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Abstract

The purpose of this study is to assess the bias resulting from the blocking of certain

supernovae by foreground galaxies on our late-time estimation of the Hubble constant. We

find that 2.4% to 9% of the supernovae in our simulated catalogue are obstructed by a fore-

ground galaxy, depending on the way in which we define the effective radius of a galaxy. In

its simplest form, this blocking implies that supernovae lying behind a foreground galaxy are

excluded from our observed samples. We find that this selection bias leads to an overestima-

tion of H0 which ranges from 0.03% to 0.09% depending on the chosen definition for galactic

radii. We show that supernova blocking also affects redshift determinations, particularly

when obstructed supernovae are mistakenly assigned the redshift of their foreground galaxy

instead of their host-galaxy. We find that such host-galaxy misidentifications can result in

an underestimation of H0 of the order of 1.95% if the mismatch probability is assumed to

be proportional to the angular separation between the obstructed supernova and its fore-

ground galaxy. Lastly, we examine the selection bias induced by the specific orientation of

the Milky Way’s plane on the estimation of the Hubble constant. Our analysis reveals that

the orientation of the galactic disk alone can cause a fluctuation in the Hubble constant of

∼ 0.9 km/s/Mpc when relying on low redshift sources only (z ≤ 0.1).
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1 Introduction

1.1 The Hubble constant under tension

Standard cosmological parameters are the principal quantities through which we characterize

the Universe. Determining these parameters, which are not directly predicted by a fundamental

theory, is one of the central tasks of modern cosmology. Inferring cosmological parameters is a

multidisciplinary exercise which relies on a combination of the theoretical framework provided

by the assumed underlying cosmological model, observational data and statistical tools to con-

front the model with the data and extract the best fitting parameter values. Arguably, the most

accessible parameter of the prevailing cosmological model (the cosmological constant cold dark

matter (ΛCDM) model) is the Hubble constant (H0), which quantifies the present-day expansion

rate of the Universe.

The discovery of the expansion of the Universe and the first measurements of the Hubble constant

in the early 20th century marked a pivotal moment in cosmology. In 1927, Georges Lemâıtre

published a seminal paper in which he presented a formalism based on Einstein’s equations

that described an expanding Universe and coupled it with available observations of galaxies to

suggest that they exhibited the distance-velocity relationship one might expect if the Universe

was expanding [25]. Two years late, in 1929, Edwin Hubble made observations which revealed

that all other galaxies appear to move away from us with a recession velocity which increases

proportionally to their distance [22]. This relation, called the Hubble law, challenged the then-

prevailing concept of a static Universe by providing compelling evidence of the expansion of the

Universe. Upon this discovery, considerable effort was put to quantify the relationship between

galaxy distances and recession velocities and to measure H0. Hubble’s original estimation of H0

was based on observations of Cepheid variable stars and yielded a value of ∼ 500 km/s/Mpc

[22], whereas nowadays the value of H0 is believed to lie around ∼ 70 km/s/Mpc. These early

measurements were therefore affected by large uncertainties but they nevertheless paved the way

for more precise and sophisticated measurements of H0 in subsequent years.

Since Hubble’s initial measurements, the methods for estimating the Hubble constant have

undergone significant developments, incorporating more precise observational techniques and

refined theoretical models. However, despite these improvements, accurately determining the

Hubble constant remains, to this day, a complex and challenging task due to the intricate inter-

play between different cosmological observations and the need to account for many systematic

uncertainties. Nowadays, two primary methods are used to estimate the Hubble constant. The

first one is based on local measurements of the distances and redshifts (z) of supernovae in the

late Universe. The second one is derived from measurements of the cosmological microwave

background (CMB) in the early Universe.
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Introduction

In the late Universe, the leading method for measuring the Hubble constant is based on distance

and redshift of Type Ia supernovae (SNe Ia). These types of supernovae produce, at their peak,

a fairly constant luminosity allowing them to be used as “standard candles”. The distance to

SNe Ia can be determined with very high precision by comparing this known intrinsic luminos-

ity to the brightness of the source observed on Earth. The redshift of supernovae is typically

determined by analysing the displacement of the spectral lines of their host-galaxy. Under the

assumption of the ΛCDM model, the observed distance and redshift to a source are coupled

through a H0-dependent relation. This relation can be exploited to infer a value for H0 which

fits our supernovae observations. The latest and most thorough of such measurements was car-

ried out in the context of the SH0ES program (Supernovae and H0 for the Equation of State of

dark energy) as part of the Pantheon+ analysis [8]. This latest SH0ES collaboration estimated

the expansion rate in the local Universe based on 1550 unique, spectroscopically confirmed SNe

Ia from 18 different surveys with redshifts ranging from z = 0.001 to z = 2.26. This consti-

tutes the most complete SNe Ia catalogue available to date. This analysis yielded a value of

H0 = 73.5± 1.1 km/s/Mpc [8].

The value of the Hubble constant can also be predicted from the early, pre-recombination Uni-

verse (corresponding to z ≥ 1100). This is done, by measuring the angular power spectrum of

the CMB temperature fluctuations. The observed angular spectrum of the CMB is characterized

by peaks and troughs which are thought to be the consequence of acoustic waves in the baryon-

photon fluid at the time of photon/matter decoupling. The exact locations, heights and depths

of these peaks and troughs in the observed power spectrum are directly related to the mean

density of the baryonic matter as well as other cosmological parameters including H0, allowing

us to derive constraints on the Hubble constant through an alternative method. Extrapolating

H0 from CMB measurements can only be done under the assumption of a particular cosmolog-

ical model which described the expansion history of the Universe (typically the ΛCDM model)

such that this estimation is indirect and model-dependent. The “gold-standard” of these early

Universe measurements was carried out by Planck in 2018 which led to a value for the Hubble

constant of H0 = 67.27± 0.60 km/s/Mpc at 68% confidence level [30].

Both the early-time and the late-time estimation of H0 rely on the assumption of the ΛCDM

model, but the degree of model-dependence varies between the two methods. The early-time

estimation of H0 relies on the accuracy of certain assumptions of the ΛCDM model regarding

the early Universe (z ≥ 1000). In particular, some of these ansatzes concern neutrino prop-

erties, particle interactions, the absence of primordial magnetic fields and the scalar spectral

index. Moreover, the ΛCDM model is then assumed to describe the evolutionary history of the

Universe from z = 1000 onward in order to extrapolate the current expansion rate from the

parameters derived in the early Universe. The late-time estimation of H0 relies on different

assumption inherent to the ΛCDM model such as the description of dark matter (as cold an

non-interacting) and the representation of dark energy by a cosmological constant (Λ). Measure-

ments of the Hubble constant in the local Universe are therefore often regarded as more empirical.

2



Introduction

Comparing the value of H0 measured locally to that predicted from the early Universe mea-

surements is an essential “end-to-end test” of the validity of the currently accepted ΛCDM

model over the largest possible time span: from the dense, dark-matter dominated, early Uni-

verse to the current, dilute, dark-energy dominated Universe.

In the last few decades, the advances in experimental sensitivity have allowed for increasingly

refined measurements and improved data sets. Surprisingly, these improvements in the estimates

of H0 have led to the emergence of a persisting statistically significant discrepancy between the

values obtained through these two different methods. Concretely, the discordance of the Hubble

constant determined through early time and late time methods ranges from 4σ to 6σ depending

on the specific data set used. This so-called “Hubble tension” is considered to be one of the

most long-lasting and widely persisting challenges faced by contemporary cosmology [37]. The

discrepancy between the two estimations is of the order of ∼ 10% such that uncovering this

tension has only been possible with the improved precision of recent cosmological surveys.

Despite providing the most precise constraints on the Hubble constant obtained to date,

the estimates from the Planck angular spectra, like any experimental measurement, are not

exempt from systematic errors. However, no source of systematic uncertainty has been found

in these measurements which could increase the value of H0 by more than 1 km/s/Mpc. There-

fore, the Hubble tension could probably be alleviated with these systematic errors in the CMB

measurements but they cannot fully explain the existing tension. It is also worth noting that

percent-level precision in H0 claimed in the Planck results is achieved at the expense of strong

model assumptions. Moreover, the data reduction of the cosmological surveys used, which is

performed before fitting the cosmological model, is often also performed in the context of the

ΛCDM model. This means that analysing the measured power spectrum under the assumption

of a different cosmological model could be one way to solve the Hubble tension [37].

Distance and redshift measurements of SNe Ia are not free of systematic uncertainties either. De-

spite various reanalyses of the SH0ES data employing different approaches, statistical inference

methods, or modifications to the dataset, none of them has yielded a significant modification

in H0. Additionally, a significant mismatch between early Universe and late Universe mea-

surements of H0 persists across different measurements in our local Universe which are not

apparently affected by the same systematic uncertainties. The level of attention dedicated to

these measurements is now such that any important source of systematic uncertainty should

have been found [37]. It is therefore becoming increasingly unlikely that systematic uncertain-

ties in either of the measurements can solely be responsible for the Hubble tension.

As shown in Fig. 1, there exist various alternative, independent approaches to estimate H0

in addition to the commonly used methods involving SNe Ia and CMB measurements. Mea-

surements based on gravitational lensing [39, 13, 6] and the Tully-Fisher relation [23, 34] align
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Figure 1: Whisker plot of the 68% confidence intervals of different measurements ofH0 performed
over the last decade. These measurements are categorized into early-Universe measurements in
the top part of the figure and late-Universe measurements in the bottom part of the figure. The
cyan vertical band corresponds to the 68% confidence interval of H0 from the SH0ES estimation
[32] and the pink vertical band corresponds to the 68% confidence interval of H0 from the Planck
estimation [30]. (Source: [37])
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with the local results obtained from supernovae observations while estimations derived from Big

Bang nucleosynthesis [4] show consistency with the results obtained from the CMB. Upon con-

sideration of these different methods, the Hubble tension seems to appear as a different between

the value of H0 predicted from measurements in concert with early-Universe physics and that

measured in the late Universe over a distance scale of ∼ 400 Mpc.

The ΛCDM model is a simple and elegant framework which accounts for most of the cos-

mological data available to date. However, despite its great success so far, it relies on strong

assumptions concerning dark matter, dark energy and inflation of which the underlying physics

remains largely unknown to this day. In this context, the Hubble tension could be interpreted

as a a harbinger of new physics, indicating that the assumed ΛCDM model is failing (at least

partially) in the early or in the late Universe. Various attempts to reconcile the discrepancy in

H0 by means of physics beyond the concordance ΛCDM model involve extended cosmological

models incorporating new parameters in addition to those of the standard ΛCDM model. How-

ever, including extra free parameters often leads to broadened uncertainties on H0 such that the

attenuation of the Hubble constant is attributed to the increase of the error bars rather than

an actual shift in the central value. As we currently do not have any other model to replace it

with, many cosmologists are still reluctant to discard the ΛCDM model altogether. Therefore,

it is still highly relevant to look for new sources of biases or errors in our measurements of H0

in the local Universe which assume the ΛCDM model.

1.2 Research motivation

In this respect, the purpose of this research is to analyse the biases introduced in our late-time

estimation of H0 by the obstruction of certain SNe Ia by foreground galaxies in our observations.

In total, we look at three different situations in which supernovae are obstructed by foreground

galaxies in our observations and we estimate the impact on the estimation of H0 in each of these

cases.

1.2.1 Total blocking of supernovae by foreground galaxies

Estimating H0 accurately from SNe Ia distance measurements requires extensive supernovae

samples spanning the largest redshift range possible. To achieve this, the constraints on the

Hubble constant are derived using a compilation of multiple different SNe Ia samples, each re-

sulting from a survey optimized to observe sources in a different redshift range. At high redshift

(z ≳ 0.1), SNe Ia are typically observed through deep pencil beam surveys such as [33]. At

lower redshifts, where they are scarcer, SNe Ia are observed through full sky surveys such as

the one presented in [16]. It can happen that in these observed samples, a supernova and a

galaxy in its foreground lie on the same line-of-sight, such that from our perspective the light

coming from the supernova is obstructed by the foreground galaxy. Depending on the abso-

lute and relative distances of the two objects as well as the properties of the galaxy, this can

lead to two different “blocking scenarios” which each bias our estimation of H0 in a different way.
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In the first case, the light emitted by the supernova can be completely overpowered by that

of the foreground galaxy such that the supernova will no longer be visible to us. This would be

the case if the relative distance between the obstructed supernova and the foreground galaxy is

large, the foreground galaxy is very bright or the alignment between both objects is such that

the supernova lies behind the bulge of a spiral galaxy. This “total blocking” is the most extreme

of the supernova obstruction scenarios. The first bias on H0 that we estimate in this research is

the selection bias induced by this total blocking on our observed SNe Ia samples.

1.2.2 Supernova/host-galaxy mismatching

In the second scenario, the light emitted by the supernova can still be visible to us through

the foreground galaxy. This can be the case if the relative distance between the two objects is

small, the alignment between the supernova and the centre of the galaxy is less exact or the

galaxy is less bright. This second scenario leads to a different type of bias on our estimation

of the Hubble constant related to the currently preferred method to measure the redshift of

supernovae. The estimation of the H0 is based on comparing their measured distances to those

expected from their measured redshifts, under the assumption of a FLRW metric. Therefore,

the value of this method greatly relies on our ability to accurately measure SNe Ia redshifts. The

preferred approach is to measure them indirectly through the spectroscopic redshift of their host-

galaxy. This leads to a higher accuracy and precision because galaxies have sharper spectral

lines than supernovae. An essential and non-trivial task is therefore to correctly match each

supernova to its host-galaxy [9]. In the absence of spectroscopic information on the supernova,

host-galaxy/supernova matching is done by looking at all the galaxies in a radius of ∼ 30′′

around each supernova and selecting the one for which the angular separation between the

galaxy and the supernova, normalised by the elliptical radius of the galaxy in the direction of

the supernova, is minimized [20]. This method is not impervious to mistakes when is comes

to obstructed supernovae which have a very small angular separation to the foreground galaxy

obstructing them. These supernovae could therefore be incorrectly matched to their obstructing

galaxy instead of their true host-galaxy. This would cause their redshifts to be systematically

underestimated, therefore biasing our estimation of H0. This is the second bias on H0 caused

by supernova obstruction that we evaluate in this research.

