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Exam Structure

10 min — Presentation:

Topics: (1) Crystal structures, (2) Crystal Bindings, (3) Reciprocal lattice+ scattering theory,
(4) Crystal vibrations (Phonons), (5) Heat capacity (6) Band structure
(7) Semiconductors

20 min — Discussion:
(a) Questions to the lecture material
(b) Questions to the exercises

End Exam

5 min - evaluation

5 min — Results: Passed / failed, grade will be known at a later point.

MY AVAILABILITY BEFORE EXAM:
30t-31th May
1st and 6th of June

johan.chang@physik.uzh.ch
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Band structure
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(1) Describe the figure. What is the band width?

(2) In the tight binding model what sets the band width?

(3) Can you draw the dispersion of a free electron?

(4) What is the implication of an electron sensing a periodic potential?
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2-dimensional square lattice

Heisenberg Model

U = _]Si ’ S]
Nearest Neighbor Interaction

J = “Coupling between spins”

Nature likes to minimize the energy U!
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Anti-ferromagnetism

J<0



Heisenberg Model

U: —]SLS]

Anti-ferromagnetism
J<0

1. What is the lattice parameter?

by by Ay

v A v by by

'S W T W A 2. What happens to the unit cell?

v Ay by by

by b v by 3. What about the first Brillioun zone?
v by by by



Scattering theory: Magnetic Form Factor

Anti-ferromagnetism
J<0

What is your expectation for the
magnetic form factor?
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Scattering theory: Structure Factor
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SCATTERING ANGLE

F1c. 4. Neutron diffraction patterns for MnO taken at liquid
nitrogen and room temperatures. The patterns have been cor-
rected for the various forms of extraneous, diffuse scattering
mentioned in the text. Four extra antiferromagnetic reflections
are to be noticed in the low temperature pattern.



Scattering theory: Structure
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SCATTERING ANGLE

F1c. 4. Neutron diffraction patterns for MnO taken at liquid
nitrogen and room temperatures. The patterns have been cor-
rected for the various forms of extraneous, diffuse scattering
mentioned in the text. Four extra antiferromagnetic reflections
are to be noticed in the low temperature pattern.
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F16. 5. Antiferromagnetic structure existing in MnO below its
Curie temperature of 120°K. The magnetic unit cell has twice the

linear dimensions of the chemical unit cell. Only Mn ions are
shown in the diagram.

C. G. Shull et al.,
Phys. Rev. 1951



Scattering theory: Structure Factor
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F1c. 4. Neutron diffraction patterns for MnO taken at liquid
nitrogen and room temperatures. The patterns have been cor-
rected for the various forms of extraneous, diffuse scattering
mentioned in the text. Four extra antiferromagnetic reflections
are to be noticed in the low temperature pattern.
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C. G. Shull et al.,
Phys. Rev. 1951




Phonons — Lattice vibrations

Simple Model Calculation Phonons of Aluminium

o
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Optical phonon branch

M; > M,

Phonon energy (meV)

Acoustical
phonon branch
K
What determines the phonon dispersion Why does Aluminium not have any acoustic

at the zone boundary? modes?



Magnons — vibrations of spin




Magnons — dispersion of La,CuO,
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Doping of materials

K.A. Miiller & G. Bednorz: Discovery of high-temperature superconductivity
Nobel Prize 1986
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Scattering theory: Structure Factor
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F1c. 4. Neutron diffraction patterns for MnO taken at liquid
nitrogen and room temperatures. The patterns have been cor-
rected for the various forms of extraneous, diffuse scattering
mentioned in the text. Four extra antiferromagnetic reflections
are to be noticed in the low temperature pattern.
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Order Parameter M

Second order b First order



Heat Capacity and phase transitions
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Nat. Mat. 13, 611 (2014)



Symmetry breaking
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ANTI-FERROMAGNETISM BREAKS TRANSLATIONAL SYMMETRY
OF THE CRYSTAL STRUCTURE.
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Superconductivity

Non-superconductive

Metal \

-$== Superconductor

Resistance
\

0K TC Temperature



Meisner effect
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X Magnetic field

Two types of Superconductors
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BCS-Theory of Superconductivity

Bardeen—Cooper—Schrieffer theory
(named after John Bardeen, Leon Cooper, and John Robert Schrieffer)

Low-Temperature Superconductivity

December was the SOth anniversary of the theory of superconductivity, the flow of electricity without resistance that can occur in some metals and ceramics
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ELECTRICAL RESISTANCE

Electrons carrying an glectrical
current through a metal wire typically
encounter resistance, which is
caused by collisions and scatiening
as the particles move through the
vibrating lattice of metal atoms
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CRITICAL TEMPERATURE

As the metal is cooled to low
temperatures, the lattice vibration slows
A moving electron attracts n2arby metal
atoms, which create a positively charged
wake behind the electron. This wake can
attract another nearby electron
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COOPER PAIRS

The two electrons form a weak

bond, called a Cooper pair, which
encouniers less resistance than two
electrons moving separately. When
more Cooper pairs form, they behave
in the same way
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SUPERCONDUCTIVITY

It a pair is scattered by an mpurity, it
will quickly get back in step with other
pairs. This allows the electrons 1o flow
undisturbed threugh the [attice of
meial atoms. With no resistance, the
current may persist for years
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Heat capacity
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Density of states
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Figure 2.7: The density of states for a BCS superconductor at T > 0 K. As T is increased
above absolute zero, Cooper pairs are broken and the resulting normal electrons occupy
states above Ep + A .



Superconducting gap

Does a superconductor have a Fermi surface?



BCS-Theory predictions

2

Low-Temperature Superconductivity
December was the 50th anniversary of the theory of superconductivity, the flow of electricity without resistance that can occur in someé metals and ceramics
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ELECTRICAL RESISTANCE

Electrons carrying an electrical
current through a metal wire typically
encounter resistance, which is
caused by collisions and scattering
as the particles move through the
vibrating lattice of metal atoms

(1) A superconducting gap was predicted.
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As the metal is cooled to low

temperatures, the lattice vibration slows
A moving electron attracts naarby metal
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(2)A(0) = 1.7k T,

(3) Heat capacity: C ~ ekBT
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COOPER PAIRS

The two electrons form a weak

bond, called a Cooper pair, which
encouniers less resistance than two
electrons moving separately. When
more Cooper pairs form, they behave
in the same way
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If a pair is scattered by an impurity, it
will quickly get back in step with othar
pairs. This allows the electrons to flow
undisturbed threugh the |attice of
meial atoms, With no resistance, the
current may persist for years



Predictions vs Experiment
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Vortex lattice

Superconducting coherence length (= core size):
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