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Two mathematical formulations for effective theories with SM spectrum

Linear Non-linear

SU(3)C x SU(2)L x U(1)Y SU(3)C x U(1)em

In general, the two formulations lead to two distinct effective theories 

Linear vs non-linear

SMEFT HEFT

125 GeV Higgs boson

Goldstone bosons 
eaten by W and Z U = exp ( iπaσa

v )

⊂

H =
1

2 ( iG1 + G2

v + h + iG3)
U → LUR† h → hH → LH

L ∈ SU(2)L R ∈ U(1)Y

v ≈ 246 GeV
Higgs VEV Expansion 

parameter
v ≈ 246 GeV



SMEFT HEFT

HEFT: no correlations between self-couplingsSMEFT: Predicts correlations between self-couplings 
as long as Λ >> v 

In the SM 
self-coupling  

completely fixed…

…but they can be deformed by BSM effects 

ℒSM ⊃ m2 |H |2 − λ |H |4

→ −
1
2

m2
hh2 −

m2
h

2v
h3 −

m2
h

8v2
h4

ℒSMEFT ⊃ −
m2

h

2v
(1 + δλ3)h3 −

m2
h

8v2
(1 + δλ4)h4 −

λ5

v
h5 −

λ6

v2
h6

ℒHEFT ⊃ − c3
m2

h

2v
h3 − c4

m2
h

8v2
h4 −

c5

v
h5 −

c6

v2
h6 + …ℒSMEFT = ℒSM −

c6

Λ2
|H |6 + 𝒪(Λ−4)

δλ3 =
2c6v4

m2
hΛ2

, δλ4 =
12c6v4

m2
hΛ2

, λ5 =
3c6v2

4Λ2
, λ6 =

c6v2

8Λ2

Linear vs non-linear: Higgs self-couplings



SMEFT HEFT

Higgs boson coupling to WW Higgs boson coupling to WW

free O(1) parameter free O(1) parameter

Parametric limit Λ→∞ where  
Higgs boson couplings become SM-like  

 

No parametric limit where  
Higgs boson couplings become SM-like  

 

ℒSMEFT ⊃ m2
WW+

μ W−
μ + 2m2

W (1 + c
g2

*v2

Λ2 ) h
v

W+
μ W−

μ ℒHEFT ⊃ m2
WW+

μ W−
μ + 2m2

W (1 + δ)
h
v

W+
μ W−

μ

Intuitively, no physical difference between SMEFT and HEFT if Λ~v 

Linear vs non-linear

What is the difference between SMEFT with Λ>>v  and HEFT with δ << 1  ?



 HEFT in the decoupling limit?

One may think of a reason for δ << 1 in 
HEFT describing new physics is much 
heavier than EW scale


As is well known, in the SM Higgs boson is 
crucial for unitarization of 2-to-2 WW 
scattering amplitudes


For that to work, the Higgs boson coupling 
to WW has to be fixed such that δ = 0


More generally, if δ << 1, tree level WW 
scattering avoids hitting strong coupling 
until far above the electroweak scale

ℒHEFT ⊃ m2
WW+

μ W−
μ + 2m2

W (1 + δ)
h
v

W+
μ W−

μ



• SMEFT and HEFT lead to a dramatically different 
phenomenology at the electroweak scale


• Choosing SMEFT or HEFT as our EFT above the 
electroweak scale implicitly entails an assumption about a 
class of BSM theories that we want to characterize


• SMEFT is appropriate to describe BSM theories which 
can be parametrically decoupled, that is to say, where the 
mass scale of the new particles depends on a free 
parameter(s) that can be taken to infinity


• Conversely, HEFT is appropriate to describe non-
decoupling BSM theories, where the masses of the new 
particles vanish in the limit v→0  

Linear vs non-linear

Summary of the following ~10 slides: 



Example: cubic Higgs deformation

Consider toy EFT model where Higgs cubic (and only that) deviates from the SM

V(h) =
m2

h

2
h2 +

m2
h

2v (1+Δ3) h3 +
m2

h

8v2
h4

ℒ = ℒSM−Δ3
m2

h

2v
h3

This EFT belongs to HEFT but not SMEFT parameter space 
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In this model, no problems at the level of tree-level 2-to-2 amplitudes

In this model the Higgs cubic is modified,  but not Higgs couplings to W bosons.  
In 2-to-2 scattering at tree level only the latter are important for unitarity  

