D. Lancierini
http://www.physik.uzh.ch/de/lehre/PHY213/FS2018.

Exercise 1: Decay width calculation
The partial decay width of the Z boson to a massless fermion is given by

$$
\begin{equation*}
\Gamma(\mathrm{Z} \rightarrow f \bar{f})=\frac{1}{48 \pi} \frac{g^{2}}{\cos ^{2} \theta_{W}} m_{Z}\left[c_{V}^{2}+c_{A}^{2}\right] \tag{1}
\end{equation*}
$$

where θ_{W} is the Weinberg angle, g is the weak coupling and $c_{V / A}$ are the vector/axial couplings of the fermion f . Equation 1 is the $m \rightarrow 0$ limit of

$$
\begin{equation*}
\Gamma(\mathrm{Z} \rightarrow f \bar{f})=\frac{1}{48 \pi} \frac{g^{2}}{\cos ^{2} \theta_{W}} \frac{1}{m_{Z}}\left[2 m\left(c_{V}^{2}-2 c_{A}^{2}\right)+m_{Z}^{2}\left(c_{V}^{2}+c_{A}^{2}\right)\right] \tag{2}
\end{equation*}
$$

Using Pythia8 internal parameters
a) Verify that when decaying into leptons the Z prefers to decay to neutrinos almost twice of the times
b) Calculate the total width of the Z in GeV
c) Express the lifetime of the Z in seconds
d) Calculate the partial decay width of the Z in each lepton and quark

Exercise 2: Pythia8 simulation
The partial width is closely connected to the branching fraction, in order to inspect this relation generate $10^{5} e^{+} e^{-} \rightarrow Z \rightarrow f \bar{f}$ events in Pythia8 after having set the energy of the beams to produce a Z boson at rest.
a) Loop inside each generated event to extract the final state particle identity and increase a counter for each identity
b) How many top quarks are generated? Why?
c) Compare the branching ratios with the results of the previous exercise