1.2.3 Supernova blocking by the Milky Way

Finally, the Milky Way also obstructs the supernovae in certain regions of the sky. Part of the

sky is blocked by the Milky Way’s disk, leading to an empty gap in our observations. The super-

novae lying behind the Milky Way’s disk can therefore not be observed, introducing a selection

bias in our SNe Ia samples. Specifically which SNe Ia are missing from our observations depends

on the orientation of the Milky Way’s disk. We therefore look at the impact of the Milky Way’s

orientation on the estimated value of H0.
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The remainder of this thesis is structured as follows: Section 2 provides an overview of the

theoretical cosmology framework on which this work is based. The method employed to esti-

mate the Hubble constant from a sample of SNe Ia is discussed in Section 3. In Section 4, we

explain how the catalogue of simulated galaxies and SNe Ia, used for this analysis, is constructed

and present the statistics of supernova blocking within this catalogue. Section 5 is dedicated

to determining and discussing the impact of the selection bias caused by the “total blocking”

of certain supernovae on the estimation of H0. In Section 6, we assess the impact of mistaking

the obstructing galaxy with the host-galaxy of obstructed supernovae on the estimation of H0.

Finally, in Section 7 we evaluate the impact of the orientation of the Milky Way’s plane on the

estimation of H0 before concluding in Section 8.
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2 Theoretical cosmology framework

This section is dedicated to briefly covering the most important concepts of cosmology which

make up the theoretical framework for the present research work. This section is mainly based

on [14], [38], [26] and [40].

2.1 The homogeneous and isotropic Universe

In general relativity, the Einstein equations relate the geometry of spacetime (described by the

Einstein tensor Gµν) to the distribution of the matter and energy it contains (described by the

energy-momentum tensor Tµν). The Einstein equations are a set of ten non-linear second-order

partial differential equations, representing the components of the metric tensor, which can be

summarized in the following tensor equation

Gµν + Λgµν = 8πGTµν . (1)

In this equation, Gµν is the Einstein tensor, Λ is the cosmological constant, gµν is the spacetime

metric, G is Newton’s gravitational constant and Tµν is the energy-momentum tensor.

The Einstein tensor is defined in terms of the Ricci tensor Rµν , which depends on the metric and

its derivatives, and the Ricci scalar R, which is a contraction of the Ricci tensor (R = gµνRµν)

such that

Gµν = Rµν −
1

2
gµνR. (2)

Therefore, the left-hand side of the Einstein equation is a function of the metric describing

spacetime and the right-hand side depends on the constituents of the Universe. These equations

state that the geometry of spacetime is a consequence of the presence and distribution of matter

and energy.

Exact solutions to the Einstein equation can only be found under the assumption of some

simplifications. The most straightforward simplifying assumption is the cosmological principle,

which states that, on sufficiently large scales, the Universe can be considered spatially homoge-

neous and isotropic. This postulate is based on the assumption that neither the laws of physics

nor the events in nature should appear differently to different observers. In this respect, the

cosmological principle can be regarded as a generalisation of the Copernican principle according

to which our location in the Universe should not, in any way, be a privileged one.

Such a spatially homogeneous and isotropic Universe can be described by the Friedmann-

Lemâıtre-Robertson-Walker (FLRW) metric ḡµν , given by the line element

ds2 = ḡµνdx
µdxν = −dt2 + a2(t)

[ dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
. (3)
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In this line element, a(t) corresponds to the dimensionless cosmic scale factor and k is the

curvature scalar. The scale factor is a mathematical quantity which describes how the proper

distance between two points changes as the Universe expands. It is defined relative to the

present-day scale factor such that a0 = a(t0) = 1 and it is related to the redshift through

a(t) = a0/(1+ z) = 1/(1+ z). The curvature scalar, which characterizes the curvature of space-

time, is positive (k > 0) for a closed Universe, negative (k < 0) for an open Universe and null

(k = 0) for a flat, Euclidean Universe.

The expansion of the Universe is measured through the time-dependent Hubble parameter which

is defined in terms of the scale factor as

H(t) ≡ ȧ(t)

a(t)
, (4)

where ȧ(t) corresponds to the time derivative of the scale factor. The Hubble parameter at

t = t0 corresponds to the Hubble constant H0.

Likewise, the cosmological principle constrains the form of the energy-momentum tensor. In

order for Tµν to reflect the homogeneity and isotropy of the Universe it must take the form of a

perfect fluid

Tµν = (ρ+ P )uµuν + Pηµν , (5)

where ρ and P are the density and the pressure of the fluid, uµ is its four-velocity with respect

to the observer and ηµν is the diagonal metric ηµν = diag(−1, 1, 1, 1). (In an isotropic Universe,

the space components of the four-velocity must be 0 such that uµ = (−1, 0, 0, 0).)

Therefore, under the assumption of the cosmological principle, the energy-momentum tensor

is diagonal and depends only on density and pressure. The total energy-momentum tensor is

a sum of the energy-momentum tensors of each of the components of the Universe: baryonic

matter, dark matter, radiation (photons and relativistic neutrinos) and dark energy.

In a homogeneous and isotropic Universe, where the metric takes the form of Eq. 3 and the

energy-momentum tensor is given by Eq. 5, the Einstein equations simplify to the Friedmann

equations

H2 =
( ȧ
a

)2
=

8πG

3
ρ− k

a2
+

Λ

3
, (6a)

H2 + Ḣ =
ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
. (6b)

The first Friedmann equation (Eq. 6a) follows from the time-time component of the Einstein

equations while the second Friedmann equation (Eq. 6b) follows from the space-space compo-

nents of the Einstein equations.
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The curvature of the Universe can be determined by comparing its energy density to the critical

density ρc of a flat Universe which is defined, in terms of the Hubble parameter, as

ρc(t) ≡
3H(t)2

8πG
. (7)

It is therefore conventional to express the present-day density ρx(t0) of the different components

of the Universe in terms of the present-day critical density ρc(t0) by defining the following density

parameters

Ωx ≡ ρx(t0)

ρc(t0)
=

8πG

3H2
0

ρx(t0), (8)

where the subscript x is either b for baryonic matter, r for radiation, DM for dark matter or Λ

for dark energy For dark energy, the cosmological constant is related to the dark energy density

through 8πGρΛ(t) = Λ such that ΩΛ = Λ/3H2
0 .

In addition, the curvature density parameter is given by

Ωk =
−k

H(t)2a(t)2
. (9)

By expressing the first Friedmann equation at time t0 in terms of the density parameters, it

follows that the densities of the different constituents of the Universe are related to each other

by

Ωb +Ωr +ΩDM +Ωk +ΩΛ = 1. (10)

The first Friedmann equation may also be written at any time as

H(z)2 =
( ȧ
a

)2
=
( ż

1 + z

)2
= H2

0

[
Ωr(1+z)4+Ωb(1+z)3+ΩDM(1+z)3+Ωk(1+z)2+ΩΛ

]
. (11)

This form of the Friedmann equation relates the evolution of the Hubble parameter to the

evolution of the density parameters and will later prove itself to be very useful to define distance

measures in an expanding universe.

2.2 Large-scale inhomogeneities

In reality, the Universe is neither homogeneous nor isotropic on all scales. As evidenced by maps

of the galaxy distribution in the local Universe such as the one in Fig. 2 resulting from the Sloan

Digital Sky Survey (SDSS), the Universe exhibits structure on large scales. This structure takes

the form of a web-like pattern where galaxies clump together in galaxy clusters and superclusters

along filamentary structures separated by vast regions in between. However, overall statistical

properties of the Universe, when observed on sufficiently large scales, nonetheless present a high

degree of homogeneity and isotropy.
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Figure 2: Slice of the 3-dimensional map of the distribution of galaxies in the local Universe.
Each point on this map represents a galaxy, which is coloured according to the age of the stars
it contains with redder galaxies containing older stars. The Earth is located at the centre of the
map and the outer circle represents a radius of two billion light years. The empty wedges could
not be mapped because dust in our own Milky Way obscures the view of the distant universe in
these directions. Credits: M. Blanton and the Sloan Digital Sky Survey

These inhomogeneities in the matter density field are therefore treated as linear order pertur-

bations around the background FLRW spacetime.

2.2.1 The FLRW metric and its perturbations

The metric describing this perturbed spacetime can then be expressed in terms of the FLRW

metric ḡµν and the (symmetric) perturbation metric δgµν as

gµν = ḡµν + δgµν . (12)

The perturbations described by δgµν are assumed to be small, such that we require that the

first derivative ∂ρδgµν and the second derivative ∂ρσδgµν of the perturbation metric are small.

The FLRW metric only depends on time whereas δgµν is both time- and space-dependent. This

decomposition into a background metric and a perturbation is such that the spatial average of

the perturbation term vanishes: the average of gµν over a slice of constant time t is equal to the

value of ḡµν at time t.

11
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Using the definition of ḡµν from Eq. 3, the components of the perturbed metric can be written

as

g00 = ḡ00 + δg00 = −1 + δg00 (13a)

g0i = a2(t)[ḡ0i + δg0i] = a2(t)δg0i (13b)

gij = a2(t)[ḡij + δgij ], (13c)

where the Latin indices i and j run over the spatial components only and δg00, δg0i and δgij are

the metric perturbations which depend both on time and space.

Assuming a flat (k = 0) FLRW metric, we can choose a coordinate system in which the spatial

components of the background metric are given by

ḡij = ηij , (14)

where ηij is the three-dimensional metric tensor describing a flat 3-dimensional Euclidean space

given by the diagonal elements ηij = diag(1, 1, 1).

Given the spatial symmetries of our observable Universe, the only type of transformation under

which this requirement is fulfilled are rotations. For this reason, we classify the components of

δgµν into scalar, vector and tensor components based on their behaviour under spatial rotations.

• The time-time component δg00 has no spatial index such that it remains invariant under

spatial rotations. It therefore transforms like a scalar and can be written as δg00 =

−2A(t, x⃗), where A(t, x⃗) is a scalar field. (The factor 2 and the sign are simply a matter

of convention.)

• The time-space components δgi0 transform as the components of a 3-vector under spatial

rotations such that we define δgi0 = Bi, where B⃗(t, x⃗) is vector field. Using the Helmholtz

decomposition, B⃗(t, x⃗) can further be decomposed into a curl-free and a divergence-free

part as

B⃗ = B⃗(S) + B⃗(V ), (15)

where ∇× B⃗(S) = 0 and ∇ · B⃗(V ) = 0. The gradient field B⃗(S) can then be expressed as

the gradient of a scalar field β(t, x⃗) such that

B⃗(S) = −∇β(t, x⃗). (16)

The time-space component of the perturbation metric can therefore be written as

δgi0 = Bi = −∂iβ(t, x⃗)−B
(V )
i (t, x⃗). (17)

• The space-space components δgij transform as the components of a 3-tensor under rota-

tions such that we define δgij = 2Cij , where C(t, x⃗) is a tensor field. (The factor 2 is,

12
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again, a matter of convention.) The tensor field C(t, x⃗) can firstly be decomposed into its

trace-part and its traceless-part as

Cij = ϕḡij + Eij , (18)

where ϕ(t, x⃗) is a scalar field and Eij is a symmetric traceless tensor field. The traceless

part of Cij can further be decomposed as

Eij = E
(S)
ij + E

(V )
ij + E

(T )
ij (19)

A symmetric tensor field can be generated by taking two spatial derivatives of a scalar

field or by taking the derivative of a vector field with zero divergence such that we can

rewrite

E
(S)
ij = (∂i∂j −

1

3
δij∇2)γ = ∂⟨i∂j⟩γ (20a)

E
(V )
ij = ∂jC

(V )
i + ∂iC

(V )
j = C

(V )
(i|j), (20b)

where γ(t, x⃗) is a scalar field and C(V )(t, x⃗) is a vector field with ∇ · C(V ) = 0. The last

term E
(T )
ij cannot be rewritten through derivatives acting on scalar or vector fields.

In total, the space-space component of the perturbation metric can therefore be written

as

δgij = 2Cij = 2
[
ϕḡij + ∂⟨i∂j⟩γ + C

(V )
(i|j) + E

(T )
ij

]
. (21)

The perturbation metric δgµν can therefore be decomposed into a scalar part consisting of

A(t, x⃗), β(t, x⃗), ϕ(t, x⃗) and γ(t, x⃗), a vector part consisting B
(V )
i and C

(V )
i and a tensor part

consisting of E
(T )
ij .

The Einstein tensor Gµν is defined in terms of the metric gµν and its derivatives. There-

fore, in an inhomogeneous and anisotropic Universe, perturbations in the metric translate into

perturbations in the Einstein tensor which can be decomposed as

Gµν = Ḡµν + δGµν , (22)

where Ḡµν corresponds to the Einstein tensor in a homogeneous and isotropic Universe defined

in terms of ḡµν and its derivatives, while δGµν represents the perturbation part, defined in terms

of δgµν and its derivatives. It is therefore possible to also decompose δGµν into scalar, vector

and tensor components, such that the scalar perturbations in δgµν give rise to the scalar part

of δGµν , the vector perturbations in δgµν give rise to the vector part of δGµν and the tensor

perturbations in δgµν give rise to the tensor part of δGµν .
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2.2.2 The energy-momentum tensor and its perturbations

Since the matter content of the Universe is related to the geometry of spacetime through the Ein-

stein equations, perturbations in the metric also invoke perturbations in the energy-momentum

tensor Tµν . In an inhomogeneous and anisotropic Universe, the energy momentum takes the

form

Tµ
ν = (ρ+ P )uµuν + Pδµν +Πµ

ν . (23)

In this expression, ρ and P are the density and the pressure of the fluid, uµ is its four-velocity

with respect to the observer, Πµ
ν is the anisotropic stress tensor and δµν is the Kronecker delta

tensor. The anisotropic stress tensor describes the stress and pressure gradients that arise from

the anisotropy of the Universe. Unlike the isotropic pressure P , which is equal in all spatial

directions, Πµ
ν also has non-zero off-diagonal components that are direction-dependent.

These fluid quantities can be decomposed into the background quantities and the perturba-

tions as

ρ = ρ̄+ δρ (24a)

P = P̄ + δP (24b)

uµ = ūµ + δuµ, (24c)

where ρ̄, P̄ and ūµ correspond to the quantities in the background Universe and δρ, δP and

δuµ correspond to the perturbations. For convenience, we rewrite the velocity perturbation as

uµ = (ū0 + δu0, δu1, δu2, δu3) = (ū0 + δu0, vi).

The energy momentum tensor can then also be decomposed into the background energy-momentum

tensor T̄µ
ν and the energy-momentum perturbation tensor δTµ

ν in the same way

Tµ
ν = T̄µ

ν + Tµ
ν , (25)

where the energy-momentum perturbation is built out of the scalar perturbations δρ(t, x⃗) and

δP (t, x⃗), the vector field v⃗(t, x⃗) and the traceless 3-tensor Πij .

Applying the same procedure used previously to decompose the perturbations in the metric,

the velocity vector field v⃗ can be decomposed as

v⃗ = v⃗(S) + v⃗(V ), (26)

where ∇× v⃗(S) = 0 and ∇ · v⃗(V ) = 0. We can therefore rewrite v⃗(S) = −∇υ(t, x⃗).

