
Today’s	program

Magnetism:	Continuation	from	last	lecture
Magnetic	structure
Magnetic	excitations

Phase	transitions
Order	parameters
Landau	theory

Superconductivity
Intro	&	applications
Specific	heat

Exam	information
Structure	of	Exam
Example	of	questions



Exam	Structure

10	min	– Presentation:
Topics:	 (1)	Crystal	structures,	(2)	Crystal	Bindings,	(3)	Reciprocal	lattice+	scattering	theory,

(4)	Crystal	vibrations	(Phonons),	(5)	Heat	capacity	(6)	Band	structure	
(7)	Semiconductors	

5	min	- evaluation	

End	Exam

5	min	– Results:	Passed	/	failed,	grade	will	be	known	at	a	later	point.			

20	min	– Discussion:
(a)	Questions	to	the	lecture	material
(b)	Questions	to	the	exercises

MY	AVAILABILITY	BEFORE	EXAM:
30th-31th	May	
1st	and	6th of	June	 johan.chang@physik.uzh.ch
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Band	structure

model as12

 (1)

where k is the in-plane momentum, a is the lattice constant, and t is the near-neighbor hopping energy. 

 In Figure 1 we compare energy bands and constant energy surfaces computed using Equation 1 to 

ARPES measurements applied to a single layer of graphene grown on the (0001) surface of SiC (6H polytype).  

The primary bands, cones centered at the K points, are surrounded by six weak replica bands; these result from 

the interference of the graphite and substrate lattice constants (2.4 vs. 3.07Å) and correspond to similar satellite 

spots in low energy electron diffraction. 13  The primary bands are in good overall agreement with the simple 

model despite its having only two adjustable parameters: the hopping energy t = 2.82 eV and a 0.435 eV shift of 

the Fermi energy E
F
 above the Dirac crossing energy E

D
. This shift is attributed to doping of the graphene layer 

by depletion of the substrate’s n-type carriers near the SiC surface.

 Despite this good agreement, profound deviations are observed near E
F
 and E

D
.  We show in Figure 2a a 

magnified view of the bands measured along a line (the vertical double arrow in Figure 1b) through the K point.  

The predicted, or “bare” bands in this direction are nearly perfectly linear and mirror-symmetric with respect to 

the K point according to Equation 1.  The actual bands deviate from this prediction in two significant ways: first, 

at a binding energy ħω
ph

=200 meV below E
F
, we observe a sharpening of the bands accompanied by a slight 

kink in the bands’ dispersions.  We attribute this feature to renormalization of the electron bands near E
F
 by 

coupling to phonons, as discussed later.  

E(k) t 1 4cos 3aky /2 cos akx /2 4cos2 akx /2

Figure 1 | The bandstructure of graphene.  a The experimental energy distribution of states as a function of momentum along 
principal directions, together with a single-orbital model (solid lines) given by Eq. (1).  b Constant energy map of the states at binding 
energy corresponding to the Dirac energy (ED) together with the Brillouin Zone boundary (dashed line).  The orthogonal double arrows 
indicate the 2 directions over which the data in Fig. 2 were acquired.  c-d Constant energy maps at the Fermi energy (EF = ED+ 0.45) 
and ED – 1.5 eV, respectively.  The faint replica bands correspond to the 6√3 × 6√3 satellite peaks in low energy electron diffraction.13

(1) Describe	the	figure.	What	is	the	band	width?
(2) In	the	tight	binding	model	what	sets	the	band	width?
(3) Can	you	draw	the	dispersion	of	a	free	electron?
(4) What	is	the	implication	of	an	electron	sensing	a	periodic	potential?



2-dimensional	square	lattice

Heisenberg	Model

Nearest	Neighbor	Interaction

𝑈 = −𝐽𝑆& ' 𝑆(

J =	“Coupling	between	spins”

Nature	likes	to	minimize	the	energy	U!



