0.02 0.59± 0.01

SX0[ 10−12erg
cm2 arcmin2 s ] T0[keV ] γ e∆

true 4.21 8.61 1.3 1.184
isothermal 4.20± 0.05 6.2± 0.1 1 1.3± 0.4
polytr. (σ1/4) 4.21± 0.05 9.0± 0.6 1.34± 0.08 1.2± 0.2

Table 10: The fit parameters assuming an isothermal gas and assuming a polytropic gas, whereas
we assume that the error on the observed temperature is σT (r) = 0.5 keV in the second case.

density, as discussed in section 1.2.5. Then, the elongation is given by

e∆ =
SX0

∆T 2
0

4π(1 + z)4

Λ̃Tα0

(
TCMB fSZ(ν, Te)

σT kB
mec2

)2

T 2
0 rp (156)

×
(

Γ[−1/2 + 3γβ/2]
Γ[3γβ/2]

)2 Γ[3mβ/2]
Γ[−1/2 + 3mβ/2]

, (157)

where m = 2 + α(γ − 1). We have to keep in mind that the factor 4π, which is
originated in the integration to obtain the surface brightness, is a solid angle. Since
SX0 is expressed in arcmin2, we should insert

4π sr = 180/π · 60 arcmin2 (158)

Finally, we can estimate the elongation.
This is the end of the fitting procedure and we start a new loop to estimate the

parameters based on a new resampeling of the observed values. The fit parameters we
obtain are listed in table 10. In this table, we see that the estimation of orientation
and ellipticity is quiet exact. Core radius and central X-ray surface brightness agree
with the true value. But there are also differences between isothermal and polytropic
assumption. The slope parameter β is overestimated in the isothermal case. Both
β and the polytropic index γ control the slope of the surface brightness. Hence, this
overestimation can be a compensation of the underestimated γ. The isothermal profile
is not able to estimate the central temperature correctly. This is originated in the fact
that the polytropic profile usually decreases with radius and the isothermal fit gives
the average temperature and not the central one. The polytropic profile is able to
give a good estimation of T0. Surprisingly, both models constrain the elongation quiet
good. Obviously, the underestimated temperature is able to compensate the β and γ

parameters in the isothermal case.
The polytropic fit tells us the the method we use to estimate the elongation works

correctly. Moreover, we see that the isothermal assumption can also be a good choice.
In figure 24, we see the distribution of the fitted parameters of each loop around

the true values. This is a good tool to estimate if the fitting procedure works correctly.
As we expect, the distributions are almost symmetric, their median is close to their
mean. In addition, we give the distributions of the values that differ in the isothermal
case.
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Figure 24: TOP: The distribution of parameters estimated in ∼ 100 runs where we tried to fit
a cluster described by a polytropic β-model. We took the same model to obtain the parameters
assuming the error on the temperature profile is σT (r) ∼ 0.5 keV . The dashed line indicates the true
value of the parameter, the central drawn through line gives the mean of all runs, the other drawn
through lines are the standard deviation on this distribution. The dotted line is the median and
should correspond with the mean if the distribution is Gaussian. The true values coincide with the
1σ confidence interval, as we expect, because we choose the right model. The coordinates along the
axis of abscissa are given in the following units: T0[keV ], ∆T0[K], rp[rc], SX0[cts/superpixel], Ψ[rad].
BOTTOM: Five parameters in the case of a isothermal β-model fit and σT (r) ∼ 2 keV . Although it
is the wrong model, wet get a good estimation of the elongation, but we miss the slope parameter β
and the central temperature.
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4.6 Results

Now, we want to use the procedure which we described above to search for general fea-
tures when we estimate the elongation through fitting a certain model on the measured
data. Our goal is to understand how the estimation of the cluster shape depends on
the accuracy of the measurements and on the models which we use to fit the observed
data. Starting from different initial values, electron density models, temperature pro-
files and error assumptions, the number of possible configurations is very large. We
try to limit our analysis to interesting and important combinations.

4.6.1 β-model, polytropic

This case has already been examined above in section 4.5. The polytropic model and
the isothermal assumption lead both to a good estimation of the elongation. Now, we
will examine which assumptions this result depends on.

The elongation of this model was derived above as:

e∆ =
SX0

∆T 2
0

4π(1 + z)4

Λ̃Tα0

(
TCMB fSZ(ν, Te)

σT kB
mec2

)2

(159)

×
(

Γ[−1/2 + 3γβ/2]
Γ[3γβ/2]

)2 Γ[3mβ/2]
Γ[−1/2 + 3mβ/2]

, (160)

We can identify which parameters affect the elongation most. e∆ is inversely propor-
tional to the square of the temperature decrement. Hence, a large error on ∆T0 can
shift the estimated elongation, because usually, its relative measurement error is of the
order of 10%−20%. In the example in table 9, we have seen that different temperature
profiles can lead to different central temperature estimations. We expect that Tα0 also
plays an important role. These statements are model independent, of course. The
other parameters, the surface brightness or the core radius, are given by the surface
brightness fit, and have an effect too.