In the same way, we also split the traceless anistropic stress tensor Πij as

Πij = Π
(S)
ij +Π

(V )
ij +Π

(T )
ij , (27)
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which allows us to rewrite Π
(S)
ij in terms of a scalar field π(t, x⃗) and Π

(V )
ij in terms of a vector

field S⃗(t, x⃗) as

Π
(S)
ij = (∂i∂j −

1

3
δij∇2)π = ∂⟨i∂j⟩π (28a)

Π
(V )
ij = ∂jS

(V )
i + ∂iS

(V )
j = S

(V )
(i|j). (28b)

The energy-momentum perturbation tensor δTµ
ν can therefore be decomposed into a scalar part

consisting of δρ(t, x⃗), δP (t, x⃗), υ(t, x⃗) and π(t, x⃗), a vector part consisting of v
(V )
i and S

(V )
i and

a tensor part consisting of Π
(T )
ij .

The large-scale structure that we observe in the Universe is caused by the scalar perturbations

in the metric which couple to the density and pressure perturbations in the energy-momentum

tensor. Vector perturbations introduce an additional layer of complexity, as they are associated

with rotational motions and flows in the matter distribution such as the peculiar motions of

galaxies. However, vector perturbations decay in an expanding Universe and can therefore of-

ten be ignored. Tensor perturbations are associated with the generation of gravitational waves

and their propagation through spacetime. As stated by the decomposition theorem, these three

different types of perturbations evolve independently at linear order. Vector and tensor pertur-

bations can therefore be neglected when trying to understand the origin and evolution of the

Universe’s large-scale structure.

In the context of the late-time estimation of the Hubble constant, these large-scale inhomo-

geneities mainly come into play in the form of gravitational lensing and peculiar velocities. The

way in which these two effects affect the inference of H0 is discussed in more detail in section

3.1.1 and section 3.1.2.

2.3 The ΛCDM model

The Λ-Cold Dark Matter (ΛCDM) model is the simplest cosmological model parametrisation

which accounts for most of the cosmological data available to date and is therefore often re-

ferred to as the “standard model” of contemporary cosmology. The ΛCDM model rests on the

foundational assumptions that the Universe is homogeneous and isotropic on large scales as well

as flat and in accelerated expansion. The geometry of the Universe can therefore be described

by the FLRW metric (Eq. 3) with k = 0. While these assumptions are not specific to the

ΛCDM model, the ΛCDM model is additionally characterized by the theory of inflation and the

abundance of dark matter and dark energy.

2.3.1 Inflation

The first pillar of the ΛCDM model is the theory of inflation which explains how primordial

quantum fluctuations became the seeds for the large-scale structure we observe today. Inflation

suggests that during a brief epoch in the very early Universe, the scale factor grew exponentially.
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During this time, the Universe was expanded by a factor of at least 1026 causing the primordial

density fluctuations to blow up to large scales. This inflationary epoch is believed to have taken

place ∼ 10−32s after the Big Bang and would have lasted 10−35s. The simplest mechanism to

drive such an exponential expansion is via the potential energy of a scalar field (the inflation).

However, as of today, there is no known scalar field that can drive inflation. In addition,

the theory of inflation predicts that the statistical distribution from which these primordial

quantum perturbations are drawn is Gaussian and almost scale-invariant. The fundamental

physics on which inflation is based might only manifest itself on energy scales which exceed our

experimental capability, making it very difficult to verify this theory. However, its predictions on

the distribution of primordial quantum fluctuations have been verified through the observations

of the Cosmic Microwave Background (CMB) carried out in the context of the Planck mission

[29], which is considered an important confirmation of the theory of inflation.

2.3.2 Composition of the Universe

Additionally, the ΛCDM model relies on the assumption that dark energy and (cold) dark mat-

ter are the dominant components of the Universe. The most popular theory concerning dark

matter nowadays describes it as consisting of relics of elementary particles from the early Uni-

verse. Although the exact nature of dark matter particles remains unknown, we hypothesise

that dark matter particles must be “cold”. This means that their velocity must be below the

one of photons at the epoch of radiation-matter equality. This requirement ensures that dark

matter particles are able to clump together efficiently in the early stages of the Universe to

later give rise to the structures observed today. In addition to being cold, dark matter is also

assumed to be non-dissipative (it cannot cool down by radiating photons) and collisionless (dark

matter particles interact only through gravitational interactions and possibly the weak force)

dark matter accounts for about 26.5 % of the total mass-energy density of the Universe [36].

Dark energy, which is represented by the cosmological constant Λ in the Einstein field equa-

tions (Eq. 1), is currently the preferred explanation of the observed accelerated expansion of

the Universe against the attractive effects of gravity. In comparison to the other forms of energy

present in the Universe, this vacuum energy density has the particularity of remaining constant

through time and space despite the expansion of the Universe, thus acting as a cosmological

constant. Dark energy is believed to be the dominant component of our present-day observable

Universe: according to the latest Planck measurements of the CMB anisotropies, dark energy

accounts for 68% of the total energy [30].

To a lesser extent, the Universe also contains baryonic matter (which accounts for about 5%

of the content of the Universe [36]) and an almost negligible fraction of radiation. The density

of baryonic matter and that of dark matter are often considered together in the total matter

density parameter Ωm = Ωb + ΩCDM. Moreover, the density of radiation is often assumed to

be negligible (Ωr ≃ 0) and the Universe is assumed to be flat (Ωk = 0) such that we are left
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only with two density parameters Ωm and ΩΛ. Since, the sum of the density parameters of all

components must be unity (Eq. 10) we rewrite ΩΛ = 1 − Ωm. Under these assumptions and

simplifications, the present-day content of the Universe can therefore be parameterized in terms

of the total matter density Ωm and the Hubble constant H0 only. In addition to the Hubble

constant and the different density parameters, the ΛCDM model is constrained by other cosmo-

logical parameters related to the history of the early Universe including the density perturbation

spectral index, the tensor-to-scalar perturbation ratio and the ionisation optical depth. How-

ever, as these other parameters are not relevant to this research they will not be discussed in

more detail.

2.4 Distance measures in cosmology

2.4.1 Theoretically-defined distances

In an expanding Universe, the distance between two events is not uniquely defined: different

definitions of distance are appropriate for different applications. These different definitions are

all asymptotic for small redshifts (z << 1) but they diverge noticeably beyond z ∼ 1 (see Fig.

3). The unifying factor of all definitions is that they all quantify the separation between events

of photon trajectories which end at the observer (radial null geodesics of spacetime).

Figure 3: Three alternative distance measures in an expanding Universe as a function of redshift:
the comoving distance χ(z), the angular diameter distance dA(z) and the luminosity distance
dL(z). Source:[14]

The comoving distance The starting point for all cosmological distance measures is the

comoving distance χ. The comoving distance between two comoving observers (both moving

with the Hubble flow) remains constant through time, despite the expansion of the Universe, as
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the comoving coordinates it is expressed in take this expansion into account.

When written in the form of Eq. 3, the FLRW metric places all the time-dependence into

the scale factor a(t) such that the coordinates r, θ, ϕ are time-independent. Therefore, any dis-

tance expressed only in terms of these coordinates is a comoving distance. Starting from the

FLRW metric, for a photon moving on a radial, null geodesic we have that dθ = dϕ = 0 and

ds2 = 0, such that the line element may be written as

−dt2 + a2(t)
dr2

1− kr2
= 0. (29)

In a small time interval dt, light emitted by a source therefore travels a comoving distance given

by

dχ =
dt

a(t)
=

dr√
1− kr2

. (30)

The comoving distance between a light source at coordinate distance r and an observer at r = 0

is then given by

χ =

χ∫
0

dχ′ =

0∫
t

dt′

a(t′)
=

0∫
r

dr′√
1− kr2

. (31)

This integral has the three following solutions depending on the curvature of the Universe

χ(r) =


1√
|k|

sinh−1
√
|k|r k < 0

r k = 0

1√
k
sin−1

√
kr k > 0.

(32)

Therefore, in a flat Universe, the comoving distance χ coincides with the coordinate distance r,

which is not the case in a non-flat Universe.

Alternatively, the comoving distance can also be written as

χ =

0∫
t

dt′

a(t′)
=

1∫
a(t)

da′

a′2H(a′)
=

z∫
0

dz′

H(z′)
, (33)

where we first change the variable of integration from t′ to a′, which introduces the additional

factor ȧ = aH in the denominator, and then from a′ to z′ in the second step.

Using the expression for H(z) introduced previously from the Friedmann equation (Eq. 11),

the comoving distance may then be rewritten as

χ(z) =
1

H0

z∫
0

dz′√
Ωr(1 + z′)4 +Ωm(1 + z′)3 +Ωk(1 + z)2 +ΩΛ

. (34)
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In this form, it becomes apparent that the comoving distance is a model-dependent quantity

which relies on the density parameters assumed for the different components of the Universe.

The comoving distance can be considered as the “fundamental” distance measure in cosmology

since, as we will see now, all other definitions of distance can be written in terms of the comoving

distance.

The proper distance The proper distance between two events α and β is the distance that

separates them in a reference frame where they take place simultaneously (such that tα = tβ).

The proper distance dP (t) between two events separated by a comoving distance χ is given by

dP (t) = a(t) · χ. (35)

While the comoving distance remains constant, the proper distance changes over time due to

the expansion of the universe. The comoving distance and proper distance between two events

is therefore only equal at the present time where a(t0) = 1.

An important caveat of these two definitions of distance is that they are both derived theo-

retically from the ΛCDM model and its fitted parameters but neither of them can be measured

experimentally. As mentioned previously, the late-time estimation of H0 relies greatly on our

ability to measure the distance of supernovae. Therefore, we will now discuss two additional

definitions of distance which are defined both theoretically from the ΛCDM model and experi-

mentally through observable quantities.

2.4.2 Observable distances

The angular diameter distance A common way of determining the distance to faraway

sources is by means of the angular diameter distance dA. The angular diameter distance to a

source is found by comparing the known physical size l of a source and the measured angle it

subtends on the sky δθ. (Such objects of known physical sizes are called “standard rulers”.)

For distant sources we can make use of the small angle approximation such that, from an

observational point of view, the angular diameter distance is defined as

dA =
l

δθ
. (36)

In an expanding Universe, the angle subtended on the sky by a source of physical size l is

generalized to account for the effect of cosmic expansion. Suppose that the source emits light

at time z = ze which is received by an observer located at a comoving distance χ(ze) from the

source. From the point of view of the observer, the angle subtended by the source on the sky is

then given by

δθ =
l

a(ze)χ(ze)
. (37)
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Therefore, relating Eq. 36 and Eq. 37 we find that, the angular diameter distance is defined

alternatively in terms of the comoving distance as

dA = a(ze) · χ(ze). (38)

Substituting the definition for the comoving distance as a function of redshift introduced pre-

viously (Eq. 33) and using a(z) = 1/(1 + z) we find that, from a theoretical point of view, the

angular diameter distance is given by

dA(z) =
1

(1 + z)H0

z∫
0

dz′√
Ωr(1 + z)4 +Ωm(1 + z′)3 +Ωk(1 + z)2 +ΩΛ

. (39)

As shown in Fig. 3, the angular diameter distance dA(z) is not a monotonically increasing

function, as one could expect, but has a turnover point at zT ∼ 1 instead. Referring back to

Eq. 36, this means that an object of physical size l spans an increasingly small angle on the

sky until z = zT where δθ is minimal but beyond zT it will span an increasingly larger angle as

z increases. This counter-intuitive effect is a consequence of the expansion of the Universe in

combination with the finite speed of light.

Two “competing” effects determine the size of the angle subtended by a source on the sky.

On one hand, we intuitively expect distant objects to span increasingly small angles on the sky.

On the other hand, because the Universe is expanding while light travels at a finite speed, it

is important to distinguish the angle δθE spanned by the source when the light was emitted at

time tE from the angle δθR that the source spans upon reception of the light by the observer

at time tR. Therefore, what we observe at time tR is in fact δθE . The further away the object

lies, the bigger the difference between tE and tR and the bigger δθE we observe. The exact

turnover between these two opposite effects depends on the expansion history of the Universe

as well as on the way in which light propagates in the Universe which depends on the density

parameters of its different components. As seen previously, these quantities are related to each

other through the Friedmann equations (Eq. 6a and Eq. 6b).

The luminosity distance Another way of measuring cosmological distances is through the

luminosity distance dL. The luminosity distance to a source is determined by comparing the

known (bolometric) luminosity of the source Ls to the observed (bolometric) flux Fobs, which

are related to each other through

Fobs =
Ls

4πd2L
. (40)

(Objects, like Type Ia supernovae, with known luminosities are referred to as “standard can-

dles”.)
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In an expanding Universe, the expression for Fobs can be generalised by assuming that the

source is located at the centre of a spherical shell of comoving radius χ(a). The flux observed

by an observer on this spherical shell is then given by

Fobs =
L(χ)

4πχ2(a)
, (41)

where L(χ) now corresponds to the total luminosity passing through the comoving spherical

shell. If we assume, for simplicity, that all the photons emitted by the source have the same

energy, then L(χ) corresponds to the energy of one photon multiplied by the number of photons

passing through the comoving shell per unit time.

Due to the expansion of the Universe, the number of photons passing through the comoving

shell per unit time is smaller at the time of observation t0 than at the time of emission te, by a

factor a(ze). Additionally, the energy of each individual photon also decreases by a factor a(ze)

between the times of emission and observation due to the Universe’s expansion. Therefore, by

combining these two effects, we find that the luminosity observed at a distance χ(a) from the

source is a factor a2(ze) smaller than the luminosity at the source, such that the flux observed

in an expanding Universe can be rewritten as

Fobs =
Lsa(ze)

2

4πχ2(a)
, (42)

where Ls corresponds to the intrinsic luminosity of the source such that L(χ) = Lsa(ze)
2.