Elastic channels

- +～E2 ～E0 = ～E0



Non-analytic Higgs potential

V(h) =
m2

h

2
h2 +

m2
h

2v (1+Δ3) h3 +
m2

h

8v2
h4

Given Lagrangian for Higgs boson h, one can always uplift it 
to manifestly SU(2)xU(1) invariant form replacing h → 2H†H − v

V(H) =
m2

h

8v2 (2H†H − v2)2 + Δ3
m2

h

2v ( 2H†H − v)
3

(1)

(2)

After this replacement, Higgs potential contains terms non-analytic  at H=0

(1) and (2) are equal in the unitary gauge H →
1

2 ( 0
v + h)

Thus, (1) and (2) describe the same physics



Non-analytic Higgs potential

V(H) =
m2

h

8v2 (2H†H − v2)2 + Δ3
m2

h

2v ( 2H†H − v)
3

H =
1

2 ( iG1 + G2

v + h + iG3)

In the unitary gauge, the Higgs potential looks totally healthy and renormalizable…

Away from the unitary gauge,  it becomes clear that the Higgs potential contains  
non-renormalizable interactions suppressed only by the EW scale v

V ⊃ Δ3
m2

h

2v ( (h + v)2 + G2 − v)
3

V ⊃ Δ3
3m2

h

4v
G2h2

h + v
+ 𝒪(G4) = Δ3

3m2
h

4
G2

∞

∑
n=2

( −h
v )

n

+ 𝒪(G4)

Going away from the unitary gauge:

G2 ≡ ∑
i

G2
i



 Multi-Higgs production

Expanded V contains interactions

s-wave isospin-0 amplitude for GG→hn is momentum-independent 
constant proportional to the non-analytic deformation

Amplitudes for multi-Higgs production in W/Z boson fusion are only 
suppressed by scale v and not decay with growing energy, leading to 

unitarity loss at some scale above v

VLVL → n × hConsider VBF production of n ≥ 2 Higgs bosons: 

leading to interaction vertices with  
arbitrary number of Higgs bosons

V ⊃ = Δ3
3m2

h

4
G2

∞

∑
n=2

( −h
v )

n

VL

VL

ℳ([GG]l=0
I=0 → h…h

⏟
n

) ≈
(−1)n+1

4 π
Δ3

3 3n!m2
h

2vn

By equivalence theorem,  
at high energies the same as GG → n × h



S matrix unitarity

implies relation between forward scattering amplitude,  
and elastic and inelastic production cross sections

Equation is “diagonalized” after  
initial and final 2-body state are projected into partial waves

symmetry factor 
for n-body final state

Unitarity primer

This can be rewritten as the Argand circle equation

independently whether the particles are identical or not. The partial wave amplitudes
al are the matrix element of the T operator in that basis:

hE 0, ~p0, l0,m0|T |E, ~p, l,mi = (2⇡)4�3(~p� ~p0)�(E � E 0)�ll0�mm0 al(s). (2.14)

Note that by the Wigner theorem al must be independent of the spin projection m.
The two bases are related by a linear transformation. Consider the center of mass

frame with the direction of the first momentum given by
~k
1

|~k
1

|
= n̂ ⌘ (sin ✓ cos�, sin ✓ sin�, cos ✓).

Such a state can be expressed in the other basis using the spherical harmonics:

|~k
1

~k
2

i = 4
p
2⇡

p
S
2

�
1� 4m2

s

�
1/4

X

lm

Ylm(✓,�)|
p
s, 0, l,mi, (2.15)

where S
2

= 1/2! if |~k
1

~k
2

i contains two identical particles, and S
2

= 1 otherwise.
The pre-factor here ensures the normalization in Eq. (2.13) given Eq. (2.11). UsingR
d⌦Y ⇤

l0m0(✓,�)Ylm(✓,�) = �ll0�mm0 we can invert Eq. (2.15):

|ps, 0, l,mi =
p
S
2

⇣
1� 4m2

s

⌘
1/4

4
p
2⇡

Z
d⌦Y ⇤

lm(✓,�)|~k1~k2i. (2.16)

Given Eq. (2.15), the 2-to-2 elastic amplitude can be expressed by the partial wave
amplitude as

