Crystal Binding

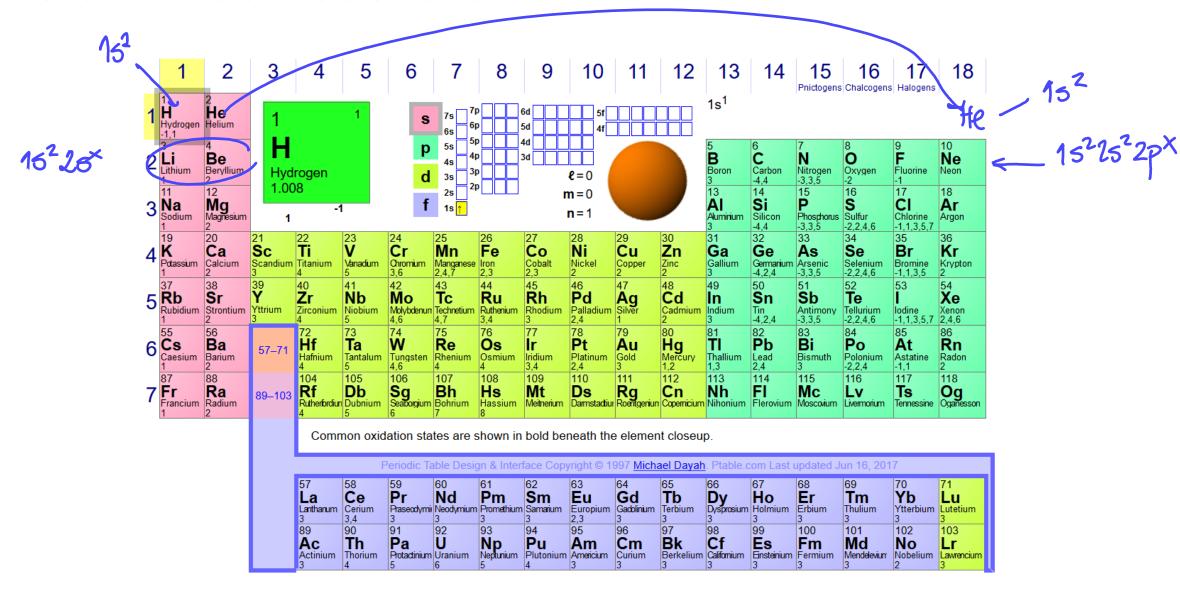
Kittel Chapter 3

(11st part)