Heisenberg	Model

𝑈 = −𝐽𝑆& ' 𝑆(

Anti-ferromagnetism
J	<	0

Ferromagnetism
J	>	0



Heisenberg	Model

𝑈 = −𝐽𝑆& ' 𝑆(

Anti-ferromagnetism
J	<	0

1.	What	is	the	lattice	parameter?

2.	What	happens	to	the	unit	cell?

3.	What	about	the	first	Brillioun zone?



Anti-ferromagnetism
J	<	0

Scattering	theory:	Magnetic	Form	Factor

What	is	your	expectation	for	the	
magnetic	form	factor?



Scattering	theory:	Structure	Factor

Atomic	crystal	lattice	

NaCl – type	structure

Example:	MnO

S	=	4	(fM- fO)	when	hkl even
S	=	4	(fM+	fO)	when	hkl odd
S	=	0	mixed	parity

fM ~	- fO



Scattering	theory:	Structure	Factor
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New	peaks
Magnetic	“Crystal”	structure
can	be	resolved.	

C.	G.	Shull	et	al.,
Phys.	Rev.	1951	



Scattering	theory:	Structure	Factor
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New	peaks Magnetic	phase	transition

C.	G.	Shull	et	al.,
Phys.	Rev.	1951	



Phonons	– Lattice	vibrations

J. Phys.: Condens. Matter 24 (2012) 053202 Topical Review

Figure 3. Influence of temperature on phonons. (a) Phonon dispersion of aluminium at 80 K as in figure 2. (b) Comparison between the
various temperature dependences of the phonon frequency at the LL point (indicated by a red arrow in (a)): the explicitly anharmonic (ah)
shift (see text), the shift due to electronic (el) excitations and the shift due to quasiharmonicity (qh), i.e. influence of thermal expansion [24].

Figure 4. Correlation between the deviation from experiment for
the lattice constants and the bulk moduli. The results for the three
different exchange–correlation functionals LDA, GGA–PBE and
GGA–PBEsol are shown in blue, orange and green, respectively.
Reproduced with permission from [25]. Copyright 2011 Springer
Science + Business Media.

explicit anharmonicities usually impact thermodynamic data
particularly at high temperatures, the influence of non-
adiabatic interactions is very much system-dependent. A few
examples of this currently intensively investigated topic [26]
will be mentioned below; several others can be found in the
literature, e.g. [27].

In order to ensure a high numerical precision when
computing the various free energy contributions, great care
needs to be taken to sufficiently converge the results. Since
a large number of parameters need to be optimized, efficient
scaling procedures can be applied for this purpose [21]. Some
of the most important aspects for phonon calculations are:

• For some elements (e.g. Cu) the grid size of the
augmentation charges needs to be increased well beyond
standard values in order to obtain a convergence of
the Grüneisen parameter (volume dependence of phonon
energies) to less than 1%.

• For some elements (e.g. Al) extraordinary high k-point
meshes for the electronic integration are necessary.

Inappropriate k-point meshes can even yield unphysical
imaginary phonons in the vicinity of the 0-point.

• In the direct force constant method the supercell size
is a critical parameter. In order to resolve the phonon
dispersion with sufficiently high precision (e.g. Pb) or to
identify small (Kohn) anomalies in the phonon spectra (e.g.
Pt), the supercell size needs to be sufficiently large.

A high precision enforced in the phonon calculations
allows us to unambiguously assign the remaining errors
to (i) missing free energy contributions such as non-
adiabatic contributions mentioned before and (ii) the xc
functionals providing unique information regarding sources
of their failing. Figure 2 shows that LDA overestimates the
experimental data in most cases, while GGA underestimates
it. This behaviour is surprisingly systematic [21] and
consistent with the performance of these functionals already
at T = 0 K (see figure 4): The overbinding of LDA and the
corresponding too-small lattice constant leads to a prediction
of a stiffer material with a bulk modulus that is too large
as compared to experiments. The opposite correlation is
observed for GGA. The situation cannot simply be resolved
by using the experimental value for the lattice constant, since
this results in an artificial inner pressure of the system. Even
if the same (experimental) lattice constant is used for both xc
functionals, the corresponding difference in phonon energies
remains almost the same and only their order is reversed, i.e.
LDA/GGA under/overestimates the experimental phonons,
respectively. The only way out of this dilemma is the
development of improved xc functionals. As can be seen
in figure 4, PBEsol [28] is significantly reducing the
over-/underbinding of LDA/GGA for non-magnetic metals.
Since PBEsol, however, does not improve the description
of magnetic materials, which are the main objective of this
paper, we will not consider this xc functional in upcoming
discussions.