M(~p
1

~p
2

! ~k
1

~k
2

) =
8⇡

S
2

p
1� 4m2/s

1X

l=0

(2l + 1)Pl(cos ✓)al(s). (2.17)

where ✓ is the angle between ~p
1

and ~k
1

. The other way around:

al(s) =
S
2

16⇡

r
1� 4m2

s

Z
1

�1

d cos ✓Pl(cos ✓)M(s, cos ✓), (2.18)

where I used
R
1

�1

d cos ✓Pl(cos ✓)Pl0(cos ✓) =
2

2l+1

�ll0 . It follows that the unit a operator
on the subspace of fixed

p
s can be written in terms of the partial wave states as

1 =
X

l,m

|ps, 0, l,mihps, 0, l,m|+
X

n>2

Sn

Z
d⇧̃

1

. . . d⇧̃n|k1 . . . knihk1 . . . kn|. (2.19)

We can also write the amplitude for a transition between a particular partial wave and
a n-particle state normalized as in Eq. (2.3):

M(
p
s, 0, l,m ! {n}) =

p
1� 4m2/s

p
S
2

4
p
2⇡

Z
d⌦Ylm(⌦)M(k

1

k
2

! {n}). (2.20)

The unitarity condition in Eq. (2.7) evaluated for the in state |E, 0, l,mi becomes:

2Im al = |al|2 +
X

n2inel.

Sn

Z
d⇧n|M(E, 0, l,m ! {n})|2. (2.21)

4

2Imℳ(p1p2 → p1p2) = S2 ∫ dΠ2 |ℳelastic(p1p2 → k1k2) |2 + ∑ Sn ∫ dΠn |ℳinelastic(p1p2 → k1…kn) |2

2Imal = a2
l + ∑ Sn ∫ dΠn |ℳinelastic

l |2

(Real)2 + (Imal − 1)2 = R2
l , R2

l = 1 − ∑ Sn ∫ dΠn |ℳinelastic
l |2



 implies constraints on both  
elastic and inelastic amplitudes

Unitarity primer

Argand circle equation

Re(al)

Im(al)
Argand circle  

shrinks in presence  
of inelastic channels

1

1

2

0

(Real)2 + (Imal − 1)2 = R2
l , R2

l = 1 − ∑ Sn ∫ dΠn |ℳinelastic
l |2

|Real | ≤ 1

∑ Sn ∫ dΠn |ℳinelastic
l |2 ≤ 1

Often used

Often forgotten



Unitarity primer

• In a unitary theory, all partial wave amplitudes must lie on the boundary of the 
Argand circle  


• Amplitudes calculated in perturbation theory may violate this condition, which 
signals that higher order corrections are non-negligible 


• This goes under the name of perturbative unitarity violation


• New degrees of freedom must appear around the scale of perturbative unitarity 
violation, either as a UV completion of the effective theory, or as a strong 
coupling transition

Re(al)

Im(al)

1

1

2

0

(Real)2 + (Imal − 1)2 = R2
l , R2

l = 1 − ∑ Sn ∫ dΠn |ℳinelastic
l |2



Unitarity primer

Re(al)

Im(al)

1

1

2

0

Estimated scale 𝞚* where new degrees of freedom must appear 

Scale 𝞚u where perturbative predictions are no longer reliable 

(Real)2 + (Imal − 1)2 = R2
l , R2

l = 1 − ∑ Sn ∫ dΠn |ℳinelastic
l |2

(Real)2 + ∑ Sn ∫ dΠn |ℳinelastic
l |2 | s=Λu

= 1

(Real)2 + ∑ Sn ∫ dΠn |ℳinelastic
l |2 | s=Λ*

∼ π2



Unitarity constraints on inelastic channels

∞

∑
n=2

1
n! ∫ dΠn |ℳ([GG]l=0

I=0 → hn) |2
s=Λ*

=
∞

∑
n=2

1
n!

Vn(Λ*) |ℳ([GG]l=0
I=0 → hn) |2 ∼ π2

Unitarity (strong coupling) constraint on inelastic multi-Higgs production 

Volume of phase space in massless limit: Vn( s) = ∫ dΠn =
sn−2

2(n − 1)!(n − 2)!(4π)2n−3

In a unitary theory, 2 → n amplitude must decay as 1/sn/2-1  
in order to maintain unitarity up to arbitrary high scales   

Process Unitary behavior
2 → 2 1
2 → 3 1/s1/2

2 → 4 1/s
… …



Unitarity constraints on HEFT

Λ ≲ (4πv)log1/2 ( 4πv
mh |Δ3 |1/2 )

In model with deformed Higgs cubic, multi-Higgs amplitude do not decay with energy 
leading to unitarity loss at a finite value of energy 

ℳ(GG → h…h
⏟

n

) ∼ Δ3
n!m2

h

vn

𝒪(1) ≳
∞

∑
n=2

1
n!