Now, we study how the elongation depends on the error on the temperature profile
measurement and on the error on the temperature decrement. Our initial assump-
tions are σ̄T (r) ∼ 2 keV , where the errors are distributed according to A1995, and
σ∆T0/∆T0 ∼ 10%. We run the loop with different errors that depart from this initial
values and observe how the estimation of the elongation changes. We expect that the
statistical error on the elongation and its deviation from the true value will decrease
if we decrease the errors. If the error of one of these quantities gets very small, there
might be a threshold where the error on the elongation will be almost constant. That
means, the other measurement errors become dominant.

Error on the temperature profile We fit the simulated data assuming an average
error on the temperature profile in between

σ = [0.17 keV, 2.5 keV ] (161)

in steps of ∼ 0.2 keV . First, we use the polytropic profile even though the isothermal
model could be a better choice in the case of large errors. But in this way, we can
compare the influence of different errors on the elongation. If the fitting procedure
fails, we discard the run and start a new resampling. Then, we examine the behaviour
of the fit if we assume a constant temperature in the cluster.

In the case of large errors on the temperature measurements, σT (r) ∼ 2 keV , we
expect that both models can give a good estimate of the elongation, as we saw in the
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Figure 25: A cluster described by a polytropic β-model. The estimated elongation changes if the
error on the temperature profile σT (r) changes. The relative error on the temperature decrement is
10%. TOP LEFT: The polytropic β-model gives a good fit if the error on T (r) is small. This shows
again that our method works correctly. At 1.7 keV , the large deviation is a statistical fluctuation.
The dashed line indicates the true elongation. BOTTOM LEFT: The statistical error (dashed line)
and the deviation from the true value (drawn though line) in the polytropic case relative to the true
e∆. The statistical error decreses by a factor ∼ 5 while the deviation between true and estimated
elongation is very small if σT (r) < 1 keV . TOP RIGHT: The isothermal β-model gives a good fit if
the error on T (r) is large enough. Then, it’s possible that assuming a constant temperature profile
compensates other effects. If σT (r) < 1.5 keV , there is a systematic error. Probably, the small errors
on T (r) do not allow to estimate a T0 that leads to a e∆ close to the true elongation, indicated by
the dashed line. BOTTOM LEFT: The statistical error (dashed line) and the deviation from the
true value (drawn though line) in the isothermal case relative to the true e∆. The statistical error
decreses by a factor ∼ 2 while the deviation between true and estimated elongation is always of the
same order of magnitude.

example above. Otherwise, the polytropic gas will give a better fit.

In the following paragraphs, the difference between the true elongation and the
estimated elongation is called deviation. Figure 25 shows that the systematic error
and the deviation in the polytropic case decrease significantly if we assume a smaller
error σT (r) < 1 keV on the temperature profile. Otherwise, the estimation of the
correct temperature parameters becomes difficult and statistical error on the elongation
increases. If we try to fit with the isothermal model, the statistical error will not
increase very much. If σT (r) is large enough, σT (r) ≥ 1 keV the measured temperature
profile could lead to an estimation of the elongation that is as good as the one in
the polytropic case, whereas the relative statistical error is δe∆/∆T0 ∼ 0.4e∆. On
the other hand, if the error on T (r) is small, the isothermal model overestimates the
elongation. In the example discussed above, we assumed σT (r) ∼ 2 keV and therefore,
the isothermal profile can give a good fit.

Error on the central temperature decrement We investigate the dependence
of the elongation on the error on the SZ temperature decrement. We vary σ∆T0/∆T0

between 1% and 25%, while we assume that σT (r) ∼ 1 keV . The relationship between
elongation and ∆T0 is

e∆ ∝
1

∆T 2
0

. (162)
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Hence, we expect that the error on the elongation rapidly decrease until it becomes
smaller that the statistical error due to the other parameters. The deviation from the
true elongation decreases too, since the simulated temperature decrement gets closer
to the true value.

Figure 27 illustrates the behaviour of the estimated elongation when we change
the error on the temperature decrement measurement. As expected, a small error
on ∆T0 guarantees a good and accurate estimate. Already at σ∆T /∆T0 ∼ 10%, the
elongation can deviate by 25% from the true value. This makes it sometimes difficult
to interpret results. If σ∆T0 is even larger, a good estimation of e∆ is not always
possible and the statistical error becomes larger than 0.5e∆. Hence, to guarantee an
accurate estimation of the elongation within ∼ 20% in our case, we need σ∆T0 < 5%.
Of course, this relative accuracy is not a general result and should be tested for clusters
with other elongations.

In both examples above, where we varied the error on T (r) and ∆T0, we resampled
the true temperature profile or the temperature decrement in each step. Hence, every
variation belongs to a new observation of those quantities. Due to this, there is always
a certain uncertainty background in those plots. In figure 26 and 28, we fixed these
errors and made several runs. We see that each new resampling leads to a slightly
different estimation of the elongation.

Polytropic profiles As observed in the example above, the isothermal β model
seems to fit a polytropic model quite well, as far es the elongation is concerned. To
examine the dependence of the elongation on the fitted polytropic index a bit more,
we choose a fix index γ, estimate the corresponding temperature and fit the surface
brightness. We expect that the best estimation is possible at γ = 1.3 while the
systematic error will increase if γ changes.