Therefore, relating Eq. 40 and Eq. 42, we find that the luminosity distance is defined the-

oretically in terms of the comoving distance as

dL =
χ(a)

a(ze)
. (43)

By substituting the definition of the comoving distance as a function of redshift (Eq. 33) and

using a = 1/(1+z) we therefore find that, from a theoretical point of view, the angular luminosity

distance is defined as

dL(z) =
1 + z

H0

z∫
0

dz′√
Ωr(1 + z)4 +Ωm(1 + z′)3 +Ωk(1 + z)2 +ΩΛ

. (44)

Both the angular diameter distance and the luminosity distance can be determined independently

from observable quantities or theoretically under the assumption of the ΛCDM model. Since at

a given redshift, the observational and theoretical distance estimations must coincide, these two

different definitions can be used to fit the parameters of the ΛCDM model. The late-time fit of

the Hubble constant, which is based on comparing measured distances to SNe Ia sources and to

their theoretically expected counterparts, is based on this principle.
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2.4.3 The cosmological distance ladder

As discussed in the previous section, the luminosity distance to distant objects of known in-

trinsic luminosity can be determined from the measurement of their observed flux. In practice,

astronomers do not measure the luminosity and the flux of objects directly but use the appar-

ent magnitude m and the absolute magnitude M instead. The apparent magnitude, which is

expressed in magnitudes (mag), is a logarithmic measure of the flux received on Earth from a

source. The absolute magnitude, also commonly expressed in magnitudes (mag), is a measure of

the intrinsic luminosity of a source and is defined as the apparent magnitude the source would

have if it were located at a standard distance of 10 pc. The luminosity distance, expressed in

pc, is given in terms of m and M of a source by

dL = 10(m−M)/5+1. (45)

No single method can be used to accurately determine the absolute magnitude of different stan-

dard candles over all relevant cosmological scales. Different observation techniques have therefore

been developed to be adapted to the particularities of each cosmological scale and each type of

standard candle. The distances to increasingly distant objects are consequently measured us-

ing a succession of methods which altogether correspond to the “cosmological distance ladder”.

These different methods are then calibrated to one another to obtain a smooth and consistent

estimation of distances across all cosmological scales.

Supernovae distance measurements rely on a three-rung distance ladder. In the first rung,

the distances to standardized Cepheid variable stars are measured. In the second rung, the dis-

tance measurements to Cepheids and SNe Ia are calibrated to one another using nearby galaxies

containing both types of objects. In the third rung, the distances to supernovae in the Hubble

flow are measured using the previously calibrated method.

Variable stars Variable stars are stars whose brightness fluctuates with a well-defined, stable

period and amplitude. Amongst the different types of variable stars, Cepheids are favoured as

primary distance indicators to calibrate the distance measurements of supernovae. Cepheids

pulsate with a period that can range from a few days to a few months. This fluctuation is due

to the periodic contraction of the surface layers of the star which causes variations in both its

size and its temperature.

The brightness fluctuation period of Cepheids is tightly correlated to their absolute magnitude,

as described by the Leavitt law [24], such that

M = −α− β logP, (46)

where α and β are two constants which can be calibrated using other nearby Cepheids whose

distances are found using alternative methods and P is the period in days.
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Therefore, the intrinsic luminosity of a Cepheid star can be determined by observing its pulsa-

tion period which in combination with the observed apparent magnitude yields the luminosity

distance of the star through Eq. 45. The fact that they are very luminous objects and have

a period-luminosity which is well understood makes Cepheids easy to identify and leads to

extremely precise measurements of their distances (∼ 3% in distance per source) [31].

Type Ia supernovae Type Ia supernovae are a particular type of supernovae which occurs

when a white dwarf found in a binary star system explodes. White dwarfs are stellar core rem-

nants of low to intermediate-mass stars. They are primarily composed by a degenerate electron

gas which is responsible for their internal pressure. When a white dwarf within a binary system

starts to accrete mass from its companion star, it gradually approaches the critical Chandrasekar

mass. The accreted mass causes the density and pressure within the stellar remnant to increase

such that its core heats up and eventually reaches the ignition temperature for carbon fusion.

The initiation of this nuclear fusion reaction causes a large portion of the matter in the white

dwarf to undergo a runaway thermonuclear reaction which releases enough energy for the stellar

remnant to unbind in a supernova explosion.

The nuclear reactions leading up to these supernovae explosions are ignited at a fixed criti-

cal mass closely before the white dwarf reaches the Chandrasekhar limit. For this reason, SNe

Ia explosions are expected to produce, at their peak, a fairly constant luminosity, which has been

verified empirically [7]. There is only a small variation in their peak luminosity which has been

found to be correlated with the decay rate of the luminosity such that it can be corrected for

[28]. The intrinsic luminosity, and thus the absolute magnitude, of SNe Ia can therefore be de-

termined with high accuracy allowing them to be used as standard candles to measure distances.

Again, combining the absolute magnitude with the apparent magnitude yields the luminos-

ity distance through Eq. 45. The magnitudes of SNe Ia can be standardized with a precision of

0.1 mag leading to distance estimations of very high precision (∼ 5% in distance per source) [8].

At its peak, the luminosity of a supernova can be as high as that of an entire galaxy allowing

SNe Ia to be observed over large survey volumes which reduces the impact of local flows on

our distance measurements. In addition, SNe Ia tend to occur in all types of galaxies, which

is not the case for other types of supernovae, and with equal likelihood throughout the entire

star forming region of the galaxy. Since their progenitors white dwarfs correspond to the final

evolutionary state of a star’s main sequence, SNe Ia exist in a region of the galaxy remote from

where the star was originally born.
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3 Estimation of the Hubble constant

Most of the cosmological parameters on which we rely to describe the geometry of the Universe

are not predicted by any fundamental theory. Fitting values for these parameters requires two

different observables which can be measured independently and are related to each other through

the (assumed) cosmological model describing the Universe.

3.1 The observed Hubble diagram

As mentioned previously, in the case of the late-time estimation of the Hubble constant, we

make use of independent measurements of the distance and the redshift z of Type Ia supernova

samples. Under the assumption of the FLRW metric, these two quantities are related through

the H0-dependent redshift-distance relationship D(z|H0) often displayed in the form of a Hub-

ble diagram. Estimating the Hubble constant therefore comes down to fitting D(z|H0) to the

observed Hubble diagram.

However, the FLRW metric strictly describes a homogeneous and isotropic Universe. In our

inhomogeneous Universe, the effects of large-scale structure on the propagation of light addi-

tionally have to be taken into account when analysing observed samples. This approach therefore

relies on the assumption that the FLRW model adequately describes the expansion history and

dynamics of the Universe and that on average, light beams propagate as if the Universe is purely

homogeneous, despite its inhomogeneities. This postulate is not self-evident and requires a more

thorough understanding of the effect of lensing and peculiar velocities on the observed Hubble

diagram.

3.1.1 The impact of peculiar motions on the Hubble diagram

When using the observed redshift-distance relationship from SNe Ia to estimate the Hubble

constant, the cosmological redshift z̄ of the sources, which is exclusively a consequence of the

Universe’s expansion, should be used. In a homogeneous and isotropic Universe, the large-scale

motions of galaxies (and therefore of the supernovae) purely follow the Hubble flow of the Uni-

verse’s expansion, such that they lay still on a comoving grid. The observed redshift zobs is then

equal the cosmological redshift z̄ and the coming distance to a source is given by χ(z̄) = χ(zobs)

where χ(z) is defined in Eq. 33.

In the low-redshift limit (z << 1), the comoving distance simplifies to

χ(z̄) =
z̄

H0
. (47)
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The redshift of the source is defined as

z̄ ≡ λobs

λem
= 1 =

√
1 + v̄/c

1− v̄/c
− 1 ≈ v̄

c
, (48)

where λobs and λem are respectively the wavelength of the light observed and emitted by the

source and v̄ is the receding velocity of the galaxy caused purely by the expansion of the Universe

(called the Hubble flow).

Substituting this approximation for the redshift (and setting c = 1) we therefore recover the

well-known Hubble Law which is valid at low redshift

v̄ = χ ·H0. (49)

Therefore, in a homogeneous and isotropic expanding Universe, every observer sees all galaxies

recede radially at a speed proportional to their redshift.

In reality, as described in section 2.2, the Universe is inhomogeneous and anisotropic on large

scales and the scalar perturbations in the metric which couple to perturbations in the density

field give rise to the large-scale structure that we observe. These density field perturbations

are also associated with perturbations in the Universe’s gravitational field which deflect galaxies

from the pattern of motion dictated by the Hubble flow. These deviations from the pure Hubble

expansion resulting from perturbations in the density field are called peculiar motions. Different

forms of peculiar motions arise on different scales. On large scales, groups of galaxies (and the

supernovae they host) collectively fall into larger galaxy clusters or superclusters. These groups

of galaxies which conjointly move in coherent flows, tend to have correlated peculiar velocities.

On smaller scales, within galaxies clusters, individual galaxies exhibit virialized motions with

respect to the cluster’s centre of mass. These virialized motions cause the galaxies in the same

cluster to have random, uncorrelated peculiar velocities. These peculiar velocities are typically

of the order of several hundreds of km/s.

In the same way that the cosmological redshift z̄ is related to the receding velocity of the

Hubble flow v̄ (Eq. 48), the radial component of the peculiar velocity vpec is associated with a

peculiar redshift zpec. Therefore, a direct consequence of peculiar motions is that the redshift

observed in an inhomogeneous Universe is not equal to the cosmological redshift. Instead, as

given in [12], zobs, z̄ and zpec are related through

(1 + zobs) = (1 + z̄)(1 + zpec). (50)

The contribution of peculiar velocity is particularly important at low z: it can contribute to

10% of the total observed recession velocity at z ∼ 0.01 [27]. Moreover, the effect of correlated

peculiar velocities in coherent flows is also more significant at low redshifts where the physical

25



Estimation of the Hubble constant

separation between sources, as a function of the angular separation on the sky, is smaller.

Therefore, particularly at low redshifts, the contribution of the peculiar redshift to the total

observed redshift contaminates the Hubble diagram: small-scale virial motions introduce a ran-

dom scatter in it and, more importantly, large-scale coherent flows lead to correlated systematic

errors in certain regions of the Hubble diagram. Neglecting the correlations between supernovae

peculiar motions also underestimates the uncertainty on the estimated cosmological parameters.

As shown by [11], a low redshift bias of 5 × 10−4 can propagate to an error of 1 km/s/Mpc in

H0. The biases introduced by peculiar motions in the low redshift part of the Hubble diagram

can therefore not be overlooked and have to be corrected for.

3.1.2 The impact of gravitational lensing on the Hubble diagram

Gravitational lensing is the effect through which the gravitational potential resulting from the

inhomogeneous density field interferes with the path on which light propagates. When a bundle

of light rays emitted by a source propagates through the inhomogeneous Universe, each light

ray is deflected in a slightly different way, causing the source to appear deformed and magnified.

This deformation can be described by the Jacobian of the transformation from the position of

the source plane β to the position of the observed source θ. The elements of this Jacobian, which

is called the magnification matrix, are given by

Mij =
∂θi
∂βj

. (51)

Instead of the magnification matrix, we often consider its inverse called the distortion matrix

which relates the observed shape of the source with its real shape. The distortion matrix can

be expressed in terms of the second derivative of the lensing gravitational potential ϕ(θ) related

to the large-scale distribution of matter, as follows

Dij =
∂βi
∂θj

= Iij −
∂2ϕ

∂θi∂θj
, (52)

where Iij are the components of the 2× 2 identity matrix. This 2× 2 symmetric matrix can be

decomposed into a symmetric part with non-zero trace and a traceless anti-symmetric part

D = I −

(
κ 0

0 κ

)
−

(
γ1 γ2

γ2 −γ1

)
, (53)

such that the distortion of the shape of an object caused by lensing can be described by 3 pa-

rameters, κ, γ1 and γ2. For the present analysis, we are mostly interested in the convergence κ

which describes whether the source is magnified (κ > 0) or demagnified (κ < 0). The parameters

γ1 and γ2 are related to the shear distortion of the source and describe respectively how much

it is stretched or squashed in the horizontal or the vertical direction.
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As a consequence of gravitational lensing, the apparent solid angle substended by a source

is not only a function of its redshift, but also depends on the matter lying on the its line-of-

sight causing it to be demagnified or magnified. Since gravitational lensing preserves the surface

brightness of the source, the received flux density of magnified sources (lying on over-dense

lines-of-sight) is higher than the true source flux while that of demagnified sources (lying on

underdense lines of sight) is lower than the true source flux. Gravitational lensing therefore

compromises our distance measurements by making magnified sources appear closer than they

really are and demagnified sources further away.

For this reason, the apparent distance to sources lying on a constant-z plane is effectively

a varying quantity in an inhomogeneous Universe, which translates into a scatter in the ob-

served Hubble diagram. Moreover, the scatter introduced by lensing in distance measurement

is redshift-dependent. At low redshifts, where the line-of-sight to the observed source is shorter

and there is less intervening matter, the dispersion in distances is mainly dominated by pecu-

liar velocities. The effect of lensing becomes increasingly significant as we push observations to

higher redshifts such that the scatter introduced by gravitational lensing in the observed Hubble

diagram is redshift-dependent.

3.1.3 Reconstructing an unbiased Hubble diagram

In order to achieve an unbiased estimation of H0, observed samples of SNe Ia first need to be

resampled in a way which ensures that the Hubble diagram constructed from them is free of any

of the biases introduced by peculiar motions and gravitational lensing.

As discussed previously, peculiar motions primarily affect the low-redshift end of the Hubble

diagram. Therefore, the simplest way to eliminate the bias caused by peculiar motions, without

having to individually correct each redshift measurement, is to apply a low-redshift cut-off and

discard all observed supernovae with redshifts below that value.

For an observed flux, the general probability distribution function (PDF) associated with lensing

has a skewed, non-Gaussian shape. It is characterised by a negative mode (the received flux

of most sources is slightly below the real source flux) with a long positive tail of a few sources

whose received flux is significantly higher than their true source flux. However, due to the con-

servation of photon number, the average of this distribution coincides with that received in a

FLRW homogeneous Universe [21]. This means that the average received flux of a sufficiently

large sample of sources observed at constant redshift converges to the true, unlensed source flux.

This property, in combination with the Central Limit Theorem, can be used to mitigate the

scatter introduced by lensing in the Hubble diagram by “gaussianizing” the lensing PDF [2].

Suppose that {x1, x2, ..., xn} is a sequence of N independent and identically distributed random

samples which represent observed supernovae distances. Even if the underlying distribution of
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these observations is not Gaussian, because they are affected by lensing, the Central Limit The-

orem established that the probability distribution of the sample mean x̄N of these observations

converges to a Normal distribution for large N. By virtue of the Central Limit Theorem, dividing

large sets of observed supernovae in multiple redshift bins and subsequently computing the mean

redshift and mean distance of each bin, therefore provides a way of obtaining “gaussianized”

pairs of observed SNe Ia redshift and distance measurements which can be used to construct an

unbiased Hubble diagram.

In addition to binning the supernova samples, it is important to use the appropriate distance

indicator to construct the observed Hubble diagram [15]. Since lensing preserves the mean flux

density of sources at constant redshift, only distance indicators which are linear functions of

the flux density will also on average have the same value as in a homogeneous Universe. The

luminosity distance dL is related to the flux density F by F ∼ d−2
L through the cosmological

inverse square law. Therefore, D = d−2
L (with dL as defined in Eq. 44) should be used as a

distance indicator in the binned Hubble diagram to achieve an unbiased estimation of H0 [2].