Some basics

If several e- ui the atom,

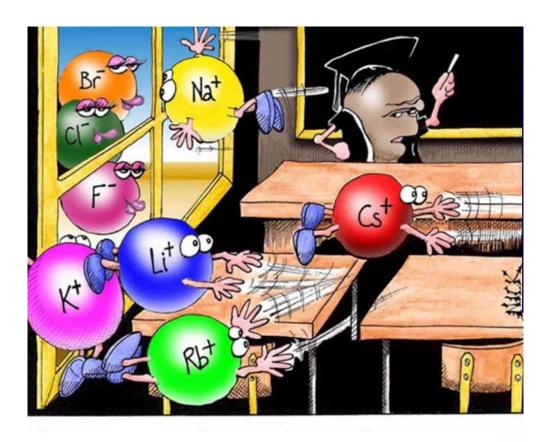
Filling order


- 1) Aufbau Principle "Fill by shell'
- 2) Madelung's role

Ex. Nitrogen 4e⁻ 15² 25² 2p³

25 25 35 30 3d 45 40 4d 4d

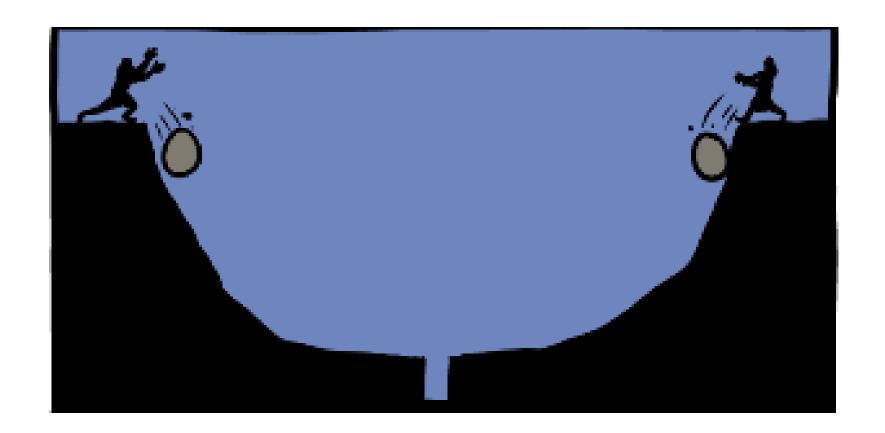
the shell filling structure defines the periodic table structure


Periodic table of the elements

What holds a crystal together?

(induced dipoles too)

(magnetic of gravitational forces: negligible)

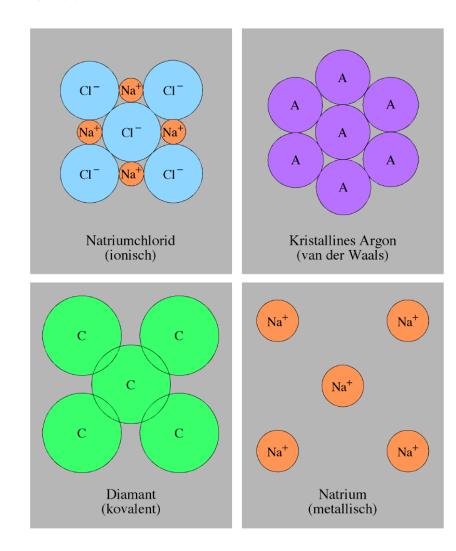


"Perhaps one of you gentlemen would mind telling me just what it is outside the window that you find so attractive..?"

Cartoon courtesy of NearingZero.net

What causes bonding?

-> Energy minimization



Basic types of binding

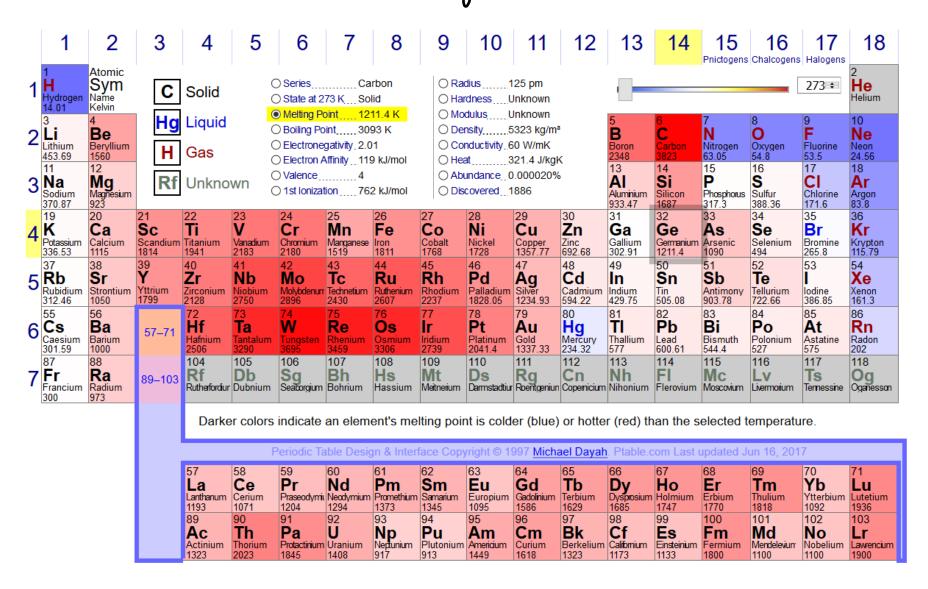
Crystals are classified with respect to their binding type

- Van der Waals
- Ionic
- Covalent
- Metal
- Hydrogen

the different types of bonding are due to the different distributions of valence electrons

For otability, relative energies are important:

Cohesive energy that must be added to a crystal to separate its components into neutral free atoms at rest, at infinite separation, with the same electronic configuration


Lattice energy (ionic crystals): energy that must be added to a crystal to separate its components into free ions at rest at infinite separation.