The panels in figure 29 present two different cases. The top one gives the be-
haviour of the elongation if we assume that the central temperature is exactly known,
T0 = 8.61 keV . Hence, this is the dependence of e∆ on the polytropic index γ. The
bottom panel shows the case in which we choose γ and fit the temperature profile,
whereas σT (r) ∼ 2 keV . We observe the effect we already have seen in the example
above: the estimated temperature compensates the wrong model, whereas it does not
matter which polytropic index we choose. To avoid too wide scattering due to the
estimation of the temperature decrement, we assume a error of 5% on ∆T0. In the
isothermal case, γ = 1, the elongation deviates a bit from the true value, in contradic-
tion to the agreement observed in our example. But since we choose a smaller error
on ∆T0 and perform a different simulation, we should not compare those scenarios
directly. Moreover, a large error on T(r) does not have to give a good estimation of
the elongation in all cases, see top right panel in figure 25.

Conclusion If the true cluster is described by a polytropic β-model, and isothermal
β-model can estimate the elongation correctly if the error on the temperature profile
larger than σT (r) ∼ 2 keV . Otherwise, the isothermal model tends to overestimate the
elongation e∆. Hence, a temperature profile that is too simple can be a source of error
if the temperature measurement has a certain accuracy.

4.6.2 PA-model, polytropic

In the case of a cluster described by a polytropic β-model, we compared the influence of
the choice of the temperature model on the estimated elongation. Now, in the case of
the PA-model, we can compare both the electron density models and the temperature
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Figure 26: A polytropic β-model cluster several times fitted with a polytropic β-model. σT (r) ∼
2 keV and σ∆T0/∆T0 = 10%, whereas we resample the true temperature profile at each step. The
dashed line donotes the true elongation.

Figure 27: A cluster described by a polytropic β-model. The estimated elongation changes if the
error on the central temperature decrement ∆T0 changes. The error on the temperature profile is
σT (r) = 0.8 in average. TOP : The polytropic β-model gives a good fit if the error on ∆T0 is small.
At σ∆T0 > 20%, a wide scattering of the estimate value is possible. The dashed line indicates the
true elongation. BOTTOM: The statistical error (dashed line) and the deviation from the true value
(drawn though line) relative to the true e∆. The statistical error decreses by a factor ∼ 6 while the
deviation between true and estimated elongation is of the same order if σ∆T0 < 18%.
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Figure 28: A polytropic β-model cluster several times fitted with a polytropic β-model. σT (r) ∼
0.8 keV and σ∆T0/∆T0 = 10%, whereas we resample the true central temperature decrement at each
step. The dashed line donotes the true elongation.

Figure 29: TOP: The behaviour of the elongation if we change the polytropic index from 1 to
1.6 and assume that the temperature is fixed at T0 = 8.61 keV . The true values of elongation and
the true polytropic index are denoted by the dashed lines. BOTTOM: Here, the temperature is not
fixed anymore. Moreover, we use a fixed γ to obtain a T0 by fitting the given temperature profile
with σT (r) = 2 keV . The shaded regions indicates regions that are not plotted in the figure above.
Although the best fit is possible if the model is correct, we see that a good estimate of the elongation
is possible, whatever index we choose.
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e∆ δ
true cluster 1.18
PA polytropic 1.3± 0.3 0.47
PA isothermal 1.2± 0.3 0.24
β polytropic 0.9± 0.2 -1.20
β isothermal 1.2± 0.2 -0.10

Table 11: The elongation obtained when we fit a cluster described by a polytropic PA-model under
different model assumptions. δ gives the difference between estimated and true elongation in units of
the estimated standard deviation.

models. Remembering the hierarchical structure of the ne-models, the PA-model has
one additional parameter η which describes a peak at the center.

All initial parameters are identical with the values we used in the example with
the polytropic β-model. Our analytic expressions which describe surface brightness
and temperature decrement in the case of a polytropic PA-model require 0 < η < 1.
Hence, we choose

η =
1
2

(163)

The elongation of a cluster described by a polytropic PA-model is given by

e∆ =
SX0

∆T 2
0

4π(1 + z)4

Λ̃Tα0

(
TCMB fSZ(ν, Te)

σT kB
mec2

)2

T 2
0 rp (164)

×
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whereas m = 2 + α(γ − 1).
If we fit the polytropic PA-model with a isothermal PA-model or a polytropic β-

model, we expect that these simpler models will estimate the elongation correctly,
similar as in the case before where we fit a polytropic β-model with a isothermal β-
model. Assuming σ∆T0/∆T0 = 10% and σT (r) ∼ 1 keV , we can estimate the elongation
in those different cases, table 11.

The simpler models are able to estimate the elongation correctly. The polytropic
β-model is an exception, because it is outside of the 1σ interval. But this is still a good
result. It is interesting that the isothermal β-model seems to fit better than we would
expect. Maybe, it is a coincidence due to the simulated temperature profile. Further
research would answer this question. But in the following, we focus on the polytropic
and isothermal PA-model. Let us see if there is a similar dependence on the error on
the temperature profile and the SZ temperature decrement.