Vn( s) |ℳ(GG → hn) |2 ∼
∞

∑
n=2

1
n!

sn−2

(n!)2(4π)2n
Δ2

3
(n!)2m4

h

v2n
∼

Δ2
3m4

h

s2
exp[ s

(4πv)2 ]

∞

∑
n=2

1
n!

Vn( s) |ℳ(GG → hn) |2 ≲ 𝒪(π2)Unitarity equation

Our amplitude

Unless Δ3 is unobservably small, unitarity loss happens at the scale 4 π v ~ 3 TeV  ! 



 Multi-Higgs production

Expanded V contains interactions

s-wave isospin-0 amplitude for GG→hn is momentum-independent 
constant proportional to the non-analytic deformation

Amplitudes for multi-Higgs production in W/Z boson fusion are only 
suppressed by scale v and not decay with growing energy, leading to 

unitarity loss at some scale above v

VLVL → n × hConsider VBF production of n ≥ 2 Higgs bosons: 

leading to interaction vertices with  
arbitrary number of Higgs bosons

V ⊃ = Δ3
3m2

h

4
G2

∞

∑
n=2

( −h
v )

n

VL

VL

ℳ([GG]l=0
I=0 → h…h

⏟
n

) ≈
(−1)n+1

4 π
Δ3

3 3n!m2
h

2vn

By equivalence theorem,  
at high energies the same as GG → n × h



W

W

h
h

h
h

W

W

h

h

h

W

W

W

h

h

h

W

W

W

h
h

h
W

W

W

h

h
h

W

W

W

h

h

h

W

W

W

h
h

h
W W

W

h
h

h

h
W

W

h

h
h

h

W

W

h

h
hh

W

W

h
h

h
h

h
W

W

h

h

h
h

h

W

W

h

h
h

h

h

W

W

h

h

h

W
W

W

W

h

h

h

W
W

W

W

h

h

h

W

h

W

W

h

h
h

W
W

W

W

h

h

h

W
W

W

W

h

h

h

W

h

W

W

h

h

h

W
W

W

W

hh

h
W

h

W

W

h

h

h

W
W

W

W

h

h

h

W

h
W

W

h

h

h

W

h

W

W

h
h

h
W

h

Same calculation can be performed (much more 
painfully) without resorting to equivalence theorem

Consider VLVL→hhh which depends on triple and other Higgs 
couplings. 

Diagrams with one triple Higgs vertex contribute 

Triple Higgs  
vertex

Longitudinal 
polarization 

Higgs 
Propagator

In SM, various contributions that go like E0 cancel against each other 
so that full amplitude behaves as 1/E at high energy,  

consistently with perturbative unitarity

However, as soon as Δ3≠0, cancellation is no longer happening,  
and then tree level VLVL→hhh cross section explodes at high energies 

hhWW 
vertex

 Multi-Higgs production

ℳ(WLWL → hhh) ∼
m2

W

v2

m2
h

v (1 + Δ3) (
s

mW )
2

1
s − m2

h



Maximum new physics scale for different Δ3 

For observable deformations of Higgs cubic,  
new degrees of freedom must appear below a few TeV 

This conclusion does not change much even if cubic deformations  
are so small so as to be unobservable in practice 

Unitarity constraints



Maximum new physics scale for different Δ3 

For SMEFT maximum new physics scale increases as (Δ3)-1/2  

HEFT vs SMEFT

Δ3=1 Δ3=10-1Δ3=10-2 Δ3=1 Δ3=10-1Δ3=10-2
100

1000
Λ *

[T
eV

]

HEFT SMEFT

Δ3 ∼
c

Λ2
⇒ Λ* =

4π
|Δ3 |



The smaller Δ3, the larger multiplicity n which dominates unitarity 
bounds. But even for tiny Δ3, dominant n is order 10, so neglecting 

Higgs masses in phase space is justified a posteriori

Unitarity bounds separately for each n  

Unitarity constraints

Δ3Δ3

Δ3

Δ3



• SM with deformed cubic loses perturbative unitarity at the 
scale of order 4 π v, and has to be UV completed around 
that scale


• This is true even if the deformation is tiny and 
unobservable in practice


• The same lesson applies to any HEFT theory that is not 
part of the SMEFT parameter space, even when it is a 
continuous and small deformation of the SM Lagrangian!