Specifically which low-redshift cut-off and binning parameters are used to construct the SNe

Ia samples to estimate H0 differ for each of the three biases caused by supernova blocking that

we seek to study in this work. Therefore, these specifics are presented more in detail at the

beginning of each of their respective sections (Section 5.1, Section 6.1 and Section 7.1.

3.2 Markov Chain Monte Carlo (MCMC) technique for param-

eter inference

To find the best fit parameters for the observed relationship between D = d−2
L and z we use a

Markov chain Monte Carlo (MCMC) approach, which is a parameter inference method based

on Bayesian statistics.

3.2.1 Bayes’ Theorem

Through cosmological observations, we only have access to one realisation of the Universe. We

can, therefore, not rely on a frequentist interpretation of statistics in which the concept of prob-

ability is intrinsically related to the frequency of events in a number of independent realisations

of a random process. Alternatively, in cosmology, we have to make use of a Bayesian approach to

statistics which is useful when we only have access to one realisation of a random process which

cannot be reproduced. In Bayesian statistics, the concept of probability is instead interpreted

as a “degree of belief” related to our state of knowledge concerning an event.

Bayesian statistical methods rely upon Bayes’ theorem. For a given data set y and a theo-

retical model M(x|θ), parameterized by a set of parameters θ, describing the underlying process

which generates the observed data, Bayes’ theorem provides a way to obtain the probability

28



Estimation of the Hubble constant

distribution of the parameters of the model. According to Bayes’ theorem

P (θ|y,M) =
P (y|θ,M) P (θ|M)

P (y|M)
, (54)

where:

• P (θ|M), the prior probability of the model, describes the probability of the different pa-

rameterizations of the model before the data is taken into account. In cosmology, if we

assume that the Universe can be described by the ΛCDM model parameterized by some

values of θ = [Ωm,0, H0], the prior probability can be understood as the inherent likeliness

of each parameter set θ. Determining the prior probability is not always straightforward.

We often choose a flat prior in which we assume that before including any data, the pa-

rameters are drawn from a Uniform distribution in their respective intervals of parameter

space such that all possible models have an equal prior probability.

• P (y|M) is called the (Bayesian) evidence of the model. The evidence depends only on the

data and the assumed model but not on the specific set of parameters considered. This

term does not enter into determining the probability of the different possible parameter

sets. When conducting a parameter estimation in the parameter space of a single model,

the Bayesian evidence can be interpreted as a normalisation constant and is therefore often

disregarded. Without loss of generality, we can then set P (y|M) = 1.

• P (y|θ,M) = L(y|θ) corresponds to the likelihood function. This probability quantifies the

compatibility of the observed data with each set of parameters. The prior probability is

upgraded through the likelihood when the observed data is taken into account.

• Finally, P (θ|y,M) corresponds to the posterior probability of the model. The posterior

probability gives the probability that a specific set of parameters accurately describes the

observations for a given model. While the likelihood function is a function of the data, the

posterior probability is a function of the parameters of the model.

Setting P (y|M) = 1, Bayes’ theorem therefore simplifies to

P (θ|y,M) = L(y|θ) · P (θ|M). (55)

Finding the parameters θ = [H0,Ω,0] for which the assumed cosmological model has the high-

est probability of describing our observations therefore relies upon Bayes’ theorem. The most

probable set of parameters are those for which P (θ|y,M) is maximized. If the prior is assumed

to be flat, this is equivalent to maximizing the likelihood function.
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3.2.2 The Likelihood function

We assume that the n observed data points yi are independent and distributed each according

to a Normal distribution of mean µi and standard deviation σi

yi ∼ N (µi, σi), i = 1, ..., n. (56)

The likelihood function of each of the observed data points is therefore given by the probability

density function of the Normal distribution

L(yi|µi, σi) = N (yi;µi, σi) = (2πσ2
i )

−1/2 · exp

{
− 1

2

(yi − µi)
2

σ2
i

}
. (57)

The likelihood function of the observed dataset L(y|µ, σ) is given by the joint probability density

of the total data set. Since the data points are assumed to be independent, their joint probability

density is given by the product of their individual probabilities, such that

L(y) =

n∏
i=1

L(yi|µi, σi) =

n∏
i=1

(2πσ2
i )

−1/2 · exp

{
− 1

2

(yi − µi)
2

σ2
i

}
. (58)

In the particular case of estimating H0 from supernovae observations, the observed data set

y consists of SNe Ia distance measurements. More specifically, we use the unbiased distance

observable D = d−2
L put forward in the previous section. The standard deviation of the Normal

distribution from which each data points is assumed to be drawn (Eq. 56) corresponds to the

total error associated with each observation. The mean of this distribution corresponds to the

value for yi predicted by the assumed model. In this case, the expected theoretical distance

D̄ = d̄L
−2

, which depends on the cosmological parameters θ = [H0,Ωm] we want to estimate, is

given by

D̄(z|θ) = d̄L
−2

=

[
1 + z

H0

z∫
0

dz′√
Ωm(1 + z′)3 + (1− Ωm)

]−2

. (59)

This expression corresponds to the definition of the luminosity distance given in Eq. 44 with

the additional assumptions that Ωr ≈ 0 and k = Ωk = 0 which characterize the ΛCDM model.

Therefore, the likelihood function used to estimate H0 from SNe Ia distance measurements

takes the form

L(D|θ) =
∏
SN

(2πσ2
D)

−1/2 exp

{
− 1

2

(D − D̄)2

σ2
D

}
. (60)

The product in the likelihood function of Eq. 60 runs over the average ⟨D⟩bin = ⟨d−2
L ⟩bin of

each redshift bin in the supernova sample, as discussed in Section 3.1.3. The error σD therefore
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corresponds to the error on this mean, which for a redshift bin containing N sources is given by

σD =
σbin√
N

=

√∑N
i (Di − ⟨D⟩bin)2/(N − 1)

√
N

. (61)

In order to reduce the computational cost of evaluating this likelihood function, it is customary

to work with the logarithm of the likelihood function instead, which is given by

lnL(D|θ) = −1

2

∑
SN

[
ln (2πσ2

D) +
(D − D̄)2

σ2
D

]
. (62)

3.2.3 Markov Chain Monte Carlo sampling

As discussed previously, the posterior probability distribution of the parameters θ = [H0,Ωm] is

given by the product of the likelihood function and the prior distribution (Eq. 55). By evaluating

the posterior at multiple different points θi = [H0,i,Ωm,i] in parameter space, we can estimate

the posterior probability distribution and thus the most probable values for the parameters.

The most common method to sample systematically and randomly from and arbitrary pos-

terior is by means of a Markov Chain Monte Carlo (MCMC) algorithm. The purpose of an

MCMC algorithm is to construct an efficient “chain” of successive points through parameter

space at which the posterior is evaluated. Monte Carlo methods enclose a large category of

computational algorithms that use repeated random sampling to approximate a specific quan-

tity. In probability theory, a Markov chain is defined as a sequence of random variables θ1, θ2, ...,

for which the probability of moving from a point θn to a subsequent point θn+1 given all θi with

i < n+ 1 depends only on the point θn, such that

Pr(θn+1 = x|θ1 = x1, θ2 = x2, ..., θn = xn) = Pr(θn+1 = x|θn = xn). (63)

Therefore, the position of each subsequent point in a Markov chain can be computed using

the information of the present position only, which is why Markov chains are sometimes called

“memoryless”. Another important property of Markov chains is that the probability distribu-

tion of each new point is improved with respect to the probability distribution of the previous

point such that the chain eventually converges to a stationary state where the probability dis-

tribution of the sampled points corresponds to the posterior distribution P (θ|y,M). Hence,

the combination of these two processes, called a Markov Chain Monte Carlo, gives us a general

method to estimate the target posterior distribution through successive random draws of θ from

approximate distributions which are progressively corrected.

In parallel to the Markov chain, a criterion needs to be established to decide whether each

new point θn+1 is accepted or rejected depending on whether it brings the chain closer to

the targeted posterior distribution. The family of Markov chain simulations which include an

acceptance/rejection rule to bring the chain to converging to the posterior are called Metropolis-
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Hasting algorithms.

A basic Metropolis-Hastings algorithm consists of the following steps [18]:

1. Initialization (for step t = 0):

(a) Choose an arbitrary starting point θ0 for the chain which satisfies P (θ0|y,M) > 0.

This starting point can be drawn from a starting distribution or it can be picked

based on an alternative crude estimation of the best values for θ.

(b) Choose an arbitrary probability distribution Q0(θ1|θ0), called a proposal distribution,

that suggests a point for the next step of the chain θ1 based on the initial point of

the chain θ0. It is customary to let Q0(θ1|θ0) be a Gaussian distribution centred at θ0

such that points neighbouring θ0 have a higher probability of being picked at the next

step. The sequence of points therefore becomes a random walk through parameter

space.

2. Iterations (for each step t > 0 in the chain):

(a) Randomly draw the next proposed point θp from the proposal distributionQt(θp|θt−1).

(b) Calculate the following ratio of probabilities:

α =
P (θp|y,M)/Qt(θp|θt−1)

P (θt−1|y,M)/Qt(θt−1|θp)
. (64)

The chain can only move from the point θt−1 to θp if both Qt(θp|θt−1) > 0 and

P (θt−1|y,M) > 0, such that this ratio is always defined.

(c) Decide whether to accept or reject this new proposed point θp. This decision is made

by drawing a random number u from a Uniform distribution U [0, 1]. If u ≤ α, then

the new point proposed is accepted such that θt+1 = θp. Otherwise, if u > α the new

point proposed is rejected and θt+1 = θt, such that the chain remains at the same

position.

The acceptance/rejection rule of the Metropolis-Hastings algorithm is such that if the posterior

probability of the new point proposed at each step has a higher posterior probability than the

previous point (such that α > 1 ≥ u) the proposed point is always accepted. However, if the

new point proposed has a lower posterior probability than the previous point, there is still a

chance that the proposed point will be accepted if 1 > α ≥ u. The larger the decrease in pos-

terior probability caused by the proposed point, the less likely it is that the point is accepted.

Therefore, the chain mostly stays in high probability regions of the targeted posterior and only

sporadically explores its low-probability regions. This explains intuitively why the algorithm

successfully returns samples that are distributed according to the targeted posterior probabil-

ity distribution. In addition, occasionally accepting proposed points which lower the posterior

probability prevents the chain from converging to a local maximum of the parameter space and

not exploring it entirely.
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By following the steps outlined above, the MCMC will eventually converge to the targeted

posterior distribution. However, the samples of the initial steps of the Markov chain can follow

a distribution that is very different from the targeted posterior, specifically if the initial point of

the chain is located in a low-probability region of parameter space. Therefore, the early steps of

the chain, called the burn-in steps, are often ignored such that the dependence on the starting

point is lost.

To perform the MCMC sampling under these conditions we use the Python package emcee

developed by [17] to implement the Affine Invariant MCMC Ensemble Sampler developed by

[19] into Python. We use Uniform distributions to define flat priors for both H0 and Ωm,0:

H0 ∼ U [10, 100] and Ωm,0 ∼ U [0, 1]. The initial positions of the 100 walkers are randomly

distributed around the initial guesses θ0 = [70, 0.3]. We check the convergence of the MCMC

chains using emcee integrated tool to estimate the autocorrelation time τ after which the chain

has no memory of its initial position. To ensure that the chains fully converge, the burn-in time

is set to 5τ and the chains after burn-in are run for ∼ 150τ steps.
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4 Data

4.1 The simulated dark matter halo catalogue

The present analysis is based on a dark matter halo catalogue extracted from a relativistic

N-body simulation performed with the code gevolution [3]. The halo catalogue is constructed

from the simulated light cone using the ROCKSTAR friends-of-friends halo finder [5]. In total,

it comprises about 17 million halos in the redshift range 0.001 < z < 1.27. At low redshift

(z ≤ 0.1 corresponding to a comoving distance of 292 Mpc/h), the halos span the full sky vol-

ume. Beyond this redshift threshold, the simulated object span a conical shaped volume centred

around the zenith with an opening half angle of 17◦50′. The observed redshift and observed

luminosity distance of each halo are determined by integrating the geodesic equation and Sachs

equation along the light ray travelling from the halo to the observer. In addition, the catalogue

also contains a mass proxy for each halo in arbitrary units (corresponding to the number of

N-body particles assigned to the halo).

To bypass the complications of simulating baryonic matter, we consider that there is a one-

to-one correspondence between dark matter halos and galaxies. We therefore assume that each

of the dark matter halos in the catalogue envelops a single galaxy in which a Type Ia supernova

is observed. Additionally, we need to assign a physical radius to each of these galaxies to later

be able to determine which galaxy is obstructing which supernova. This requires relating the

mass distribution of dark matter halos retrieved from the simulation with the radius distribution

of galaxies observed in large galaxy surveys. To do so, we use a catalogue of 50 000 galaxies

observed in the Sloan Digital Sky Survey (SDSS) [1] for which the De Vaucouleurs radius has

been measured. The De Vaucouleurs radius is defined to be the same as the half-light radius

of the galaxy which encloses half of its total observed flux. This catalogue is constructed by

selecting a 30◦ × 30◦ field around the north galactic pole. To discard low quality data, we addi-

tionally impose that the absolute error on the radius should be smaller than 1/3 of the value of

the radius. To ensure the completeness of the selected galaxy catalogue and of the distribution

of galaxy radii derived from it, we only select sources in the redshift interval z < 0.4 and assume

the radius distribution to be independent of redshift.

Abundance matching is the simplest approach to matching the observed distribution galaxy

radii to the simulated distribution of dark matter halo masses. It relies, firstly, on the assump-

tion that each dark matter halo contains a single galaxy such that the total number of galaxies

and dark matter halos per unit volume are equal. Therefore, we have that

∞∫
0

nR(r) dr =

∞∫
0

nM (m) dm, (65)
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where nR(r) is the radius number density of galaxies and nM (m) is the mass number density of

halos. Secondly, we assume that there is a monotonic relationship between the mass of the host

halo and the radius of the galaxy it contains.

The simulated catalogue and the observed catalogue both have some intrinsic lower threshold

which are not related to each other. However, we expect that the halos with the largest masses

and the galaxies with the largest radii are included in both catalogues. Therefore, the galaxies

with the largest radii can be associated with the halos with the largest masses by imposing the

following equality on both cumulative number densities

∞∫
r(m)

nR(r
′) dr′ =

∞∫
m

nM (m′) dm′. (66)

The dependence of the galaxy radius on the host halo mass r(m) is given implicitly by this

relation which therefore can be used to assign a radius to the galaxy contained by each simulated

dark matter halo in the catalogue.

