Scattering
see, for instance, Kittel chapter 2

Our goal: reminder

Recap- Bragg Law
Constructive Interference

Recap -Reciprocal lattice
Crystal: translation symmetry $\vec{T}=u_{1} \bar{a}_{1}+u_{2} \bar{a}_{2}+u_{3} \bar{a}_{3}: \vec{r}^{\prime}=\vec{r}+\vec{T}$ Physical properties, ie. $n(\vec{r})=n(\vec{r}+\vec{T})$

$$
\Rightarrow n(\bar{r})=\sum_{\bar{\sigma}} n_{\bar{G}} \exp (i \bar{\sigma} \cdot \bar{r}) \quad l
$$

$\bar{\sigma}:$ reciprocal lattice vectors: $\bar{G}=h \bar{D}_{1}+K D_{2}+e \bar{D}_{3}$

$$
\begin{aligned}
\bar{b}_{1} & =2 \pi \frac{\overline{a_{2}} \times \overline{a_{3}}}{\bar{a}_{1} \cdot \bar{o}_{2} \times \overline{a_{3}}} \rightarrow \vec{b}_{i} \cdot \overrightarrow{a_{q}}=2 \pi \delta_{i} \quad\left(\delta_{i}=0 \quad i \neq j ; \delta_{i j}=1 i=j\right) \\
& =\frac{2 \pi}{v_{c}} \bar{a}_{2} \times \overline{a_{3}}
\end{aligned}
$$

* Each costal has a Real Lattice [length] and a reciprocal Lattice [length ${ }^{-1}$]
* Direct lattice: Miller Indices $(h K l) \longrightarrow$ duke $=\frac{2 \pi}{|\bar{\omega}|}$

Quiz

- Determine the reciprocal lattice vectors associated to
a) $1, a, 17, \ldots \quad K=\frac{2 \pi}{d}=\frac{2 \pi}{2 a}=\frac{1}{2} \frac{2 \pi}{a} \nexists \vec{G} \in R . L$.
b) $1,5, a, \ldots \rightarrow \exists \vec{G} \in R . L . \vec{K}=2 \pi / a\left\{\begin{array}{l}\vec{T}=u_{1} \bar{a}_{1} \quad \bar{a}_{1}=a(100)\end{array}\right.$
c) $1,3,5, \ldots$
d) $1,2,5,6, \ldots$ not equidistant planes

Reminder last lecture:
Ex.1: $\vec{G}=\overrightarrow{b_{1}} \quad(h K e)=(100)$
Reciprocal Lattice for the simple cubic lattice

$$
d=\frac{2 \pi}{|\sigma|}=\frac{2 \pi}{2 \pi / a}=a
$$

Draw the reciprocal lattice vectors for the (100), (010), (200), (020), (130) set of planes $\vec{G}_{2}=\bar{F}_{1}+\bar{F}_{2} \quad(h K l) \Rightarrow(110)$

Real Lattice $\otimes z$

$$
d_{\text {nne }}=\frac{2 \pi}{|6|}=\frac{2 \pi}{\frac{2 \pi}{a} \sqrt{2}}=\frac{a \sqrt{2}}{2}
$$

Reciprocal $\quad \overrightarrow{b_{1}}=\frac{2 \pi}{a}(10)$
lattice $\quad b_{2}=\frac{2 \pi}{a}(01)$

$$
\overrightarrow{b_{1}}=2 \frac{\overline{a_{2}} \times \overline{a_{3}}}{\overline{a_{1}} \cdot \overline{a_{2}} \times \overline{a_{3}}}
$$

$\overline{5} \cdot \perp \overline{\boldsymbol{a}_{1}}, \overline{a_{3}}$
$b_{1} \| \bar{a}_{2} \times \bar{a}_{3}$
(b) $\| \overline{a_{1}}$ for orthogonal
petain
ones

Each crystal has a real and reciprocal lattice associated

Another example.

Brillouin zone

A Brillouin zone is defined as a Wigner-Seitz primitive cell in the reciprocal lattice

Brillouin zones

(b) Rectangular lattice $b / a=2$

* First Brillouin zone is connected, bot the higher B.Z. typically not
* Each B.Z. has exactly the same area (or volume en 3D)
* Zone boundaries occur in parallel pairs oymmetric around o and they are separated by a reciprocal Latticevector.