Error on the temperature profile While the error on the temperature decrement
is 10%, we vary the error on T (r) in a similar interval as in the previous section:

σ = [0.17 keV, 1.7 keV ] (167)

We expect a similar behaviour of the estimated elongation if we compare the isothermal
and polytropic profile. Figure 30 shows the results. Again, we can say that as long as
σT (r) < 1 keV , we get a better estimate of the elongation if we use a polytropic model.
The isothermal model seems to overestimate the cluster elongation. But the difference
is not as large as in the case of the polytropic β-model above. If σT (r) > 1 keV , there
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Figure 30: A cluster described by a polytropic PA-model. The estimated elongation changes if the
error on the temperature profile σT (r) changes. The error on the temperature decrement is 10%.
TOP LEFT: The polytropic PA-model gives a good fit if the error on T (r) is smaller than ∼ 1 keV .
The dashed line indicates the true elongation. BOTTOM LEFT: The statistical error (dashed line)
and the deviation from the true value (drawn though line) in the polytropic case relative to the true
e∆. The statistical error decreses by a factor ∼ 2 while the deviation between true and estimated
elongation is around 0.2e∆ if σT (r) < 1 keV . TOP RIGHT: The isothermal PA-model can give a
good fit if the error on T (r) is large enough. Then, it is obviously possible that assuming a constant
temperature profile compensates other effects. If the error on T (r) is small, a systematic error occurs
similar as in the β-model case. The dashed line indicates the true elongation. BOTTOM LEFT:
The statistical error (dashed line) and the deviation from the true value (drawn though line) in the
isothermal case relative to the true e∆. The statistical error is almost constant while the deviation
between true and estimated elongation is always of the same order of magnitude and comparable to
the polytropic case.

is no advantage in using a polytropic temperature model instead of a constant one.
The plots are consistent with the values derived in table 11.

Error on the central temperature decrement Again, we vary σ∆T0 between 1%
and 25%, while we assume that σT (r) ∼ 0.5 keV . We choose a smaller error on T (r)
than before so that we can focus on the influence of σ∆T0 .

Figure 31 illustrates the behaviour of the estimated elongation when we change
the error on the temperature decrement measurement. As expected, a small error on
∆T0 guarantees a good and accurate estimate. If σ∆T0 > 15%, the statistical error
δe∆/e∆ becomes larger than 0.5e∆, while the deviation from the true elongation is
always of the same order of magnitude. Hence, to guarantee an accurate measurement
of the elongation with a relative error of 20%, we need σ∆T0 < 10%. As before, this
statement holds only in this example. Compared to the β-model case in the previous
section, we can allow a similar error on ∆T0.

Parameter η In the case of the β-model, we compared the polytropic temperature
profiles by varying the polytropic index γ, whereas σT (r) ∼ 0.5 keV and σ∆T0/∆T0 =
10%. Now, we want to examine the behaviour of the elongation if we change η in our
PA-model. Figure 32 shows that a small parameter η tends to underestimate e∆ while
a larger η would result in a larger estimated elongation. In addition, the statistical
error increases. This compensating effect explains the good elongation we estimate
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Figure 31: A cluster described by a polytropic PA-model. The estimated elongation changes if the
error on the central temperature decrement ∆T0 changes. The error on the temperature profile is
σT (r) = 0.4 in average. TOP : The polytropic PA-model gives a good estimation if the error on ∆T0

is small. The dashed line indicates the true elongation. BOTTOM: The statistical error (dashed line)
and the deviation from the true value (drawn though line) relative to the true e∆. The statistical
error decreases by a factor ∼ 4 while the deviation between true and estimated elongation is of the
same order.

if we use a polytropic β-model, where η = 0. Probably, it is originated in a certain
degeneracy among η and the slope parameter β, which occurs if the peak parameter
η is small.

Conclusion The elongation of a cluster described by polytropic PA-model can be
estimated through a fit with a isothermal β-model if σ∆T0/∆T0 = 10% and σT (r) ∼
0.8 keV . Hence, the flat β-model is able to fit the cluster although there is a peak
in the electron density. If we compare polytropic and isothermal PA-model fits, we
observe a systematic error in the deviation if σT (r) < 1 keV in the isothermal case.
We have observed this overestimation already in the β-model example.

4.6.3 PA-model with cool core

In our previous analysis, we focused on polytropic models. These models have tem-
perature profiles which are a simple power law of the electron density. Now, we will
simulate cool core clusters whose temperature profiles is described by the simplified
Vikhlinin profile, see equation (41). The electron density is given by the PA-model.
Since we found no analytic expression to express X-ray surface brightness or the cen-
tral temperature decrement if the Vikhlinin profile is involved, we will fit this cluster
with polytropic models. Maybe some compensating effects will occur so that we still
get a good estimation of the elongation.
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Figure 32: A cluster described by a polytropic PA-model fitted with a polytropic PA-model, where
η varies between 1 and 0.9. Compared to figure 29, where we varied the polytropic index fitting a
polytropic β-model, we observe also compensating effect if we change η. The dashed lines indicate
the parameters that belong to the true model.