The systematic behaviour of the xc functionals becomes
even more apparent in the heat capacities. They are obtained
from a second derivative of the free energy (calculated with
equation (1)), which is most often the target quantity for
materials research. The heat capacity, however, provides a
more sensitive response to even tiny errors in the free energy.

5

Simple	Model	Calculation	 Phonons	of	Aluminium

What	determines	the	phonon	dispersion	
at	the	zone	boundary?

Why	does	Aluminium not	have	any	acoustic	
modes?



Magnons – vibrations	of	spin



Magnons – dispersion	of	La2CuO4

In general terms, our results show that at the q ¼
ð1=2; 0Þ position the spin waves are more strongly coupled
to other excitations than at q ¼ ð1=4; 1=4Þ. This coupling
provides a decay process and therefore damps the spin
wave, reducing the peak height and producing the tail.
The question is, What are these other excitations? An
interesting possibility is that the continuum is a manifes-
tation of high-energy spinon quasiparticles proposed in
theoretical models of the cuprates [1–3,13,19–21]. These
assume that Néel order coexists with additional spin cor-
relations with the magnetic state supporting both low-
energy SW fluctuations of the Néel order parameter as
well as distinct high-energy spin-1=2 spinon excitations
created above a finite energy gap [20,21]. Spinons are S ¼
1=2 quasiparticles which can move in a strongly fluctuating
background. The anomaly we observe at ð1=2; 0Þ may be
explained naturally in a model where spinons exist at high
energies and have a d-wave dispersion [20,21] with min-
ima in energy at q ¼ ð$1=4; 1=4Þ and ð1=4;$1=4Þ. Under
these circumstances, the lower boundary of the two-spinon
continuum is lowest in energy at ð1=2; 0Þ and significantly
higher at ð1=4; 1=4Þ. This provides a mechanism for the
spin waves at ð1=2; 0Þ to decay into spinons [with
ð1=4;$1=4Þ] and those at ð1=4; 1=4Þ to be stable.

The new features in the collective magnetic excitations
observed in the present study are (i) a q-dependent

continuum and (ii) the q dependence to the intensity of
the SW pole. We estimate the total observed moment
squared (including the Bragg peak) is hM2i ¼ 1:9$
0:3!2

B. The continuum scattering accounts for about 29%
of the observed inelastic response. The total moment sum
rule [15] for S ¼ 1=2 implies hM2i ¼ g2!2

BSðSþ 1Þ ¼
3!2

B. We consider two reasons why we fail to observe
the full fluctuating moment of the Cu2þ ion. First, our
experiment is limited in energy range to about 450 meV;
thus, there may be significant spectral weight outside the
energy window of the present experiment. Raman scatter-
ing [22] and optical absorption [23] spectra show excita-
tions up to about 750 meV. Recent RIXS measurements
also show high-energy features [24] which appear to be
magnetic in origin. The second reason why we may fail to
see the full fluctuating moment may be covalency effects
[25,26]. The Cu dx2&y2 and O px orbitals hybridize to yield

the Wannier orbital relevant to superexchange. This will
lead to a reduction in the measured response. However, the
(at most) 36% reduction observed in La2CuO4 is substan-
tially less than the 60% reduction recently reported in the
cuprate chain compound Sr2CuO3 [26].
Our results have general implications for the cuprates.