Summary of unitarity constraints

Unitarity arguments extended to other Higgs couplings in Abu-Ajamieh et al 
2009.11293



• In effective theories, non-analytic terms in Lagrangian appear 
due to integrating out light or massless degrees of freedom


• More precisely, non-analyticity at H→0 signals that particle 
whose mass vanishes as H→0 has been integrated out


• Thus, HEFT is effective theory for UV models containing particles 
who get their masses from EW symmetry breaking. This explains 
why the cutoff cannot be parametrically raised above 4𝝿v.  


• In contrast, SMEFT is the effective theory for UV models where 
new particles can be decoupled in the limit v→0, that is they 
have mass independent of EW symmetry breaking

Perspective on HEFT 



Perspective on HEFT

Example of UV model leading to non-analytic terms in low-energy effective theory 

More familiar example is integrating out 4th chiral generation at one loop, 
which  produces Log|H|2  terms in the Coleman-Weinberg potential

ℒUV = ℒSM −
κ
2

|Φ |4 + μ2(Φ†H + h . c.)

Eqs of motion: Φ = ( μ2

κH†H )
1/3

H

Effective Lagrangian: ℒEFT ≈ ℒSM +
3μ8/3

2κ1/3 (H†H)2/3

Non-analyticity appears because of integrating out a particle 
that would be massless in the absence of EW symmetry breaking

Consider a funny version of the 2-Higgs-double model:

Another example is integrating out tachyonic electroweak doublets or triplets Cohen et al 
 2008.08597



One can always re-express non-linear Lagrangian  
in linear language by replacing: 

After this substitution, Lagrangian has linearly realized electroweak 
symmetry but, for a generic point in parameter space, it  contains terms 

that are non-analytic (that is, not continuously differentiable) at H=0

.H̃ =i�2H
⇤

U → (H̃, H)
H†H

h → 2H†H − v

HEFT vs SMEFT

U = exp ( iπaσa

v )

A HEFT  Lagrangian belongs to the SMEFT class,  if, after this substitution,  
non-analytic terms cancel up to equations of motion and field redefinitions

ℒHEFT =
1
2

fh(h)(∂μh)2 − V(h) +
v2

4
f1(h)Tr[∂μU†∂μU] + v2f2(h)(Tr[U†∂μUσ3])2 + …



HEFT vs SMEFT

Geometric criterion to distinguish HEFT from SMEFT introduced in Alonso et al  
1511.00724

For fh(h)=1 and f2(h)=0, the Lagrangian belongs to the SMEFT class  
if the scalar manifold has an O(4) fixed point, that is if exists hf  such that f1(hf)=0

ℒHEFT =
1
2

fh(h)(∂μh)2 − V(h) +
v2

4
f1(h)Tr[∂μU†∂μU] + v2f2(h)(Tr[U†∂μUσ3])2 + …

Geometric criterion recently clarified in 

As it stands, this is not equivalent to the analyticity condition advertised in the previous slide  

Cohen et al 
 2008.08597

For the candidate O(4) fixed point hf  such that f1(hf)=0, 
the potential V(h) has to be analytic at hf (it has convergent Taylor expansion at hf),  

and the metric of the scalar manifold has to be analytic at hf ,  
in particular the curvature and its covariant derivatives have to be finite at hf   



Analytic Non-analytic



Analytic Non-analytic

Non-decoupling new physics 
Maximum EFT cutoff at ~3 TeV

Decoupling new physics 
EFT cutoff anywhere between  

TeV and Planck scale



• HEFT = SMEFT + non-analytic interactions


• Non-analytic term → infinite series of interactions 
suppressed by vn → cut-off near 4𝝿v


• Manifested as n>2-body Higgs production violating 
perturbative unitarity bounds around that scale


• Non-analytic terms can be understood as effective 
description of BSM models where new particles get their 
masses only from the Higgs VEV

Summary