Figure 33: A cluster described by a PA-model and a Vikhlinin temperature model, where the error
on the cool core measurements is assumed to be as large as on the other measurements. The estimated
elongation changes if the error on the central temperature decrement ∆T0 changes. The error on the
temperature profile is σT (r) = 0.5 in average. TOP : The polytropic PA-model gives a good estimation
if the error on ∆T0 is small. The dashed line indicates the true elongation. BOTTOM: The statistical
error (dashed line) and the deviation from the true value (drawn though line) relative to the true
e∆. The statistical error decreases by a factor ∼ 4 while the deviation between true and estimated
elongation is much better if σ∆T0 < 10%.
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initial isothermal polytropic
T0 [keV ] 8.61 4.1± 0.2 4.2± 0.2
γ 1.3 1 0.5± 0.2
BIC - 86 85

Table 12: The fit parameters assuming an isothermal and a polytropic gas, where σT (r) ∼ 0.5 keV ,
while the core core measurements are of the order σT (r) ∼ 0.1 keV . A comparison with the BIC
reveals that both profiles fit the data equally.

e∆ δ
true cluster 1.18
cool core 0.72± 0.25 -1.84

Table 13: A cluster described by a PA-model with Vikhlinin temperature profile that has an accurate
measurement of the the cool core. We fit an isothermal PA-model. δ gives the deviation from the
true value in units of the standard deviation.

The reference profile which gives the position and the error bars on the temperature
measurement, see right panel in figure 22, has a very accurate measurement of the cool
core. This complicates the fitting procedure, since it tends to estimate a polytropic
index γ < 1. More precisely, when we derive the analytic expressions that describe
the projected quantities of a polytropic PA-model, see section 3.3.3, we had to include
the assumption that 3mβ > 1. Hence, in equation (166), we must request that γ ≥ 1.
As a start, we skip the polytropic index and assume a isothermal gas. The accurate
measurement of the cool core leads still to a bad estimation of T0 but we guarantee
that γ ≥ 1. Table 12 gives the estimated parameters obtained from a resampled
cool core profile. If we assume that the error on T (r) is one fourth of the initial one
(σT (r) ∼ 0.5 keV in the outer regions) and σ∆T0/∆T0 = 10%, the isothermal PA-model
underestimate the elongation, see table 13. In figure 33, we change the error on the
temperature decrement between 1% and 22%.

Next, we want to include the polytropic profile. To improve the temperature fitting
procedure, we discard the measurements that describe the cool core. The remaining
data points describe a decreasing temperature profile. Under the assumption that
σT (r) ∼ 0.5 keV and σ∆T0/∆T0 = 10%, a fit with a polytropic and an isothermal
PA-model provides the elongations listed in table 14.

Hence, we are closer to the true value than in the case where we include the cool
core into our analysis. This means that the cool core has not a great influence on the
estimation of the elongation.

Of course, this results depend very much on the very accurate measurements of the
cool core. Let us assume that the measurements close to the center are not better than
the measurements at r > rcool, where rcool is the scale of the cool core, see bottom
right panel in figure 22. Hence, we have not to exclude the cool core measurements
anymore, but we fit this data again with a polytropic and an isothermal PA-profile,
see table 15.

In consideration of these assumptions, whereas the mean error on the temperature

e∆ δ
true cluster 1.18
isoth. without core 1.3± 0.4 0.3
polytr. without core 1.5± 0.4 0.8

Table 14: A cluster described by a PA-model with Vikhlinin temperature profile. We fit an isother-
mal and polytropic PA-model, where the cool core is discarded in the temperature profile fit. δ gives
the deviation from the true value in units of the standard deviation.
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initial isothermal polytropic
T0 [keV ] 8.61 4.9± 0.7 4.8± 0.4
γ 1.3 1 0.9± 0.3
BIC 47 53

Table 15: The fit parameters assuming an isothermal and a polytropic gas, whereas σT (r) ∼ 2 keV
for all measured radii. A comparison with the BIC reveals that we should prefer the isothermal profile.

e∆ δ
true cluster 1.18
cool core 1.1± 0.3 -0.3

Table 16: A cluster described by a PA-model with Vikhlinin temperature profile, where the cool
core is not visible, that means, the error on the central measurements comparable to the error on the
outer regions. We fit with an isothermal PA-model. δ gives the deviation from the true value in units
of the standard deviation.

profile is σT (r) ∼ 2 keV and σ∆T0/∆T0 = 10%, an isothermal PA-model gives the value
in table 16 in good agreement with the true elongation.

Conclusion If the cluster whose electron density is described by a PA-model has
a cool core, this feature adds new problems to the analysis of its observational data.
Due to this few examples, we can say that it is better to discard the cool core, if
we want to fit with a isothermal or polytropic profile and an exact measurement of
the core is available. The isothermal and polytropic fit provides good estimations
of the elongation. Of course, if we would include the Vikhlinin profile to model the
cluster temperature, we should not discard those exact measurements. Otherwise, if
σT (r) ∼ 2 keV everywhere, we can use the isothermal profile even if there is a cool
core and obtain a good estimated elongation. Next, one should vary the Vikhlinin
profile parameters, e.g. the depth and width of the core, to confirm and improve those
considerations.