Brillouin zones in 3D

2. $B Z$

bcc

Diffraction condition and reciprocal lattice

Crystal: identical atoms separated \vec{T} (real space)

$$
\begin{aligned}
& K=\frac{2 \pi}{\lambda} \\
& \hat{K}=\frac{\vec{K}}{|\vec{K}|} \quad \hat{K}^{\prime}=\frac{\vec{K}^{\prime}}{\left|\vec{K}^{\prime}\right|}
\end{aligned}
$$

constructive Interference:

$$
\begin{aligned}
& T \cdot \cos \theta+T \cos \theta^{\prime}=n \lambda \text { integer } \\
& \left(\hat{K}^{\prime}-\hat{K}\right) \cdot \vec{T}=n \lambda
\end{aligned}
$$

Elastic scattering: $|\bar{K}|=\left|\bar{K}^{\prime}\right|=\frac{2 \pi}{\lambda}$

$$
\begin{aligned}
& \left(\vec{K}^{\prime}-\vec{K}\right) \cdot \vec{T}=n 2 \pi \\
& e^{i\left(\vec{K}^{\prime}-\vec{K}\right) \cdot \vec{T}}=1
\end{aligned}
$$

- Remember reciprocal lattice def:: $e^{i \bar{\sigma} \cdot \vec{T}}=1$
- Define scattering vector $\Delta \vec{K}=\vec{K}^{\prime}-\vec{K}$
$\Rightarrow \vec{R}=\vec{G}$ Lave Equation
(\Rightarrow Diffraction maxima gives us the R.L. of the crystal)

Diffraction condition $\quad \Delta \vec{K}=\vec{G}$ with $\Delta \bar{K}=\bar{K}^{\prime}-\bar{K}$
Elastic scattering \rightarrow Energy $E=\hbar \omega$ is conserved

$$
\begin{aligned}
& w= c K=w^{\prime}=c K^{\prime} \\
& K^{2}=K^{\prime 2} \\
& \Rightarrow \Delta \vec{K}=\vec{G} \longrightarrow(\vec{K}+\vec{G})^{2}=\left(\vec{K}^{\prime}\right)^{2} \\
& 2 \vec{K} \cdot \bar{G}+G^{2}=0
\end{aligned}
$$

If \bar{G} is a reciprocal Lattice vector, $-\bar{G}$ too:

$$
2 \bar{K} \cdot \bar{G}=\sigma^{2}
$$

Condition for diffraction
the set of reciprocal Lattice vectors \bar{G} determine the possible x-ray reflections

Geometric construction of diffraction conditions
Notice that this plane is part of a B.Z. boundary
\Rightarrow special role of B.Z. compared to ally primitive unit ell of

$$
2 \vec{k} \cdot \vec{G}=G^{2}
$$

$$
\Rightarrow \vec{K} \cdot\left(\frac{1}{2} \vec{G}\right)=\left(\frac{1}{2} G\right)^{2}
$$

- select \bar{G} from origin to R.L. point
- construct plane $\perp \bar{G}$ at its midpoint
- any vector \bar{K} from the origin and eluding in that plane (ie. $\overline{K_{1}}$) will satisfy the condition

$$
\begin{aligned}
& \bar{K}_{1} \cdot\left(\frac{1}{2} \bar{G}_{A}\right)=\left(\frac{1}{2} G_{A}\right)^{2} \\
& \overline{K_{2}} \cdot\left(\frac{1}{2} \bar{G}_{B}\right)=\left(\frac{1}{2} G_{B}\right)^{2}
\end{aligned}
$$

Diffraction and Brillouin zone

$$
\vec{k} \cdot \frac{\vec{G}}{2}=\left(\frac{G}{2}\right)^{2}
$$

Ewald construction for diffraction
(3) \rightarrow A diffracted beam will be form if the sphere intersects another point of the reciprocal lattice
Diffraction condition:

$$
\begin{aligned}
& \Delta \vec{k}=\vec{G} \\
& \vec{k}+\vec{G}=\overrightarrow{k^{\prime}}
\end{aligned}
$$

(1) \vec{K} : origin chosen it terminates at any reciprocal lattice point
(2)

$$
k=\frac{2 \pi}{\lambda}
$$

sphere of radiuls $K=\frac{2 \pi}{\lambda}$

- beam isffraded beam is ai the
- bearrection $\vec{k}^{\prime}=\vec{k}+\overline{6}$

$$
\vec{k}
$$

-

Reciprocal
Lattice

Equivalence of Laue and Bragg conditions
$\left.\begin{array}{l}\text { Lave Eq. } 2 \vec{k} \cdot \vec{G}=G^{2} \\ \text { Bragg Eq. } 2 d \sin \theta=n \lambda\end{array}\right\}$

$$
\begin{aligned}
& 2 \bar{K} \cdot \bar{\sigma}=2 K G \sin \sigma \\
& K=\frac{2 \pi}{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \vec{K} \cdot \vec{G}=G^{2} \\
& 2\left(\frac{2 \pi}{\lambda}\right) \sin \theta=\frac{2 \pi}{d n K l} \\
& \quad 2 d h K L \sin \theta=\lambda \Rightarrow 2 d \sin \theta=n \lambda
\end{aligned}
$$

$$
\uparrow
$$

in the definition of the index hie we derided the distances between the common factor n