4.2 Statistics of galaxy/supernova blocking

The determination of which supernovae in the catalogue are obstructed by a foreground galaxy

is based on two straightforward conditions. Firstly, the galaxy has to lie in the foreground of

the supernova, which, in terms of their comoving distances dC , translates to

dgalaxyC − dSNC < 0. (67)

We use the comoving distance which corresponds to the distance between to fundamental ob-

servers (both moving with the Hubble flow) obtained by integrating the infinitesimal δdC of

nearby fundamental observers along the line-of-sight from z = 0 to the observed object. The

comoving distance between to objects remains constant through time, despite the expansion

of the Universe, such that is it is appropriate for measuring separations that are imprinted in

the Hubble flow. Secondly, a supernova is obstructed by a galaxy lying in its foreground if the

angular separation θ between the supernova and the galaxy is smaller than the angular radius of

the galaxy αr. Therefore, the second condition to find the blocking-galaxy / blocked-supernova

pairs in the catalogue is

αr − θ > 0. (68)

In case that multiple galaxies fulfil these two conditions for the same supernova, we consider

that it is blocked by the galaxy for which θ is minimal. To get a better feel for how significant

this obstruction could be in large SNe Ia samples, we determine which sources in the catalogue

are obstructed twice, using two different definitions for αr. In the first case, we take a more

conservative approach consider that the radius of a galaxy corresponds effectively to its half-

light radius (αr = rHL) while in the second case we consider that αr = 2rHL as an upper
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boundary. These two definitions of the radius of a galaxy can both be appropriate depending on

the “blocking scenario” under consideration. In case we consider total blocking of the supernova

by the foreground galaxy, restricting the radius to αr = rHL is more appropriate. Taking into

account the Sérsic model which describes the brightness profile of galaxies, it indeed seems

unlikely that such a total blocking would take place outside the effective radius of a galaxy.

However, confusing the obstructing galaxy with the host-galaxy can still happen if the supernova

is visible through the outskirts of the galactic disk. Therefore, in this case, it is relevant to

consider obstruction until αr = 2rHL.

Figure 4: Percentage of obstructed supernovae in the simulated catalogue as a function of
redshift, for two different definitions of the galactic radius. (Note that all the supernovae which
are blocked within 1 half-light radius are also included in those blocked within 2 half-light
radius.)

Fig. 4 summarizes the fraction of supernovae lying behind a galaxy, in the simulated catalogue,

as a function of redshift for both definitions of αr. When using αr = 1 · rHL we find that 2.4%

of supernovae in the whole catalogue and 3.4 % of supernovae above z = 1 are obstructed by

a foreground galaxy. When using αr = 2 · rHL we find that 9% of supernovae in the whole

catalogue and 12.7 % of supernovae above z = 1 are obstructed by a foreground galaxy. Addi-

tionally, it is worth noting that a lower mass threshold is imposed to identify the dark matter

halos in the simulated light cone. This causes the low mass halos to be neglected which leads

to underestimating the density of small galaxies in our simulated catalogue. Therefore, the

estimates of Fig. 4 are conservative and it is likely that the fraction of obstructed supernovae is

somewhat higher in our observed SNe Ia samples.

For the supernovae lying behind a galaxy we then look at the distribution of the ratio dgalaxyC /dSNC
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Figure 5: Distribution of the ratio dgalaxyC /dSNIa
C for the foreground galaxy/blocked supernova

pairs found in the simulated catalogue.

which is shown in Fig. 5. This quantity indicates how close the galaxy lies to the supernova

it is obstructing. The peak of this distribution lies very close to dgalaxyC /dSNC = 1, implying

that most supernovae are obstructed by a neighbouring galaxy, located in the same cluster as

their host-galaxy. However, the tail of the distribution where dgalaxyC /dSNC is small should not be

neglected. These supernovae which are obstructed by a distant foreground galaxy are the ones

which are likely to introduce a larger bias in the observed Hubble diagram. In these cases, the

large separation between the supernova and the foreground galaxy makes it more likely for the

light emitted by the supernova to to be overpowered by that of the galaxy lying closer to us and

therefore to be no longer be visible to us. Otherwise, erroneously assigning the redshift of the

distant foreground galaxy to the supernova, will lead to misplacing it on the Hubble diagram

more significantly than if the host is confused with a galaxy within the same cluster.

Lastly, we inspect to what extent the supernovae in this obstructed sample are affected by

gravitational lensing. In order to determine this, we look at the distribution of their conver-

gence κ and compare it to that of the visible supernovae as represented in Fig. 6. As mentioned

in Section 3.1, κ describes whether a source is magnified (κ > 0) or demagnified (κ < 0) due to

gravitational lensing. It is defined as follows in terms of the angular diameter distance to the

source in a FLRW Universe d̄A and the measured angular diameter distance to the source dA

κ ≡ 1− dA
d̄A

. (69)

We find that the average convergence of blocked supernovae above z = 1 is ⟨κobstructed⟩ = 0.005
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Figure 6: Distribution of the convergence parameter κ for the blocked and the visible sources
above redshift z = 1.

while that of visible supernovae is ⟨κvisible⟩ = −0.001. In addition, as shown in Fig. 6, the

distribution of κ is more skewed towards κ > 0 for obstructed sources than for visible sources,

meaning that, on average, blocked the supernovae are more magnified than the visible ones.

The reason for this is that supernovae obstructed by a foreground galaxy lie on over-dense

lines-of-sight, which increases their magnification.

38



The impact of total supernova blocking on the estimation of H0

5 The impact of total supernova blocking on

the estimation of H0

This section is dedicated to determining the impact of the selection bias caused by the “total

blocking” of certain supernovae on the estimation of H0. As discussed in the previous section,

certain supernovae in the simulated catalogue are obstructed by a foreground galaxy. If the

relative distance between both objects is large, the foreground galaxy is very bright or the

supernova is aligned with the centre of the foreground galaxy, it can happen that the light

emitted by the background SNe Ia is not visible to us through the intervening galaxy. In this

section, we consider that all supernovae lying behind the 1 half-light radius of a foreground

galaxy are no longer visible to us. As shown in Fig. 4, this corresponds to ∼ 1% of the SNe Ia

at z = 0.5 and ∼ 3% of the SNe Ia at z = 1 in our simulated catalogue. We want to estimate

the impact of the selection bias caused by these supernovae missing from our observations on

the value inferred for H0.

5.1 Selecting an unbiased supernova sample

For the purpose of this part we use the supernovae of the simulated catalogue in the redshift

range z > 0.5. Following the discussion of Section 3.1.3, this low-redshift cut-off is introduced

as a way of mitigating the bias caused by peculiar motions on the Hubble diagram. This specific

cut-off is chosen by running a trial MCMC using the full redshift range of the catalogue and

identifying the redshift threshold below which the residuals no longer scatter randomly around 0.

To estimate H0, a random sample of 300 000 sources in this redshift range is selected from

the simulated catalogue. These sources are binned into 1000 bins of equal redshift range (with

∆zbin ≃ 8 · 10−4). For each of these bins, we then compute the average redshift ⟨z⟩bin and the

average distance ⟨D⟩bin = ⟨1/d2L⟩bin as well as the error on ⟨D⟩bin according to Eq. 61. The

bins which contain less that 100 sources are discarded, as they are not large enough for the Cen-

tral Limit Theorem to properly “gaussianize” their mean. For this simulated catalogue, these

correspond at most to a few out of the 1000 bins, depending on the specific randomly selected

sources, such that this has no incidence on the subsequent estimation of H0.

Note that we have opted to bin the sources using bins of constant redshift range ∆zbin rather

that bins with a constant number of sources. This approach ensures that the resulting points

(⟨z⟩bin, ⟨D⟩bin) uniformly sample the Hubble diagram across the redshift range considered. How-

ever, this decision comes at the cost of losing the information of the redshift distribution of the

sample. We made the choice of prioritizing uniformly sampled points as this is more important

when it comes to accurately fitting the Hubble diagram. This ensures that the extremities of

the Hubble diagram, where sources are scarcer, are well sampled. This is particularly important

because the fit of the Hubble diagram is very sensitive to these extreme points. This type of
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binning therefore prevents any deviation in the inferred H0 caused by the binning of the sources.

This procedure, as discussed in Section 3.1.3, produces a sample of points (⟨z⟩bin, ⟨D⟩bin) which
form a Hubble diagram exempt from the biases induced by peculiar motions and gravitational

lensing. The Hubble constant can be estimated from these points following the method outlined

in section 3.2.

5.2 Results

To determine the impact of the selection bias caused by blocked supernovae, we estimate H0

using four different samples. The first two samples are different random samples selected from

the simulated catalogue without regard for blocking. These samples contain both blocked and

visible supernovae and act as our “control” samples. The third sample represents the case where

we consider that all supernovae lying behind the 1 half-light radius of a foreground galaxy are

not visible. This sample contains only sources which are visible according to this criterion.

Lastly, the fourth sample represents the case where we assume that all supernovae lying behind

the 2 half-light radius of a foreground galaxy are blocked. This last sample only contains sources

which are visible according to this definition. The third sample is the most likely to realistically

represent the blocked SNe Ia in our real observed samples while the fourth sample is the most

extreme case which is probably not very realistic but should be understood as an upper bound-

ary for supernova blocking.

Each of these samples is binned into 1000 points (⟨z⟩bin, ⟨D⟩bin), as described previously, to

estimate H0. The four H0 distributions which result from these SNe Ia samples are shown in

the corner plot in Fig. 7. The central parameter values of these distributions and their corre-

sponding 68% confidence intervals are summarized in Table. 1.

The parameters estimated from the two control samples provide a valuable consistency check for

the MCMC parameter estimation. The scatter of the central parameter values obtained from

these two samples, which reflects the use of different sources from the catalogue, is consistent

with their error ellipses (i.e. it is neither much larger nor much smaller). As expected for a

robust MCMC estimation, the difference between the parameters found with these two samples

is statistically negligible.

The two samples which account for supernova blocking lead to higher central values for H0

and lower central values of Ωm than the two control samples. The value for H0 inferred from

the third sample (αr = 1 · rHL) deviates from that obtained from the first control sample by

∼ 0.03%. Alternatively, these two measurements differ at a level of 1.6σ. The fourth sample

(αr = 2 · rHL) yields a central value for H0 which differs from that of the first control sample by

∼ 0.09%, which translates to a difference of 5σ. This higher discrepancy is to be expected since

this sample represents the extreme blocking case.
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The fact that the inferred value for H0 is higher when using only visible supernovae than when

using both visible and blocked supernovae implies that our estimations based on observed SNe

Ia samples tend to overestimate the value of H0 due to the blocking of supernovae by foreground

galaxies.

Figure 7: Corner plot of the posterior distribution of H0 and Ωm for 4 different SNe Ia samples.
The two blue ellipses are obtained from the “control” samples without regard for blocking. The
green ellipse represents the results from the sample which contains only SNe Ia that are visible
when using αr = 1 · rHL The red ellipse represents the results obtained from the sample which
contains only SNe Ia that are visible when using αr = 2 · rHL. The grey lines represent the true
parameter values used in the simulation.
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H0[km/s/Mpc] Ωm

all sources 66.9959± 0.0088 0.31843± 0.00026

visible sources (αr = 1 · rHL) 67.0152± 0.0085 0.31753± 0.00026

visible sources (αr = 2 · rHL) 67.0536± 0.0082 0.31574± 0.00025

true values (simulation) 67 0.319

Table 1: Summary of the central parameter values estimated from the simulated SNe Ia samples
used to assess the selection bias induced by blocked supernovae.

5.3 Discussion

The increment in H0 that we find as a consequence of SNe Ia blocking can be understood by

considering the position that these blocked supernovae occupy on the fitted Hubble diagram.

Fig. 8 represents the observed Hubble diagram constructed from two of the supernovae samples

introduced previously: on one hand, the first sample of 300 000 sources which contains both

blocked and visible supernovae and on the other hand the fourth random subsample which con-

tains only supernovae that do not lie behind the αr = 2 · rHL radius of a foreground galaxy. By

comparing the two Hubble diagrams resulting from these different samples it becomes apparent

that the blocked supernova cluster below d̄L(z) mostly at high redshift. This can by explained,

as mentioned in Section 4.2, by the fact that supernovae which are obstructed by a foreground

galaxy typically lie on over-dense lines-of-sight such that, on average, they are more magnified

that their visible counterparts. The distances to these obstructed supernovae therefore tend to

be systematically underestimated, such that dobsL < d̄L which is why they lie below the d̄L(z)

curve on the observed Hubble diagram. Additionally, the fraction of obstructed supernovae

increases with increasing redshift as the number of intervening galaxies grows (see Fig. 4). As

a result of these two effects combined, obstructed supernovae cluster on the high-redshift end of

the Hubble diagram below the d̄L(z).

The fact that the blocked supernovae are not scattered randomly across the Hubble diagram

leads to a selection bias in the estimation of H0. Understanding more specifically how the

absence of these blocked supernovae translates to the inferred values for H0 and Ωm is not

straightforward due to the complex nature of the function being fitted (Eq. 44) which relates

these two parameters. However, we verify empirically that this selection bias results in an over-

estimation of the Hubble constant. The increase in H0 goes hand in hand with a decrease in

Ωm when the blocked supernovae are excluded from the fitted Hubble diagram. In addition to

being related through Eq. 44, the correlation between these two parameters can be understood

in the context of the Universe’s expansion dynamics. Indeed, the expansion of the Universe is

slowed down by the attractive gravitational pull of matter which counteracts the repulsive push

of dark energy. Consequently, a lower matter density leads to a faster expansion of the Universe.

We notice that the 2σ ellipses of the posterior distributions found from the two samples which
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Figure 8: Hubble diagram constructed from the two different subsamples of 300 000 SNe Ia
from the simulated catalogue. The d̄L(z) curve is computed with the parameters used in the
simulation (H0 = 67km/s/Mpc and Ωm = 0.319). (Note that the sources used to construct these
Hubble diagrams have not been binned such that they are still subject to the bias introduced
by gravitational lensing which is why the scatter around the d̄L(z) curve is not Gaussian.)
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contain both visible and blocked sources do not encompass the true parameter values of the

simulation. This indicates that despite the measures taken, the binned and average Hubble

diagrams constructed still retain a slight bias. An unbiased estimation of H0 was achieved by

[2] using a similar binning approach for constructing the Hubble diagram for the MCMC. How-

ever, their analysis included sources with redshifts up to z = 3 and the simulated sample was

divided into equally sized bins containing 1000 adjacent supernovae. Therefore, it seems that

the parameter values estimated from the first two control samples could be drawn nearer to the

true parameters used in the simulation by increasing the number of sources within each bin to

enhance the “gaussianizing” effect of the Central Limit Theorem. In addition, including more

sources at higher redshift would reduce the effect of peculiar motions beyond the low-redshift

cut-off, further suppressing the remaining bias. In any case, it would be interesting to look

more thoroughly at how this binning procedure can be optimized to achieve an unbiased H0

estimation using the smallest SNe Ia sample possible.