4.7 Summary

Finally, we want to summarise the most important results we obtained in the previous
section.

First, we observed several times that our method to estimate the elongation of
clusters works.

In general, if the error on the temperature profile is in average larger than 1.5 keV
and the measured temperature profile consists of ∼ 7 data points and no cool core is
visible, one should prefer to fit the temperature profile with a isothermal gas. The
polytropic profile has almost no advantages in this case, the deviation of the estimated
elongation from the true value is comparable to the isothermal case. Hence, a bad
temperature modeling and therefore a bad estimation of the cluster central tempera-
ture, which is usually underestimated, have not to make it impossible to estimate the
elongation correctly. The over- and underestimation of certain parameters compen-
sates a underestimated T0. For example, we observed that the underestimation of the
central temperature can compensate a wrong choice of γ up to a certain degree.

If the error on the temperature profile is small, σT (r) < 1.0 keV , and no cool core is
visible, the polytropic assumption will give a better estimation of the elongation. The
isothermal fit tends to overestimate e∆. Both the isothermal β-model and the isother-
mal PA-model have this behaviour when the true cluster is given by their polytropic
counterparts. Hence, the overestimation is not connected to the electron density model
and is originated in the bad temperature modeling. If the error on the temperature



4 ON THE ESTIMATION OF THE ELONGATION 75

profile is σT (r) < 1.5 keV , to avoid a systematic error a good temperature modeling is
important.

If σT (r) ∼ 1.0 keV and σ∆T0/∆T0 ∼ 10%, we observed that the polytropic and
isothermal β-model is able to estimate the elongation as good as a PA-model, if the
true cluster is described by a polytropic PA-model, whereas the isothermal model
gives even a better estimation. Probably, compensation effects occur if there is a bad
modeling of the temperature profile and a bad ne modeling at once. Nevertheless, the
flat β-model is able to estimate the elongation of a cluster with the central peak in the
electron density.

In general, if we fit a cluster with the correct model, a smaller error on the central
temperature decrement results in a significantly better estimation of the elongation.
This is not surprising, because the elongation depends inversely on the square of this
decrement. But if the temperature profile has an accuracy of σT (r) ∼ 0.5 keV or
worse, one will not gain a more accurate result even if the error on the temperature
decrement is smaller than 10%. Hence, if we compare with the T (r)-measurements
of A1995 where σT (r) ∼ 2 keV , it is useful to obtain a more precise temperature
profile in place of improving of the central temperature decrement measurement below
σ∆T0/∆T0 ∼ 10%.

Assume σT (r) ∼ 0.5 keV and σ∆T0/∆T0 ∼ 10% and a cool core is visible in the
temperature profile, that means there is an accurate measurement of it. If one choses a
isothermal or polytropic temperature model to fit the cluster, one can discard the cool
core measurements without lose the precision of the estimated elongation. Otherwise,
a bad temperature model tends to underestimate the elongation. If the cool core has
large error bars, e.g. the average error in all temperature measurements is σT (r) ∼
2 keV , that means we are not able to identify it, an isothermal or polytropic fit gives
a good estimation of the elongation. Obviously, the cool core does not affect the
surface brightness or the temperature decrement so much that it is important to fit
the temperature profile in consideration of the cool core. Hence, a bad temperature
modeling has not to lead to a bad estimated elongation, if the temperature profile is
adapted correctly.

The next possible steps to proceed are:

� In the examples we discussed, we examined mainly the importance of the correct
temperature modeling. The influence of a bad ne modeling should be studied
more detailed.

� Can we always ignore the cool core if we fit with a isothermal of polytropic
temperature profile? One can expect that the properties of the cool core are
important.

� Can an isothermal model still give good estimations of the elongation if we model
a cluster with a steeper initial temperature gradient, e.g. γ = 1.5? How does
this depend on the radial resolution of the temperature profile? Probably, this
is a general feature if σT (r) is large.

� We can do these analyses with different simulated clusters that have more ex-
treme elongations of e∆ = 0.5 or e∆ = 1.6. This can result in a amplification or
attenuation of certain observed effects.
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5 Conclusions and future prospects

In this thesis, we discussed different topics concerning galaxy clusters. First, we pre-
sented density models and temperature profiles which describe the ICM. Then, we
combined those models and tried to find analytic expression for the X-ray surface
brightness and for the central temperature decrement, that means we expressed the
integrals in terms of well known functions. This was possible only in a few cases. When
the profiles became more complex, we had to make some assumptions concerning the
model parameters or actually, we did not even find an analytic expression, e.g. if we
use the VE-model or the Vikhlinin temperature profile. We made this effort, because
analytic expressions are much easier to fit on a observed surface brightness profile and
it takes less computation time, for example. We summarised those expressions in a
catalogue.

Then, we tried to build an example to show that it is in general not possible to
estimate the elongation of a cluster if we only measure a X-ray surface brightness map.
We managed to give a counterexample and we observed different scenarios of electron
density model, shape and orientation. At the end, we can say in general: If only X-ray
surface brightness is available, one can not determine the cluster shape.