Cohesive energies

Li 158. 1.63 37.7	Be 320. 3.32 76.5	Table 1 Cohesive energies Energy required to form separated neutral atoms in their ground electronic state from the solid at 0 K at 1 atm. The data were supplied by Prof. Leo Brewer.													711 7.37 170.	N 474. 4.92 113.4	251 2.60 60.03	F 81.0 0.84 19.37	Ne 1.92 0.020 0.46
Na 107. 1.113 25.67	Mg 145. 1.51 34.7	← kJ/mol — → oV/atom → kcal/mol → →												AI 327. 3.39 78.1	Si 446. 4.63 106.7	P 331. 3.43 79.16	\$ 275. 2.85 65.75	CI 135. 1.40 32.2	Ar 7.74 0.080 1.85
K 90.1 0.934 21.54	Ca 178. 1.84 42.5	Sc 376 3.90 89.9	Ti 468. 4.85 111.8	V 512. 5.31 122.4	Cr 395. 4.10, 94.5	Mn 282. 2.92 67.4	Fe 413 4.2 98.3	8 4.	24. 39	Ni 428. 4,44 102.4	Cu 336. 3.49 80.4	Zn 130 1.35 31.0		3a 271. 2.81 34.8	Ge 372. 3.85 88.8	As 285.3 2.96 68.2	Se 237 2.46 56.7	Br 118. 1.22 28.18	Kr 11.2 0.116 2.68
Rb 82.2 0.852 19.64	Sr 166. 1.72 39.7	Y 422. 4.37 100.8	Zr 603. 6.25 144.2	Nb 730. 7.57 174.5	Mo 658 6.82 157.2	Tc 661. 6.85 158.	Ru 650 6.74 155). 55 4 5.7	4. 75	Pd 376. 3.89 89.8	Ag 284. 2.95 68.0	Cd 112 1.16 26.7		n 243. 2.52 58.1	Sn 303. 3.14 72.4	Sb 265. 2.75 63.4	Te 211 2.19 50.34	1 107. 1.11 25.62	Xe 15.9 0.16 3.80
Cs 77.6 0.804 18.54	Ba 183. 1.90 43.7	1. SHOWS 1 2 PREVIOUS SHOW	Hf 621 6.44 148.4	Ta 782. 8.10 186.9	W 859. 8.90 205.2	Re 775. 8.03 185.2	Os 788 8.17 188	6.5 7 6.5	0. 94	Pt 564. 5.84 134.7	Au 368. 3.81 87.96	Hg 65. 0.67 15.5		182. 188 13.4	Pb 196. 2.03 46.78	Bi 210. 2.18 50.2	Po 144, 1.50 34.5	At	Rn 19.5 0.202 4.66
Fr	Ra 160. 1.66 38.2	Ac 410. 4.25 98.	Cc 41 43 99	7. 35 32 3.	70 3.	d P 28. 40 8.5	m	Sm 206. 2.14 49.3	Eu 179 1.8 42	6 4.	0. 39 14 4.	05	Dy 294. 3.04 70.2	Ho 30 3.1 72	2. 31	7. 23 29 2.	33. 15 42 1.	54. 42 60 4.4 7.1 10	8. 13
			Th 59 6.4 14	8.	55 5.	36. 4 55 4	56 73	Pu 347. 3.60 83.0	Am 264 2.7 63.	1. 38 3 3.9	5	k (Cf	Es	Fn	n M		o Lr	888

Melting point

-> Cohesive energy has a strong wipact on the melting point

Van der Waals interaction

typical between inert atoms (He, Ne, Kr...) and between inert molecules (i.e. Nz)

Noble (inert) gases: electron distribution vi the crystalline state = free atom

- all electronic shells are completty filled spherically symmetric charge distributions dosed packed structures (fcc) [except He]
- _ ionization energy is high
- weakly bounded: interaction between induced dipoles -> van der waals interaction