Additionally, there is a small caveat concerning the procedure described in Section 5.1 to sup-

press the bias introduced by peculiar velocities on the Hubble diagram which should also be

mentioned. As the fraction of blocked supernovae increases with redshift, the low-redshift cut-

off that was introduced might slightly amplify the effect of supernovae blocking on the H0

estimation as we are estimating H0 from the part of the Hubble diagram most affected by block-

ing. However, we still believe it is preferable to introduce this cut-off to ensure an unbiased

estimation of H0, even if it results in a slight amplification of the blocking effect.

Moreover, the lower mass threshold imposed to construct the halo catalogue from the simu-

lation leads to underestimating the density of small galaxies when performing the abundance

matching. Consequently, we have most likely also underestimated the fraction of blocked su-

pernovae. In any case, it is reasonable to assume that the effect of supernova blocking on the

inferred value of H0 presented here is still conservative and that this bias is likely to be more

prominent when using observed supernova samples.

The results presented in the previous section imply that the selection bias caused by super-

novae blocking aggravates the Hubble tension. The Hubble tension could therefore be some-

what alleviated by taking this bias into account. However, this statement should be approached

with a critical mindset in light of how narrow the confidence intervals of our H0 estimates are

in comparison to the accuracy of H0 measurements based on observed datasets. Supernova

distance measurements are, to this day, dominated by statistical errors. The greatest improve-

ment of the latest SH0ES measurements was to increase the size of the supernova sample to

reach a sub-percent error on each of the error components of the H0 estimation which com-

bine to a total error of 1.4% [31]. The 0.03% to 0.09% discrepancy in H0 found to be caused

by blocked supernovae is significantly smaller than each of the components of the error in the

SH0ES measurement. Therefore, the impact of this selection bias is not relevant yet given the

precision of current H0 estimations. However, with the imminent launch of upcoming surveys
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such as the Large Synoptic Survey Telescope (LSST), we expect a substantial increase in the

size of supernovae samples. This will likely shift the dominant source of error in SNe Ia distance

measurements from statistical errors to systematic errors emphasizing the need for more robust

consideration of systematic biases. The significance of smaller systematic errors, such as the

selection bias presented here, will therefore gain importance and require more attention in the

upcoming years.
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6 The impact of supernova/host-galaxy mis-

matching on the estimation of H0

The fact that certain supernovae lie behind a foreground galaxy does not necessarily imply that

they are all missing from our observed samples. At their peak, supernovae can reach luminosi-

ties comparable to those of an entire galaxy, such that it is likely that some of the obstructed

SNe Ia can still be observed through their foreground galaxy. In this section, we consider that

all the supernovae from the simulated catalogue which lie behind the αr = 2 · rHL radius of a

foreground galaxy are visible to us.

The accuracy of H0 measurements from SNe Ia observations heavily depends on our ability

to accurately measure their redshifts. The preferred approach is to measure them indirectly

by using the spectroscopic redshifts of their host-galaxy, which have sharper spectral lines and

offer a higher accuracy. An important task is therefore to correctly associate each supernova

with its corresponding host-galaxy [9]. When spectroscopic information is unavailable for the

supernova, this matching process involves examining all galaxies within a radius of ∼ 30′′ around

each supernova and selecting the galaxy with the minimum normalized angular separation from

the supernova, considering the elliptical radius of the galaxy in the supernova’s direction [20].

However, this method is susceptible to mistakes when it comes to obstructed supernovae that

have very small angular separations from their foreground galaxies. In such cases, there is a risk

of incorrectly associating the supernova with the obstructing galaxy rather than with its true

host-galaxy and therefore assigning an incorrect redshift to the supernova. In this section we

assess the impact of this host misidentification on the estimation of H0.

6.1 Selecting an unbiased supernova sample

Like in the previous section, we introduce a low-redshift cut-off at z = 0.5 to alleviate the

bias caused by peculiar motions on the Hubble diagram. The binning procedure described in

section 5.1 is also reproduced to correct for the effect of the non-Gaussian lensing PDF on the

Hubble diagram. We select a random sample of 300 000 sources from the simulated catalogue

to estimate H0. These sources are then divided into 1000 bins, each covering an equal redshift

range (∆zbin ≃ 8 · 10−4). Within each bin, we calculate the average redshift ⟨z⟩bin, the average

distance ⟨D⟩bin = ⟨1/d2L⟩bin, and the corresponding error using Eq. 61. Bins with fewer than

100 sources are excluded from the analysis to ensure the Central Limit Theorem can effectively

“gaussianize” their mean.

As mentioned earlier, this method generates a set of points (⟨z⟩bin, ⟨D⟩bin) which constitute

an unbiased Hubble diagram, free from the biases caused by peculiar motions and gravitational

lensing. The Hubble constant can be estimated from these points using the approach described

in section 3.2.
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6.2 Results

To assess the impact of incorrectly matching obstructed supernovae to their foreground galaxy we

select one random sample from the simulated catalogue and we estimate H0 from this sample as-

suming different mismatching scenarios. This sample is binned into 1000 points (⟨z⟩bin, ⟨D⟩bin),
as described previously, to estimate H0.

In the first scenario all supernovae are correctly matched to their true host-galaxy. There-

fore, all the SNe Ia in this scenario are rightly assigned the redshift of their host-galaxy. In

the second scenario, the unobstructed supernovae are also correctly matched to their true host-

galaxy. However, we now account for the possibility of obstructed SNe Ia being inaccurately

assigned to their foreground galaxy. The probability of mismatch is assumed to be inversely

proportional to the angular separation θ between the supernova and the foreground galaxy.

Specifically, when θ = 0, the probability of a mismatch is PMM = 1. This probability decreases

linearly as θ increases until it reaches PMM = 0 at θ = 2 · rHL. Supernovae that are mismatched

according to this probability law are associated with the redshift of their foreground galaxy

rather than their host-galaxy. In the third scenario, we once again match the unobstructed SNe

Ia to their correct host-galaxy. However, in this case, we assume that all obstructed supernovae

are mistakenly matched to their foreground galaxy. As a result, all obstructed SNe Ia in this

sample are assigned the redshift of their foreground galaxy.

The first scenario describes the case in which the matching between the supernovae and their

host-galaxies is done 100% correctly. This case therefore serves as our “control” case against

which we compare the results from the two other scenarios. The second scenario is the one which

most realistically represents the extent of mismatching errors that occur in the supernova/host-

galaxy matching algorithms used to analyse our observed samples. The third scenario represents

the extreme case where the matching between obstructed supernovae and their host-galaxies is

done 100% incorrectly. It is highly improbable for the currently used algorithms to perform this

poorly, so this case serves mainly as an upper limit for the error induced by mismatching on the

estimation of H0.

The H0 estimations resulting from these three scenarios are shown in Fig. 9. The central

parameter values and their corresponding 68% confidence intervals are summarized in Table 2.

By comparing these three estimates it becomes apparent that mismatching the obstructed SNe

Ia to their foreground galaxies results in underestimating H0 and overestimating Ωm. Assuming

that the mismatch probability decreases linearly with increasing angular separation θ, leads to

an estimation of H0 which is ∼ 1.95% lower than that obtained from the control case. In the

extreme scenario where all obstructed supernovae are incorrectly matched, H0 is underestimated

by ∼ 6.43% with respect to the control case.
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H0 [km/s/Mpc] Ωm

0% mismatched hosts 66.9794± 0.0091 0.31888± 0.00028

mismatched hosts ∝ θ 65.673± 0.033 0.35042± 0.00091

100% mismatched hosts 62.677± 0.054 0.4318± 0.0017

true values (simulation) 67 0.319

Table 2: Summary of the central parameter values for H0 and Ωm estimated by assuming three
different mismatching scenarios.

Figure 9: Constraints on H0 and Ωm for 3 different scenarios of host-galaxy mismatching. The
left panel represents the results obtained from the control case. The grey dotted line represents
the true parameter values used in the simulation. The central panel corresponds to the results
obtained by assuming that the probability of mismatch is proportional to the angular separation
θ between the supernova and the foreground galaxy. The results on the right panel are obtained
by assuming that 100% of the obstructed SNe Ia are mismatched to their foreground galaxy.

6.3 Discussion

6.3.1 Impact of supernova/host-galaxy mismatching on the Hubble diagram

The shift in H0 resulting from supernova/host-galaxy mismatching that we find is larger than

the total error of 1.4% on the latest measurement by the SH0ES team [31]. It is therefore already

relevant for our current estimations and is bound to acquire an even greater significance with

the expected accuracy increase of our measurements in the upcoming years.

The decrease in the estimated value of H0 resulting from the host-galaxy misidentification for

obstructed supernovae can be understood by analysing its impact on the Hubble diagram. In

Fig. 10 we plot the Hubble diagram resulting from the sources selected randomly from the sim-

ulated catalogue, assuming that the probability of mismatch decreases as the angular separation

between the supernova and the foreground galaxy increases. The obstructed SNe Ia for which

the host-galaxy has been misidentified are scattered across the upper-left region of the plot.
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Figure 10: Hubble diagram constructed from the sample in which we assume that the probability
of mismatching the obstructed supernovae to their foreground galaxy is inversely proportional
to the angular separation between both sources. The full dL(z) curve is computed with the
parameters fitted from the sample where all SNe Ia are correctly matched to their host-galaxy
while the dotted dL(z) curve is computed with the parameters fitted from the sample used to
construct the Hubble diagram (see Table 2).

Since the measured distance to these obstructed supernovae is not affected by the host misiden-

tification, mismatched supernovae are shifted horizontally to lower z along a line of constant

dL on the Hubble diagram. These sources therefore introduce a significant bias in the Hubble

diagram towards higher values for dL at fixed z, particularly at low redshifts. The dotted line

in this figure represents the dL(z) curve computed with the parameters fitted from this sample,

while the full dL(z) curve is computed using the parameters fitted from the scenario in which

all supernovae are correctly matched to their true host-galaxy. By comparison, we see that the

mismatched supernovae “pull” dL upwards at fixed z. We consequently find that the fit of this

upwards shifted dL(z) curve results in a lower value for H0 and a higher value for Ωm when the

host-galaxies of obstructed supernovae are misidentified.

6.3.2 Residuals of the MCMC fit

To assess the quality of the Hubble diagram fit performed by the MCMC from each case, we

examine the distribution of the residuals in Fig. 11 and Fig. 12 . As expected, the residuals

for all three MCMC fits exhibit a Gaussian-like distribution centred around µ = 0 and no par-

ticular pattern with respect to redshift. This suggests that the non-Gaussian biases introduced

by lensing and peculiar velocities in the Hubble diagram have effectively been mitigated by the
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Figure 11: Residuals of the MCMC fit performed with the control sample in which the matching
between the supernovas and their host-galaxies is done 100% correctly.

procedure outlined in Section 3.1.3 and Section 6.1. Moreover, the agreement of the residual dis-

tributions with a Gaussian shape substantiates the assumption of a Gaussian likelihood function

for the resulting set of points (⟨z⟩bin, ⟨D⟩bin). However, the residuals of the control case, which

does not contain any mismatched supernovae, still exhibit a slight deviation from a Gaussian

distribution centred at µ = 0. This indicates that the binned Hubble diagram constructed for

the MCMC analysis retains a small leftover bias. Consequently, the 2σ ellipse of the posterior

distributions derived from this control sample does not encompass the true parameter values

used for the simulation. As mentioned in Section 5.3, the small bias which persists in our control

sample could probably be eliminated by using larger bins to strengthen the “gaussianizing” ef-

fect of the Central Limit Theorem. Furthermore, incorporating more sources at higher redshifts

would mitigate the impact of peculiar motions beyond the lower redshift cut-off, thereby further

reducing the remaining bias.

In addition, we notice distinct gaps in the residual scatter plot of the third scenario (bot-

tom panel of Fig. 12), which appear below (⟨D⟩bin − D̄(⟨z⟩bin))/σ⟨D⟩bin = 0 around z = 1, and

above (⟨D⟩bin − D̄(⟨z⟩bin))/σ⟨D⟩bin = 0 around z = 0.6 and z = 1.2. Therefore, the gap around

z = 0.6 in the residual scatter plot corresponds to obstructed SNe Ia that fall below the z = 0.5

cut-off after the host-galaxy mismatch, leading them to be discarded from the sample used for

the MCMC. The gaps around z = 1 and z = 1.2 likely represent mismatched supernovae clus-
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Figure 12: The upper panel shows the residuals of the MCMC fit performed under the assump-
tion that the mismatching probability is proportional to θ. The lower panel shows the residuals
of the MCMC fit in which all obstructed SNe Ia are mismatched to their foreground galaxy.
The green sources correspond to those which are included in the 95% confidence interval of each
residuals distribution.
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Figure 13: Constraints on H0 and Ωm for 3 different scenarios of obstructed supernovae mis-
matching. The blue ellipses correspond to the estimations which result from considering the
entire random sample of SNe Ia while for the estimations represented by the green ellipses the
outliers have been excluded from the sample.

tering at lower redshifts. This is substantiated by the fact that the regions neighbouring these

gaps (around z = 0.8 and z = 1) are more densely populated as the fraction of mismatched

supernovae increases.

Finally, we notice from the residual distributions that including mismatched supernovae in the

fit leads to an increased number of outliers. To ensure that the shift observed in the central

value of H0 is not a consequence of these outliers only we exclude the outliers from the sample

and run the MCMCs again for the two scenarios which account for mismatching. For each fit,

the outliers are defined as supernovae lying outside the 95% confidence interval of the resid-

ual distribution. This verification is important since it is is customary to exclude the outliers

from the samples used to estimate cosmological parameters. As shown in Fig. 13, we find that

removing outliers leads to a very similar shift in the central parameter values, which confirms

that the misidentification of the host-galaxy of obstructed supernovae leads to a real bias of the

measured value for H0.

6.3.3 Implication on the late-time H0 estimation

The supernovae/host-galaxy matching algorithm currently used on observed SNe Ia samples is

outlined in [20]. This algorithm follows a proximity-based matching approach, where the su-

pernova and its host-galaxy are matched based on the projected distance from their positions

only, without consideration for the third spatial dimension. The algorithm searches for galaxies

located within a 30” radius around the supernova position. From this subsample of galaxies, the

supernova is matched to the galaxy for which the normalized angular separation, considering

the elliptical radius of the galaxy in the supernova’s direction, is minimal (see [20] for a more

thorough discussion on this procedure). The authors assert an accuracy rate of 97% for their

supernova/host-galaxy matching algorithm. This result is based on testing the algorithm’s per-

formance using a simulated catalogue of ∼ 100 000 SNe Ia which are placed onto two different
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samples of real observed galaxies in the redshift range 0.08 < z < 1.4.