Finally, in the main part of this thesis, we used the analytic results we had obtained
to examine the estimation of the cluster shape through observation. We simulated
the observational data, so that we exactly knew the initial parameters and we were
able to test our method. Then, we fitted those simulations and observed how the
estimated elongation deviates from the true value under certain circumstances: We
assumed different errors on the temperature measurement and the estimation of the
central temperature decrement. Sometimes, we used the true model or we used a
simpler model for the electron density of the temperature profile. We also observed
the behaviour of the estimated elongation if we varied a certain parameter of T (r) or
ne. In general, we can say that a simple isothermal model leads often to results as good
as fitting with the true model if the error on the temperature profile and the central
temperature decrement are in the order of σT (r) ∼ 2 keV and σ∆T0/∆T0 ∼ 10%. In the
case of more precise temperature measurements, a bad temperature modeling results
in an overestimation of the elongation. If σT (r) ∼ 1 keV and σ∆T0/∆T0 ∼ 10%, the
flat β-model is able to estimate the elongation of a cluster with the central peak in
the electron density correctly. The cool core of a cluster can be ignored under certain
circumstances, if we use a bad temperature modeling.

Further research is needed to answer a lot of open questions and to confirm the ob-
tained results. The method we used should be tested with different simulated clusters
with more extreme shapes or other temperature profiles. And last but not least, one
should start to investigate true observations of clusters.
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6 Some personal remarks

I had various problems to simulate data that really represents true observations and
my Mathematica files grow larger and larger so that I lost the overview sometimes.
But at the end, we managed to produce some results. Often, I found one answer but
discovered two new questions. At the end I tried to reduce the analysis to simple
cases. However, sometimes I was overwhelmed by the huge number of opportunities
and possible solutions and it took a lot of time till I was fully satisfied with the results
I obtained, because I knew that many questions were still open. But all in all, this
was also very motivating and I enjoyed to work on this thesis.
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A Constants

The used physical constants [PDG] and other initial values. Useful relations are:
1 erg = 10−7 J and 1 eV = 1.602176487× 10−19 J .

speed of light in vacuum: c = 2.99792458× 1010 cm/s
electron mass: me = 0.5109989MeV/c2

Thomson cross section: 6.652458558× 10−33 cm2

Boltzmann constant: 1.3806504× 10−23 J/K
parsec: 1 pc = 3.0856776× 1018 cm
Temperature of CMB: TCMB = 2.725K

B Parameter α

[Ettori 00] computed α in consideration of a polytropic gas. ∆Te denotes the temper-
ature range in the cluster.

∆Te[keV ] α(Z = 0.3Z�) α(Z = 1Z�)
5-10 0.25 0.16
5-7 0.37 0.27
3-6 0.47 0.36
3-5 0.54 0.41

Table 17: The α parameter if the given energy window is 1− 10 keV .

C Useful Functions

The Euler gamma function satisfies

Γ(z) =
∫ ∞

0

tz−1e−tdt (A-1)

if Re(z) > 0. The Euler beta function is given by

B(a, b) =
∫ 1

0

ta−1(1− t)b−1dt (A-2)

if Re(a) > 0 and Re(b) > 0. B(a, b) can also be expressed in terms of Γ-functions:

B(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

(A-3)

Gauss’ hypergeometric function can be written as

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt (A-4)
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Through Euler’s hypergeometric transformation one can find the fallowing identities
[G & R] 9.131.1

2F1(a, b; c; z) = (1− z)−a 2F1

(
a, c− b; c; z

1− z

)
(A-5)

= (1− z)−b 2F1

(
c− a, b; c; z

1− z

)
(A-6)

= (1− z)c−a−b 2F1 (c− a, c− b; c; z) (A-7)

The hypergeometric function 2F1(a, b; c; z) is finite for arbitrary chosen a, b and c if
z < 1 and if z = 1, the arguments have to fulfill a+b < c to guarantee a finite function.
9.102 in [G & R]

D Additional Calculations

In section 3, we claim that (84) and (79) are equivalent.

1√
f

Γ[1/2−mη/4]Γ[3mβ/2− 1/2]
Γ[−mη/4 + 3mβ/2]

nme0 rc (A-8)

=
√
π√
f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

nme0rc 2F1

[
mη

4
,

1
2

(3mβ − 1),
3mβ

2
, 1
]

(A-9)

(A-9) can be written as a β-function and than be expressed through an integral if
3mβ > 1 and mη < 2,

nme0 rc√
f

Γ[1/2−mη/4]Γ[3mβ/2− 1/2]
Γ[−mη/4 + 3mβ/2]

(A-10)

=
nme0 rc√

f
B[

3mβ
2
− 1

2
,−mη

4
+

1
2

] (A-11)

=
∫ 1

0

t
3mβ

2 −
3
2 (1− t)−

mη
4 −

1
2 dt (A-12)

On the other hand, (A-9) is given in terms of Gamma-functions and integrals as

√
π√
f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

nme0rc 2F1

[
mη

4
,

1
2

(3mβ − 1),
3mβ

2
, 1
]

(A-13)

=
√
π nme0 rc√

f

Γ[−1/2 + 3mβ/2]
Γ[3mβ/2]

Γ[3mβ/2]
Γ[3mβ/2− 1/2]Γ[1/2]

(A-14)

×
∫ 1

0

t
3mβ

2 −
3
2 (1− t) 1

2−1

(1− t)mη4
dt (A-15)

Since Γ[1/2] = π, (84) and (79) are equal.