Firstly, they show that the collective magnetic excitations
of the cuprate parent compounds cannot be fully described
in terms of the simple SW excitations of a Néel ordered
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FIG. 2 (color online). q dependence of the magnetic excitations in La2CuO4. (a) One-magnon dispersion (T ¼ 10 K) along lines in
(c, inset). Symbols indicate Ei: 160 meV (h), 240 meV (4), and 450 meV ('). The solid line is a SWT fit based on Eq. (1).
(b) Measured "00ðq; !Þ. Dashed circle highlights the anomalous scattering near ð1=2; 0Þ. An @!-dependent background determined
near ð1; 0Þ has been subtracted. (c) One-magnon intensity. Line is a fit to SWTwith renormalization factor Zd ¼ 0:4$ 0:04. (d) One-
magnon intensity divided by SWT prediction. (e) SWT dispersion (color indicates SW intensity).

PRL 105, 247001 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

10 DECEMBER 2010

247001-3



Today’s	program

Magnetism:	Continuation	from	last	lecture
Magnetic	structure
Magnetic	excitations

Phase	transitions
Order	parameters
Landau	theory

Superconductivity
Intro	&	applications
Specific	heat

Exam	information
Structure	of	Exam
Example	of	questions



Doping	of	materials

Example:	
La2-xSrxCuO4
Tc =40	K

La3+

Sr2+

K.A.	Müller	&	G.	Bednorz:	Discovery	of	high-temperature	superconductivity	
Nobel	Prize	1986



Phase	diagram

No	Antiferromagnetism



Scattering	theory:	Structure	Factor
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New	peaks Magnetic	phase	transition

C.	G.	Shull	et	al.,
Phys.	Rev.	1951	



Magnetic	order

No	Antiferromagnetism



Order	Parameter	M



ARTICLES NATUREMATERIALS DOI: 10.1038/NMAT3942
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Figure 1 | Characterization of the structural phase transition using specific heat, non-resonant di�raction, and resonant di�raction at the DyM4,5
absorption edges. a, Specific heat and integrated intensity of reflection 2̄04 as a function of T. Reflection 2̄04 was taken using non-resonant X-ray
di�raction with Mo K↵ X-rays. b, Schematic illustration of the scattering geometry for the present RXD measurements. Here ki and kf are the propagation
vectors of the incident and di�racted X-rays, respectively. The azimuthal and Bragg angles are denoted by  and ✓ , respectively. The origin of  =0 is
defined by the a* axis when it is parallel to �(ki + kf). The � (� 0) and ⇡ (⇡0) components are perpendicular and parallel to the scattering plane,
respectively. c, T dependence of the integrated intensity of forbidden reflection 001 obtained by the RXD measurements with an incident X-ray energy of
1,292 eV. Open squares show the square of the displacement of the Dy position along the ⇠ axis from its position at 300 K (Supplementary Information).
The inset shows a magnified region around Ts. d, The black line and red dots represent the spectra of the X-ray absorption and forbidden reflection 001,
respectively, as a function of photon energy at 200 K.

sets in at Ts ⇡285K and co-exists with the antiferromagnetic order
below TN =38K.

We prepared two crystals of DyFe3(BO3)4 (Sample 1 and
Sample 2) for the RXDmeasurements (Methods). The experimental
set-up for the RXD measurements is illustrated in Fig. 1b, and is
explained in detail in the Methods. Figure 1d shows the resonance
enhancement of the forbidden reflection 001 at the Dy M4,5
absorption edges and T = 200K (<Ts) for Sample 1. To show the
resonant edges, we overlay the corresponding X-ray absorption
spectrum (XAS), in which three strong peaks and one weak
peak appear around the Dy M5 and M4 edges, respectively. The
three distinct features at the M5 edge in XAS are ascribed to the
dipole selection rules: 1J =0 and ±1 transitions25 (Supplementary
Information). Evidently, reflection 001 is strongly enhanced at the
M5 edge, whereas its enhancement at the M4 edge is much smaller.
(A similar energy profile has been reported for the M4,5 edges
of DyB2C2 at the antiferro-quadrupolar ordering reflection 00 1

2 ;
ref. 26.) In the following experiments, therefore, the incident photon
energy was tuned to the Dy M5 edge (E = 1, 292 eV), at which
reflection 001 shows the maximum intensity. Figure 1c shows the T
profile of reflection 001 measured at E=1, 292 eV (closed circles),
which clearly demonstrates that the integrated intensity develops
below Ts (see the inset of Fig. 1c) and that it increases drastically
with decreasing T .

