Scattering

see, for instance, Kittel Chapter 2

Recap - Bragg Law

Recap - Reciprocal lattice

Crystal: translation symmetry $\vec{T} = u_1 \bar{a}_1 + u_2 \bar{a}_2 + u_3 \bar{a}_3$: $\vec{r}' = \vec{r} + \vec{T}$ Physical properties, i.e. $n(\vec{r}) = n(\vec{r} + \vec{T})$ $(\vec{r} - \vec{r} + \vec{T})$ $(\vec{r} - \vec{r} + \vec{T})$

$$\Rightarrow n(\bar{r}) = \sum_{\bar{a}} n_{\bar{b}} \exp(i\bar{b}\cdot\bar{r})$$

$$= \sum_{\bar{a}} n_{\bar{b}} \exp(i\bar{b}\cdot\bar{r})$$

$$= \frac{2\pi}{\bar{a}} \sum_{\bar{a}} \frac{\bar{a}_{2} \times \bar{a}_{3}}{\bar{a}_{1} \cdot \bar{a}_{2} \times \bar{a}_{3}}$$

$$= 2\pi \sum_{\bar{a}} \frac{\bar{a}_{2} \times \bar{a}_{3}}{\bar{a}_{1} \cdot \bar{a}_{2} \times \bar{a}_{3}}$$

$$= \frac{2\pi}{V_{c}} \sum_{\bar{a}} \sum_{\bar{$$

* Each crystal has a Real Lattice [length] and a reciprocal Lattice [length¹] * Direct Lattice : Miller Indices (hKl) \longrightarrow dnke = $\frac{2\pi}{161}$

Quiz

• Determine the reciprocal lattice vectors associated to a) 1, 9, 17, ... $K = \frac{2\pi}{2\pi} = \frac{2\pi}{2\pi} = \frac{2\pi}{2} = \frac{2\pi}$

Monoclinic with $a_3 \rightarrow \infty$

Each crystal has a real and reciprocal lattice associated

Another example.

Brillouin zone

A Brillouin zone is defined as a Wigner-Seitz primitive cell in the reciprocal lattice

Brillouin zones

- * First Brillowin zone is connected, but the higher B.Z. typically not
 - * Each B.Z. has exactly the same area (or volume in 3D)
 - * Zone boundaries occur in parallel pairs symmetric around 0 and they are separated by a reciprocal lattice vector.

Brillouin zones in 3D

Diffraction condition and reciprocal lattice

constructive Interference: $T \cos \theta + T \cos \theta' = n \lambda$ integer $(\hat{K} - \hat{K}) - \vec{T} = n\lambda$ Elastic scattering: $|\vec{K}| = |\vec{K}'| = \frac{2\pi}{3}$ $(\vec{K}' - \vec{K}) \cdot \vec{T} = n 2T$ $\rho^{i}(\vec{K}'\cdot\vec{K})\cdot\vec{T}=1$ \vec{K} · Remember reciprocal lattice def.: $e^{i\vec{G}\cdot\vec{T}} = 1$ \vec{K} · Define scattering vector $\Delta \vec{K} = \vec{K} - \vec{K}$ Lave Equation $\Delta \vec{K} = \vec{G}$ (⇒Diffraction maxima gives us the R.L. of the crystal)

Diffraction condition

$$\Delta \vec{K} = \vec{G}$$
 with $\Delta \vec{K} = \vec{K} - \vec{K}$

Elastic scattering
$$\rightarrow$$
 Energy $E = \hbar w$ is conserved
 $w = cK = w' = cK'$
 $K^2 = K'^2$
 $\Rightarrow \Delta \vec{K} = \vec{G} \longrightarrow (\vec{K} + \vec{G})^2 = (\vec{K}')^2$
 $\int 2\vec{K}\cdot\vec{G} + G^2 = 0$
If \vec{e} is a reciprocal lattice vector, $-\vec{G}$ too:
 $\int 2\vec{K}\cdot\vec{G} = G^2$
 $\det \vec{K}$
the set of reciprocal lattice vectors \vec{G} determine the possible x-ray reflections

Geometric construction of diffraction conditions

$$2\vec{k}\cdot\vec{G} = G^2$$

$$\Rightarrow \vec{K}\cdot\left(\frac{1}{2}\vec{6}\right) = \left(\frac{1}{2}\vec{6}\right)^2$$

select \$\vec{\mathcal{G}}\$ from origin to \$\mathbf{R}\$. L. point
construct plane \$\overline \argsin \vec{\mathcal{d}}\$ at its midpoint
any vector \$\vec{\mathcal{R}}\$ from the origin and ending in that plane (i.e. \$\vec{\mathcal{K}}\$) will satisfy the condition

 $\overline{K}_{1} \cdot \left(\frac{1}{2}\overline{G}_{A}\right) = \left(\frac{1}{2}G_{A}\right)^{2}$ $\overline{K}_{2} \cdot \left(\frac{1}{2}\overline{G}_{B}\right) = \left(\frac{1}{2}G_{B}\right)^{2}$

reciprocal lattice

Diffraction and Brillouin zone

 $\vec{k} \cdot \frac{\vec{G}}{2} = \left(\frac{G}{2}\right)^2$

Ewald construction for diffraction

Diffraction condition:

 $\Delta \vec{k} = \vec{G}$

 $k = \frac{2\pi}{\lambda}$

 $\vec{k} + \vec{G} = \vec{k'}$

(1) R : origin chosen it terminates at any reciprocal lattice point

(3) A diffracted beam will be form if the sphere
intersects another point of the reaprocal lattice
the diffracted
beam is with
direction
$$K = \overline{K} + \overline{6}$$

where of
radius $K = \frac{2\pi}{\lambda}$.
Recipocal
Lattice

Equivalence of Laue and Bragg conditions

Lave Eq.
$$2\vec{k}\cdot\vec{G} = G^2$$

Bragg Eq. $2d\sin\theta = n\lambda$
 $\vec{k}\cdot\vec{G} = G^2$
 $2\vec{K}\cdot\vec{G} = G^2$
 $2(\frac{2\pi}{\lambda})\sin\theta = \frac{2\pi}{dhk\ell}$
 $2dhKL\sin\theta = \lambda \implies 2d\sin\theta = n\lambda$
in the definition of
the index lhKl we
devided the
distances between
the common factor n
 $K = \frac{2\pi}{\lambda}$