E Integral Solutions

[G & R] 3.196.2 ∫ ∞
u

(x+ β)−ν(x− u)µ−1dx = (u+ β)µ−νB(ν − µ, µ) (A-16)

if | arg
(
u

β

)
| < π,Re(ν) > Re(µ) > 0.
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[G & R] 3.197.2∫ ∞
u

x−λ(x+ β)ν(x− u)µ−1dx = uµ+ν−λB(λ− ν − µ, µ)

×2F1(−ν, λ− ν − µ;λ− ν;−β
u

) (A-17)

if | arg
(
u

β

)
| < π or |β

u
| < 1, Re(λ− ν) > Re(µ) > 0.

[G & R] 3.259.3∫ ∞
0

xλ−1(1 + axp)−ν(1 + βxp)−µdx =
1
p
a−

λ
pB(

λ

p
, ν + µ− λ

p
)

×2F1(ν,
λ

p
; ν + µ, 1− β

α
) (A-18)

if | arg(α)| < π, | arg(β)| < π, p > 0, 2 Re(µ+ ν) > Re(λ) > 0.

F Detailed Calculations of Several Integrals

Polytropic β-model: Equation (68) is calculated in the following way:

∞∫
ξ

(
1 + (ζ/rc)

2
)− 3mβ

2 ζdζ√
ζ2 − ξ2

=

∞∫
ξ/rc

(
1 + y2

)− 3mβ
2 r2

cydy√
r2
cy

2 − ξ2

=
1
2

∞∫
ξ2/r2c

(
1 + y2

)− 3mβ
2 rcdy

2√
y2 − ξ2/r2

c

;(A-19)

where first we changed ζ/rc → y and then we used dy2 = 2ydy. We substitute x→ y2,
u → ξ2/r2

c , β → 1, µ → 1/2 and ν → 3βm/2 in (A-16). Since 3βm/2 > 1/2 > 0 as
long as β > 1/3 and m ≥ 1, we can apply this equation and re-substitute to obtain

B(ν − µ, µ)(u+ β)µ−ν =
Γ(ν − µ)Γ(µ)

Γ(ν)
(u+ β)µ−ν

=
Γ[−1/2 + 3mβ/2]

Γ[3mβ/2]
rc

(
1 +

ξ2

r2
c

) 1
2−

3mβ
2

. (A-20)

Ploytropic PA-model: To calculate (77), we also start with the normalisation of the
variable of integration ζ/rc → y and use dy2 = 2ydy

∞∫
ξ

(ζ/rc)
−mη

2

(
1 + (ζ/rc)

2
)− 3mβ

2 +mη
4 ζdζ√

ζ2 − ξ2

= rc

∞∫
ξ2/r2c

(y2)
−mη

4
(
1 + y2

)− 3mβ
2 +mη

4 dy2√
y2 − ξ2/r2

c

(A-21)

Now, we can used (A-17) if we substitute x → y2, u → ξ2/r2
c , β → 1, µ → 1/2,

ν → −3mβ /2+mη/4 and λ→ mη/4. Starting from the integrated general expression,
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we obtain

uµ+ν−λB(λ− ν − µ, µ) 2F1(−ν, λ− ν − µ;λ− ν;−β
u

)

=
(
ξ2

r2
c

)1/2−3mβ/2

rc
Γ[−1/2 + 3mβ/2]

Γ[3mβ/2]

×2F1

[
−1

4
m(η − 6β),−1

2
(1− 3mβ),

3mβ
2

,−r
2
c

ξ2

]
. (A-22)

Polytropic VE-model, center: To calculate (91), where we set ξ → 0 we start with the
normalisation of the variable of integration ζ/rc → y and substitute rs → fsrc.

∞∫
ξ

(ζ/rc)
−mη

2

(
1 + (ζ/rc)

2
)− 3mβ

2 +mη
4

(1 + (ζ/rs)
κ)−

ε
2κ

ζdζ√
ζ2 − ξ2

= rc

∞∫
0

(y)
−mη

2
(
1 + y2

)− 3mβ
2 +mη

4
(

1 + (y/fs)
2
)− ε4

dy (A-23)

To simplify the integrand we assumed that κ = 2. Now, we can used (A-18) if we
substitute λ→ 1−α/2, p→ 2, β → 1, a→ f−2

s , µ→ ε/4+mη/4 and ν → 3β/2+α/4.
Starting from the integrated general expression, we obtain

1
p
a−

λ
pB(

λ

p
, ν + µ− λ

p
)

×2F1(ν,
λ

p
; ν + µ, 1− β

a
)

=
(
rc
rs

)−1+α/2 Γ[1/2− α/4]Γ[3β/2 + ε/4− 1/2]
Γ[−α/4 + 3β/2 + ε/4]

×2F1

[
3β
2
− α

4
,

1
2
− α

4
,

3β
2
− α

4
+
ε

4
, 1− (

rc
rs

)−2

]
. (A-24)
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