Figure 2b,c shows the 2✓–✓ scan profiles of reflection 001
measured at two di�erent sample positions on Sample 1. Closed
and open symbols denote the data taken with (+) and (�) helical
incident beams, respectively. The circular polarization state for

helicity (+) ((�)) is expressed by a sum of the � and ⇡ linear
polarizations, in which the � component is advanced (behind)
in time by a quarter period with respect to the ⇡ component, as
illustrated in Fig. 1b. A photograph of Sample 1 is shown in Fig. 2a.
The two di�erent positions are in the regions marked as ↵ and
�. These RXD measurements were carried out at T = 200K (<Ts)
and an azimuthal angle '= 0�. Here, ' is the angle rotated with
respect to the scattering vector  (k c*), and its origin (' = 0�)
is defined as the configuration in which the scattering plane is
parallel to the horizontal direction of the photo in Fig. 2a. As clearly
seen in Fig. 2b,c, the sign change in the helicity of the circular
polarization yields substantially di�erent intensities of the forbidden
reflection 001 for both the sample positions. Moreover, the helicity-
dependentmagnitude relations of the intensities are reversed for the
two di�erent sample positions. The intensity observed for incident
X-rays with the positive (+) helicity is stronger than that with the
negative (�) helicity in Fig. 2b, whereas the intensity for (+) helicity
X-rays is weaker than that for the (�) helicity X-rays in Fig. 2c.

To further verify the sample position dependence of the chirality
in Sample 1, we performed a microdi�raction scan along the y
and z directions (Fig. 1b) with circularly polarized micro-focused
beams, keeping the Bragg angle ✓ for reflection 001. Figure 2d–f
shows two-dimensional yz-scanned intensity maps of the forbidden
reflection 001 over a 1.5⇥ 1.5 mm2 area at ' = 0�, 30� and 60�,
respectively. The measurements have been done at 200K. Red and
blue colours correspond to high and low intensity, respectively. The
intensity maps shown in the upper and lower panels in Fig. 2d–f
were taken at almost the same sample area using (+) and (�) helical

612 NATUREMATERIALS | VOL 13 | JUNE 2014 | www.nature.com/naturematerials
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Figure 1 | Characterization of the structural phase transition using specific heat, non-resonant di�raction, and resonant di�raction at the DyM4,5
absorption edges. a, Specific heat and integrated intensity of reflection 2̄04 as a function of T. Reflection 2̄04 was taken using non-resonant X-ray
di�raction with Mo K↵ X-rays. b, Schematic illustration of the scattering geometry for the present RXD measurements. Here ki and kf are the propagation
vectors of the incident and di�racted X-rays, respectively. The azimuthal and Bragg angles are denoted by  and ✓ , respectively. The origin of  =0 is
defined by the a* axis when it is parallel to �(ki + kf). The � (� 0) and ⇡ (⇡0) components are perpendicular and parallel to the scattering plane,
respectively. c, T dependence of the integrated intensity of forbidden reflection 001 obtained by the RXD measurements with an incident X-ray energy of
1,292 eV. Open squares show the square of the displacement of the Dy position along the ⇠ axis from its position at 300 K (Supplementary Information).
The inset shows a magnified region around Ts. d, The black line and red dots represent the spectra of the X-ray absorption and forbidden reflection 001,
respectively, as a function of photon energy at 200 K.

sets in at Ts ⇡285K and co-exists with the antiferromagnetic order
below TN =38K.

