The Higgs boson discovery

Kern-und Teilchenphysik II

Prof. Nicola Serra

Dr. Annapaola de Cosa

Dr. Marcin Chrzaszcz

Higgs production at the LHC

Discovery channels

 $\sqrt{s} = 8\text{TeV}$

 $WW \rightarrow l^{\pm} vq\overline{q}$

 $WW \rightarrow I^{\dagger} V \overline{V}$

 $ZZ \rightarrow l^{\dagger}l^{\dagger}q\overline{q}$

 $ZZ \to I^{\dagger} I^{\bar{}} \nu \overline{\nu}$

 $ZZ \rightarrow |\uparrow| |\uparrow|$

300

 $= e, \mu$

 $v = v_e, v_u, v_\tau$

q = udscb

M_H [GeV]

400

- Gluon fusion is the dominant production mechanism
- H→bb: highest branching ratio (~58% @ 125 GeV)
 - Inclusive H→bb search not feasible due to overwhelming QCD background
- ▶ Instead H→ZZ, H→γγ has lower BR but very clean signature!

Observation of the Higgs boson at LHC

Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC

Abstract

A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb⁻¹ collected at $\sqrt{s} = 7$ TeV in 2011 and 5.8 fb⁻¹ at $\sqrt{s} = 8$ TeV in 2012. Individual searches in the channels $H \to ZZ^{(*)} \to 4\ell$, $H \to \gamma \gamma$ and $H \to WW^{(*)} \to e \nu \mu \nu$ in the 8 TeV data are combined with previously published results of searches for $H \rightarrow ZZ^{(*)}$, $WW^{(*)}$, $b\bar{b}$ and $\tau^+\tau^-$ in the 7 TeV data and results from improved analyses of the $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10^{-9} , is compatible with the production and decay of the Standard Model Higgs boson.

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the

Abstract

Results are presented from searches for the standard model Higgs boson in protonproton collisions at $\sqrt{s} = 7$ and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb⁻¹ at 7 TeV and 5.3 fb⁻¹ at 8 TeV. The search is performed in five decay modes: $\gamma\gamma$, ZZ, W⁺W⁻, τ ⁺ τ ⁻, and bb. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, $\gamma\gamma$ and ZZ; a fit to these signals gives a mass of 125.3 ± 0.4 (stat.) ± 0.5 (syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one.

Discovery channels

$H \rightarrow ZZ \rightarrow 4l$

- Clean experimental signature: four isolated leptons
- Narrow resonance peak in four lepton mass spectrum

Η⇒γγ

- Clean experimental signature:
 2 high energy and isolated photons
- Narrow resonance in diphoton mass spectrum over a falling continuous background

Commonalities

- Both channels suffer low BR
- Both allow mass peak reconstruction with very good resolution

$H \rightarrow ZZ^* \rightarrow 4l$

The golden channel

- Very clean signature
 - four isolated leptons (e or μ)
- And very small background
- Challenges: requires high lepton identification/reconstruction/Isolation efficiency

H→ZZ*→2µ2e

H→ZZ*→4l: Backgrounds and selection

Reducible background

Z+bb, tt, tt+ jets. Z+jets, WZ+jets

Irreducible background

▶ ZZ*

Event selection

- Double-lepton trigger
- Selection of events with 4 identified and isolated leptons
- Use of impact parameter
- Constraint on dilepton mass (m_Z and m_{Z*})
- Kinematical discrimination (exploits secularity of the Higgs boson)

H→ZZ*→4l: Kinematical discriminant

Matrix Element Likelihood Analysis (MELA)

uses kinematic inputs for signal to background discrimination

$$\{m_1, m_2, \theta_1, \theta_2, \theta^*, \Phi, \Phi_1\}$$

$$MEL\Lambda = \left[1 + \frac{\mathcal{P}_{bkg}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}{\mathcal{P}_{sig}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}\right]^{-1}$$

H→ZZ*→4l: Kinematical discriminant

2D analysis using m_{4l} vs MELA

m₄ [GeV]

4 lepton invariant mass spectrum

Critical channel for the discovery of the Higgs

- ▶ Small BR (~0.2%) but very clear signature:
 - 2 isolated highly energetic photons
 - Search for a narrow peak over a falling background
 - very good mass resolution (~1-2%m _{YY})
- VBF production channel helpful for background rejection
 - 2 forward jets from outgoing quarks

H→yy - Backgrounds

H→YY Signal

$$\Gamma(H \to \gamma \gamma) = \frac{\alpha^2 m_H^3}{256 \pi^3 v^2} \left| \Lambda_V \left(m_H^2 / 4 m_W^2 \right) - \sum_q \Lambda_f \left(m_H^2 / 4 m_q^2 \right) \right|^2$$