We prepared two crystals of DyFe3(BO3)4 (Sample 1 and
Sample 2) for the RXDmeasurements (Methods). The experimental
set-up for the RXD measurements is illustrated in Fig. 1b, and is
explained in detail in the Methods. Figure 1d shows the resonance
enhancement of the forbidden reflection 001 at the Dy M4,5
absorption edges and T = 200K (<Ts) for Sample 1. To show the
resonant edges, we overlay the corresponding X-ray absorption
spectrum (XAS), in which three strong peaks and one weak
peak appear around the Dy M5 and M4 edges, respectively. The
three distinct features at the M5 edge in XAS are ascribed to the
dipole selection rules: 1J =0 and ±1 transitions25 (Supplementary
Information). Evidently, reflection 001 is strongly enhanced at the
M5 edge, whereas its enhancement at the M4 edge is much smaller.
(A similar energy profile has been reported for the M4,5 edges
of DyB2C2 at the antiferro-quadrupolar ordering reflection 00 1

2 ;
ref. 26.) In the following experiments, therefore, the incident photon
energy was tuned to the Dy M5 edge (E = 1, 292 eV), at which
reflection 001 shows the maximum intensity. Figure 1c shows the T
profile of reflection 001 measured at E=1, 292 eV (closed circles),
which clearly demonstrates that the integrated intensity develops
below Ts (see the inset of Fig. 1c) and that it increases drastically
with decreasing T .

Figure 2b,c shows the 2✓–✓ scan profiles of reflection 001
measured at two di�erent sample positions on Sample 1. Closed
and open symbols denote the data taken with (+) and (�) helical
incident beams, respectively. The circular polarization state for

helicity (+) ((�)) is expressed by a sum of the � and ⇡ linear
polarizations, in which the � component is advanced (behind)
in time by a quarter period with respect to the ⇡ component, as
illustrated in Fig. 1b. A photograph of Sample 1 is shown in Fig. 2a.
The two di�erent positions are in the regions marked as ↵ and
�. These RXD measurements were carried out at T = 200K (<Ts)
and an azimuthal angle '= 0�. Here, ' is the angle rotated with
respect to the scattering vector  (k c*), and its origin (' = 0�)
is defined as the configuration in which the scattering plane is
parallel to the horizontal direction of the photo in Fig. 2a. As clearly
seen in Fig. 2b,c, the sign change in the helicity of the circular
polarization yields substantially di�erent intensities of the forbidden
reflection 001 for both the sample positions. Moreover, the helicity-
dependentmagnitude relations of the intensities are reversed for the
two di�erent sample positions. The intensity observed for incident
X-rays with the positive (+) helicity is stronger than that with the
negative (�) helicity in Fig. 2b, whereas the intensity for (+) helicity
X-rays is weaker than that for the (�) helicity X-rays in Fig. 2c.

To further verify the sample position dependence of the chirality
in Sample 1, we performed a microdi�raction scan along the y
and z directions (Fig. 1b) with circularly polarized micro-focused
beams, keeping the Bragg angle ✓ for reflection 001. Figure 2d–f
shows two-dimensional yz-scanned intensity maps of the forbidden
reflection 001 over a 1.5⇥ 1.5 mm2 area at ' = 0�, 30� and 60�,
respectively. The measurements have been done at 200K. Red and
blue colours correspond to high and low intensity, respectively. The
intensity maps shown in the upper and lower panels in Fig. 2d–f
were taken at almost the same sample area using (+) and (�) helical
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Heat	Capacity	and	phase	transitions



Symmetry	breaking

ANTI-FERROMAGNETISM	 BREAKS	TRANSLATIONAL	SYMMETRY	
OF	THE	CRYSTAL	STRUCTURE.
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Superconductivity	



Meisner effect





Two	types	of	Superconductors



BCS-Theory	of	Superconductivity

𝜓 = 	Δ	𝑒-&.

Bardeen–Cooper–Schrieffer	theory
(named	after	John	Bardeen,	Leon	Cooper,	and	John	Robert	Schrieffer)



Gallium	@	Magnetic	field	200	Gauss

Heat	capacity



Gallium	@	Magnetic	field	200	Gauss

Heat	capacity



Density	of	states



Superconducting	gap

peak in the superconducting state [6]. As k is changed
from !!; 0" to !3!=2;#!=2", the coherent peak gradually
disperses toward EF, showing a minimum energy gap at
kF [dark red line in Fig. 2(b)], and then disperses back to
the higher binding energy while rapidly reducing its
intensity. These behaviors are consistent with the band
dispersion below EF shown in Fig. 1(b) as well as with a
previous ARPES result on Bi2Sr2CaCu2O8$" (Bi2212)

[9]. More importantly, we find additional weak but dis-
cernible structures about 20 meVabove EF in the spectra,
which are more clearly seen in Fig. 2(c). This new struc-
ture shows a clear momentum dependence with a stronger
intensity in the region of jkj > jkFj, opposite to the be-
havior of the band below EF. We ascribe these small
structures to the BQP band above EF by referring to
Fig. 1(b) [10]. The considerably weak intensity of the
peaks above EF is simply due to the effect of the
Fermi-Dirac (FD) function. In order to see more clearly
the band dispersion above EF, we have divided the
ARPES spectra by the FD function at 60 K convoluted
with the instrumental resolution [11]. The result is shown
in Fig. 2(d), where we find a dispersive structure with
comparable intensity above EF, although the signal-to-
noise ratio is relatively low because of the originally small
ARPES intensity. It is remarked here that despite the low
signal-to-noise ratio the bending back behavior of band is
also seen in the unoccupied states as in the occupied
states. The dispersive feature is more clearly visualized
in Fig. 2(e) by plotting the renormalized ARPES intensity
as a function of momentum and energy. We observe
several characteristic behaviors for the two branches:
(i) the dispersive feature is almost symmetric with re-
spect to EF while the intensity is not; (ii) the bands have a
minimum energy gap at kF; (iii) both bands show the
bending back effect at kF; (iv) the spectral intensity of the
two bands show opposite evolutions as a function of k in
the vicinity of kF. All these features qualitatively agree
with the behaviors of BQPs predicted from BCS theory
[Fig. 1(b)], suggesting the basic validity of the BQP
concept in high-Tc superconductors.

FIG. 2 (color). (a) ARPES spectra of Bi2223 in the normal state (140 K) measured along a yellow line in the Brillouin zone shown
in the inset in (e). Spectrum at kF is indicated by a dark red line. (b) ARPES spectra taken under the same condition as in (a) but at
the superconducting state (60 K). (c) Same as (b) in an expanded intensity scale above EF. (d) ARPES spectra in (b) divided by the
FD function at 60 K convoluted with a Gaussian reflecting the instrumental resolution. Spectrum at kF is indicated by a dark green
line. Red lines are fitting curves for unoccupied states using a Lorentzian with energy-dependent broadening factor. Fittings are
restricted to the spectra of which peak positions are located within 5kBT from EF. (e) Intensity plot of normalized ARPES spectra
in (d) as a function of binding energy and wave vector. Momentum region is the same in (a)–(d).
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FIG. 1. Schematic diagram of the formation process of a
Bogoliubov-quasiparticle (BQP) band. In the normal state
above Tc (a), the electron band has an equal weight at any
momentum, while in the superconducting state below Tc (b),
particle-hole mixing (mixing of electron and hole bands) takes
place due to the pairing, leading to opening of a superconduct-
ing gap as well as a transfer of weight between the electron and
hole bands.
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Does	a	superconductor	have	a	Fermi	surface?



BCS-Theory	predictions

(1)	A	superconducting	gap	was	predicted.

(2)	Δ	 0 = 1.7𝑘4	𝑇6
(3)	Heat	capacity:	𝐶	~	𝑒

9∆
;<=

(4)	∆	(𝑇 → 𝑇6) =	
AB<CD
CD

𝑇6 − 𝑇



Predictions	vs	Experiment



Vortex	lattice

𝜉 = 	
ℏ𝑣H
𝜋∆

Superconducting	coherence	length	(=	core	size):