Photons do not couple directly to H because massless

Process takes place through a top (or W) loop

Reducible backgrounds

Mainly due to jets identified as photons

Irreducible backgrounds

γγ pair production from non-Higgs decays

H-YY - Event selection

Only events with 2 identified and isolated photons are selected

- Events are then split in orthogonal categories:
 - defined according to a Multivariate Analysis Discriminant based on the properties of identified photons and on the presence of 2 jets at large rapidity (VBF-like events)

H→γγ - Signal and background modelling

- Signal is parametrised from MC simulation
 - Crystal Ball + Gaussian
- Background is estimated by fitting a polynomial function to data in the full mass range

From the fit is clearly visible a nice peak over a falling background

H→WW→ℓvℓv in a nutshell

Signature

- 2 high p_T leptons (e,μ)
- large missing E_T
- small $\Delta \varphi_{\ell\ell}$ and low $M_{\ell\ell}$ for low m_H
- no resonance peak

Backgrounds

• WW: continuum

• tt/tW: b-jets

• W+jets: "fake" lepton

• Z/y^* : mis-measured ME_T

• W/Z+ $\chi^{(*)}$: $\chi^{(*)} \rightarrow \ell \ell$

WZ/ZZ: V+jj/vv or missing lepton

$H \rightarrow WW \rightarrow \ell \nu \ell \nu$

$$m_T = \sqrt{2p_T^{ll} E_T^{\text{miss}} (1 - \cos\Delta\phi_{E_T^{\text{miss}}ll})}$$

H→WW→ℓvℓv: spin properties

If the Higgs boson has spin 0, the two leptons expected to be emitted in the same direction (small azimuthal opening between the two)

Statistical interpretation

Claiming a discovery

We can claim discovery if we measure a signal yield sufficiently inconsistent with zero

- What does it mean sufficiently? How do we quantify it?
 - We can quantify how relevant is the excess by stating what is its *significance*.

Statistical significance = probability **p** to observe **s** or larger signal yield in the case of pure background fluctuations

 \blacktriangleright Often preferred to quote "n σ " significance, where:

$$p = \int_{n\sigma}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = 1 - \frac{1}{2} \operatorname{erf}\left(\frac{n}{\sqrt{2}}\right)$$

- It is common habit to claim:
 - "Evidence of", if the significance is $> 3 \sigma$
 - "Observation", if the significance is $> 5 \sigma$ Discovery
 - which corresponds to probability of background fluctuation = 2.87×10^{-7}

More details in "Statistical methods for Data Analysis in Particle Physics", L.Lista

Significance and corresponding p-value

$Z(\sigma)$	p
1.00	1.59×10^{-1}
1.28	1.00×10^{-1}
1.64	5.00×10^{-2}
2.00	2.28×10^{-2}
2.32	1.00×10^{-2}
3.00	1.35×10^{-3}
3.09	1.00×10^{-3}
3.71	1.00×10^{-4}
4.00	3.17×10^{-5}
5.00	2.87×10^{-7}
6.00	9.87×10^{-10}

What if we do not observe a significant excess?

Not always experiments lead to discoveries:

- ▶ The signal may indeed not be there
- Or the collected dataset is not enough to claim a discovery

We can still say something by setting upper limits

One possible definition of upper limit: "largest value of the signal s for which the probability of a signal under-fluctuation smaller or equal to what has been observed is less than a given level (usually 10% or 5%)"

- Upper limits for an exclusion are set requiring:
 - p<0.05 (95%CL) or p<0.10 (95%CL)
 - In this case p indicates the probability of a signal underfluctuation

Statistical Interpretation of Higgs searches

Null Hypothesis (H₀) vs alternative hypothesis (H₁, Existence of Higgs)

Need to quantify the level at which each hypothesis is accepted or rejected

Identify the experimental observables and define a statistical test and the parameters of the model

Compute the confidence level for exclusion or the significance of the excess

The CLs method

Signal strength $\mu = \sigma/\sigma_{SM}$

test statistic q_µ

$$q_{\mu} = -2\ln \frac{L(obs|\mu, \hat{\theta}_{\mu})}{L(obs|\hat{\mu}, \hat{\theta})}$$

 $0 < \hat{\mu} < \mu$

(s+b hypothesis)

$$CL_{s+b} = P(q_{\mu} \ge q_{\mu}^{obs} | \mu \ne 0)$$

CLb (b-only hypothesis)

$$CL_b = P(q_{\mu} \ge q_{\mu}^{obs} | \mu = 0)$$

$$\operatorname{CL}_{\operatorname{s}} = \frac{CL_{s+b}}{CL_{b}}$$

The exclusion of a SM Higgs boson is defined by the following condition:

► $CL_s(\mu = 1) \le \alpha$ at 1- $\alpha = 95\%$ confidence level, C.L.

We can say that s < s^{up} at 95% C L (or 90% CL)

Likelihoods

$$L(obs, \tilde{\theta}|\mu, \theta) = \prod_{c=1}^{N_{ch}} L_c(obs_c|\mu, \theta) \times \prod_{i=1}^{N_{\theta}} p_i(\tilde{\theta}_i|\theta_i)$$

If we are combining more channels, the overall likelihood is the product of the likelihood functions of each channel (*L*_c)

product of the response function of the measurement associated to the nuisance parameters (systematic uncertainties)

In case of a counting experiment

$$L(obs|\mu,\theta) = Poisson(n_{obs}, \mu \cdot s(\theta) + b(\theta))$$

Inputs:

- ightharpoonup Signal yield, $s(\theta)$
- \blacktriangleright Background yield, $b(\theta)$
- Observed data, nobs
- ▶ Systematic uncertainties on yields, €

Likelihoods

$$L(obs, \tilde{\theta}|\mu, \theta) = \prod_{c=1}^{N_{ch}} L_c(obs_c|\mu, \theta) \times \prod_{i=1}^{N_{\theta}} p_i(\tilde{\theta}_i|\theta_i)$$

If we are combining more channels, the overall likelihood is the product of the likelihood functions of each channel (*L*_c)

product of the response function of the measurement associated to the nuisance parameters (systematic uncertainties)

Including informations from the shape

$$L(obs|\mu, \theta) = Poisson(n_{obs}, \mu \cdot s(\theta) + b(\theta)) \prod_{i=1}^{n_{obs}} f(x_i|\mu, \theta)$$
$$f(x_i|\mu, \theta) = \mu s(\theta) f_s(x_i, \theta) + b(\theta) f_b(x_i, \theta)$$

Inputs:

- ▶ Signal yield and shape, $s(\theta)$ and $f_s(x, \theta)$
- ▶ Background yield and shape, $b(\theta)$ and $f_b(x, \theta)$
- Observed data, nobs
- ▶ Systematic uncertainties on yield and shape, €

Combining all channels together

- Combining together results from Higgs boson searches in 5 decay modes: H→γγ, H→ZZ, H→WW, H→bb, H→TT
- ► Early Summer 2012: sufficient statistics collected to claim the **observation of a new boson**

Observed excess of 7 σ around 125 GeV

Clear excess in the upper limit plot ~ 125 GeV

Mass measurement of the new boson

High resolution channels, H→γγ and H→ZZ→4l, allowed already in early 2012 to get a good estimate of Higgs boson mass

Measurement of the observed boson mass:

$$m_H = 125.8 \pm 0.4^{(stat)} \pm 0.4^{(syst)} \text{ GeV}$$

Look-elsewhere effect

When searching for a signal over a wide range of parameters, such as the Higgs boson mass, we should be careful in stating the significance of the observation

- ▶ Let's say that we observe an excess of events for $m_H = X$
 - the probability that this excess is due to a background fluctuation, showing up exactly at $m_H = X$, is given by the p-value (*local significance*)
- However, such an excess could have appeared everywhere in the range considered
 - This is what is called "the look-elsewhere effect"

We need to consider not just what is the probability to have a background fluctuation at $m_H = X$, but more in general what is the probability to observe such a fluctuation everywhere in our range (global significance)

- ▶ The effect can be evaluated with brute-force Toy Monte Carlo
 - Run N experiments with background-only, find the largest 'local' significance over the whole search range, and get its distribution to determine 'overall' significance

OK, we have discovered a new particle...but is this the Higgs boson predicted by the SM?

Where do we stand now

Latest invariant mass distributions produced with the statistics collected @ 13 TeV

Cross section measurements

H→ZZ→4l cross section as a function of √s

H→γγ cross section as a function of the di-photon p_T

Signal strength and Higgs boson mass

 $\mu = 1.05_{-0.14}^{+0.15}$ (stat.) $_{-0.09}^{+0.11}$ (syst.)

 $m_H = 125.26 \pm 0.20 \text{ (stat.)} \pm 0.08 \text{ (syst.)} \text{ GeV}$

Couplings

Coupling to gluons and photons, k_g vs. k_Y (left), and coupling to fermions and bosons, k_f vs. k_Y (right)

In conclusion, the newly discovered particle really looks like a the Higgs Boson predicted by the SM:)