Several important considerations arise from these seemingly satisfactory results, which are par-

ticularly relevant in the context of the present study on the mismatch of obstructed supernovae.

Firstly, all supernovae located at angular separations greater than 30” from the centre of their

host-galaxies were removed from the simulated sample by the authors and therefore excluded

from the matching process. Although these supernovae represent only a small subset of sources

(0.05% in their first galaxy catalogue and 0.6% in their second galaxy catalogue), their removal

likely leads to a slight overestimation of the algorithm’s accuracy. In addition, due to their large

separation from their host centres, these specific supernovae have a higher probability of being

mismatched to their foreground galaxy, in case they are obstructed. Secondly, the authors find

that the fraction of supernovae which are mismatched by their algorithm increases with redshift

and that these supernovae are more often mismatched to galaxies with redshifts lower than their

true redshift. As mentioned previously, the number of obstructed supernovae increases with red-

shift and the redshift of the foreground galaxy is always lower than that of the true host-galaxy.

These results could therefore partly be attributed to the fact that their mismatched supernovae

could be obstructed supernovae erroneously associated to their foreground galaxy.

The authors do not provide an estimation of the effect of host-galaxy misidentification on

inferred cosmological parameter. However, as demonstrated by our results presented in the

previous section, mismatching the obstructed SNe Ia only can already lead to a significant shift

in H0. Considering these observations alongside our results, it is our belief that enhancing the

performance of the SN Ia/host-galaxy matching algorithm and improving the accuracy of the

resulting H0 estimation could be accomplished by incorporating the consideration of supernova

obstruction by foreground galaxies into the matching algorithm.
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7 The impact of supernova blocking by the

Milky Way on the estimation of H0

This section is dedicated to evaluating the impact of the orientation of the Milky Way’s disk

on the estimation of H0. Part of the sky is obstructed by the Milky Way’s disk, such that the

supernovae lying behind the galactic disk cannot be observed. Since the Universe is neither

perfectly homogeneous nor isotropic, the regions of the sky that are obstructed by the galactic

disk can be more or less dense depending on the Milky Way’s orientation. In this section, we

are interested in assessing whether the selection bias induced by this obstruction on the Hubble

constant depends on the specific orientation of the Milky Way’s plane.

7.1 Supernova sample selection

The sources in the simulated catalogue only span the full sky up to z = 0.1. Therefore, in

this part, we only take these low-redshift sources into account. As discussed in Section 3.1.1,

peculiar motions, and more specifically coherent flows, lead to correlated systematic errors in

low-redshift redshift measurements. However, these peculiar motions contaminate measurements

beyond z = 0.1. Therefore, for the sample of sources considered in this section, it does not make

sense to apply the low-redshift cut-off put forward in Section 3.1.3. In addition, below z = 0.1

there is relatively little intervening matter between the observer and the source. Galaxies at

such low redshifts are therefore only slightly affected by gravitational lensing. This is why the

binning procedure proposed in Section 3.1.3 to mitigate the bias induced by lensing is not ap-

plied to the SNe Ia samples used in this section either.

These low-redshift simulated SNe Ia are resampled to reproduce the redshift distribution of

the Pantheon+ supernova catalogue [35] used in the latest estimation of H0 by the SH0ES team

[31]. The Pantheon+ catalogue comprises sources from 18 different surveys adding up to 1550

different SNe Ia in the redshift range 0.001 ≤ z ≤ 2.26. The sources in this catalogue can

be divided into 3 different subsets: at low redshift (up to z = 0.1), the observed supernovae

span the full sky volume; at intermediate redshifts (0.1 ≤ z ≤ 1.7) the observed supernovae

are contained in a plane oriented along θ = π/2 as seen from our position; and at high redshift

(0.1 ≤ z ≤ 2.26) the supernovae have been observed through multiple, conical shaped, “pencil

beam” surveys. Resampling the z ≤ 0.1 simulated sources to replicate the redshift distribution

of the z ≤ 0.1 Pantheon+ sources allows us to estimate the impact that the specific orientation

of the Milky Way plane would have on the estimation of H0 if only the full-sky part of the

Pantheon+ catalogue were considered.

The orientation of the galactic plane is parameterized by its normal vector n⃗GP = [θ, ϕ]. For

192 different orientations of n⃗GP , we randomly select 5000 supernovae from the resampled low-

redshift subsample of the simulated catalogue, which are not obstructed by the corresponding
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galactic plane. More specifically, we consider that all supernovae which lie within ±15◦ of being

orthogonal to n⃗GP are blocked by the galactic disk. The Hubble constant is estimated from

this sample of SNe Ia according to the method described in Section 3.2. Since the supernovae

are not binned, the product in the likelihood function (Eq. 60) runs over the 5000 individual

supernovae. In addition, we assume that the distance measurements of these supernovae all

have the same error such that, in this case, σD is just a constant in the likelihood function.

7.2 Results

7.2.1 General features of the H0( ⃗nGP ) map

The Hubble constant is estimated for 192 different orientations of the galactic plane. The

resulting map of H0(n⃗GP ) is shown in Fig. 14. As seen from this map, the orientation of

the galactic plane alone can cause a fluctuation in the Hubble constant estimated from the

low redshift sources of ∼ 0.9 km/s/Mpc. Therefore, if the Hubble constant is estimated from

low-redshift supernovae only (z ≤ 0.1), we find that the estimated value for H0 is significantly

affected by the specific orientation of the Milky Way disk.

Figure 14: Map of H0 as a function of the normal vector to the galactic plane n̂GP .The two
stars represent the orientations of the normal vectors for which the estimated Hubble constant
is minimal and maximal.

The vectors n⃗GP = [θ, ϕ] and n⃗GP = [π − θ, π + ϕ] are both normal to the same galactic plane

orientation, which introduces the symmetry seen in the map of Fig. 14. Therefore, there are
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two regions of high-H0 and two regions of low-H0 on this map which are in fact duplicates

representing the same galactic planes.

The map ofH0 as a function of n⃗GP = [θ, ϕ] can be described mathematically through a multipole

expansion. A multipole expansion corresponds to the series representation of an angle-dependent

function. This series is most commonly written as a sum of spherical harmonics, since spherical

harmonics form a complete set of orthogonal functions and therefore an ortho-normal basis of

the Hilbert space. Therefore, any function defined on the surface of a sphere can be expanded

as a linear combination of spherical harmonics

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

almYlm(θ, ϕ). (70)

In this expression, Ylm(θ, ϕ) is the spherical harmonic function of degree l and order m and

alm is the corresponding spherical harmonics coefficient which depends on the function being

expanded. Spherical harmonics satisfy the following conjugate symmetry property: Y ∗
lm(θ, ϕ) =

(−1)mYl,−m(θ, ϕ). If the function being expressed as a multipole expansion is real, the complex

coefficients alm additionally have to satisfy the following reality condition: a∗lm = (−1)mal,−m,

which follows from the conjugate symmetry of the spherical harmonic functions.

The degree l of a spherical harmonic indicates along how many axes the l-th multipole points.

On the H0(n⃗GP ) map in Fig. 14, two regions of minimal H0 and two regions of maximal H0 can

be distinguished, which in 3D correspond to one axis of minimal H0 and one axis of maximal H0.

Therefore, the underlying function describing H0( ⃗nGP ) is dominated by the l = 2 (quadrupole)

term of the multipole expansion.

7.2.2 Galactic plane orientations of extrema H0

The orientation of the normal vectors n⃗min
GP and n⃗max

GP leading respectively to the minimal-H0

and maximal-H0 values on the H0(n⃗GP ) map can be determined mathematically in order to find

out which galactic plane orientations lead to maximal and minimal estimations of the Hubble

constant.

To do so, we can make use of the fact that the l-th multipole term of a multipole expan-

sion, fl(θ, ϕ), can be fully represented by a symmetric, traceless tensor of rank l. Such a tensor

contains 2l+1 independent components which are linearly independent combinations of the alm

coefficients of the expansion. This tensor therefore carries all the information of the multipole

term encoded in a different way that allows to look for these “special directions” in the under-

lying function.

As given in [10], the general correspondence between the usual representation of a multipole
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decomposition as defined in Eq. 70 and this tensor representation is

fl(n⃗) =
l∑

m=−l

almYlm(n⃗) = A(l)

{
l∏

i=1

(
v̂(l,i) · n̂

)
− Tl

}
. (71)

In this expression, A(l) is a scalar associated with the amplitude of the l-th multipole term.

The components of the unit vectors v̂(l,i) are non-linear combinations of the alm coefficients

of the decomposition for a fixed degree l (expressed in Cartesian coordinates). The vector n̂

corresponds to the radial unit vector in the [θ, ϕ]-direction which in Cartesian coordinates is

n̂ = [sin θ cosϕ, sin θ sinϕ, cos θ]. Finally, Tl is the sum of all traces of the first term. Subtracting

Tl therefore renders the full expression traceless.

Based on this general definition, the tensor representation of the quadrupole term (l = 2)

which describes the H0(n⃗GP ) map is therefore given by

2∑
m=−2

a2mY2m(n⃗) = A(2)

{(
v̂(2,1) · n̂

)(
v̂(2,2) · n̂

)
− 1

3
v̂(2,1) · v̂(2.2)

}
. (72)

The quadrupole vectors v̂(2,1) and v̂(2,2) each contain 2 independent pieces of information, which

together with the amplitude A(2) are the 2l+1 = 5 pieces of information which fully specify the

shape of the quadrupole.

Alternatively, the right-hand side of this equation can be rewritten as the quadratic form FQ(n̂)

of a quadrupole matrix Q. The quadrupole matrix is a 3× 3 symmetric, traceless matrix (cor-

responding to a tensor of rank l = 2) of the form

Q =

Q11 Q12 Q13

Q12 Q22 Q23

Q13 Q23 −(Q11 +Q22)

 . (73)

This matrix contains 5 independent which are 5 linearly independent combinations of the a2m

coefficients and fully specify the shape of the quadrupole. The quadratic form associated with

this matrix is given by

FQ(n̂) = n̂T Q n̂, (74)

where n̂ = [sin θ cosϕ, sin θ sinϕ, cos θ].

The tensor representation of the quadrupole term (Eq. 72) can therefore be rewritten as

2∑
m=−2

a2mY2m(n⃗) = FQ(n̂). (75)
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By multiplying both sides of this equation with
∑2

m=−2 Y
∗
2m(n⃗), integrating and keeping only

the non-vanishing terms we arrive at the following equation

a2m

∫ π

θ=0

∫ 2π

ϕ=0
Y2m(θ, ϕ)Y ∗

2m(θ, ϕ) dΩ =

∫ π

θ=0

∫ 2π

ϕ=0
FQ(θ, ϕ)Y

∗
2m(θ, ϕ) dΩ. (76)

Using the ortho-normality of spherical harmonics and the conjugate symmetry property intro-

duced previously, this equation can be rewritten as

a2m =

∫ π

θ=0

∫ 2π

ϕ=0
FQ(θ, ϕ)Y

∗
2m(θ, ϕ) dΩ

=

∫ π

θ=0

∫ 2π

ϕ=0
FQ(θ, ϕ) (−1)mY2,−m(θ, ϕ) dΩ.

(77)

We therefore find at the following equations for a20, a21 and a22:

a20 =

∫ π

θ=0

∫ 2π

ϕ=0
FQ(θ, ϕ)Y2,0(θ, ϕ) dΩ,

a21 = −
∫ π

θ=0

∫ 2π

ϕ=0
FQ(θ, ϕ)Y2,−1(θ, ϕ) dΩ,

a22 =

∫ π

θ=0

∫ 2π

ϕ=0
FQ(θ, ϕ)Y2,−2(θ, ϕ) dΩ.

(78)

By computing these integrals we find the following relation between the real and imaginary parts

of the spherical harmonic coefficients and the components of the quadrupole matrix

are20 = −2
√

π
5

(
Q11 +Q22

)
aim20 = 0

are21 = −2
√

2π
15 Q13 aim21 = −2

√
2π
15 Q32

are22 =
√

2π
15

(
Q11 −Q22

)
aim22 = −2

√
2π
15 Q12

(79)

These equations can be inverted to find the expressions for the components of the quadrupole

matrix in terms of the spherical harmonic coefficients

Q =


−1

4

√
5
π

(
are20 −

√
6are22

)
−1

2

√
15
2π aim22 −1

2

√
15
2π are21

−1
2

√
15
2π aim22 −1

4

√
5
π

(
are20 +

√
6are22

)
1
2

√
15
2π aim21

−1
2

√
15
2π are21

1
2

√
15
2π aim21

1
2

√
5
πa

re
20

 . (80)

(Note that since the a2m coefficients satisfy the reality condition introduced previously, the

coefficients a2,−2 and a2,−1 can be expressed in terms of a2,2 and a2,12 and don’t contain any

additional information. )

The healpy package includes a function which returns the alm coefficients of the spherical

harmonic decomposition of a HEALPix map. Using this tool, we find the following spherical
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harmonic coefficients for the H0(n⃗GP ) map

are20 = 0.199 aim20 = 0

are21 = −0.23 aim21 = 0.223

are22 = −0.148 aim22 = −0.316.

(81)

Since Q is a real, symmetric matrix, the directions of the minimum and maximum of the function

describing the H0(n⃗GP [θ, ϕ]) map are given respectively by the eigenvector associated with the

smallest and largest eigenvalues of this quadrupole matrix. (See the Appendix for the mathe-

matical proof of this statement.) Substituting the spherical harmonics coefficients of Eq. 81 in

the quadrupole matrix of Eq. 80 we find the following eigenvectors whose direction correspond

to the normal vector to the galactic plane resulting in the maximum and minimum value of

H0(n⃗GP )

v⃗max
GP = [θmax = 2.29 rad, ϕmax = 4.04 rad]

v⃗min
GP = [θmin = 1.83 rad, ϕmin = 5.84 rad].

(82)

Therefore, a galactic plane orientation normal to v⃗min = [1.83 rad, 5.84 rad] leads to an estimate

of H0 = 65.38 km/s/Mpc while a galactic plane normal to v⃗max = [2.29 rad, 4.04 rad] leads to

an estimate of H0 = 66.29 km/s/Mpc.

7.3 Discussion

The anisotropic expansion rate that arises from the obstruction of low-redshift supernovae by

the Milky Way’s disk can be attributed to the structure of the neighbouring Universe, which

gives rise to local flows. As mentioned in Section 3.1.1, the perturbations in the Universe’s

density field are associated with perturbations in the gravitational field which deflect galaxies

from the uniform motion dictated by the Hubble flow. These peculiar motions lead groups of

galaxies (and the supernovae they host) to fall into larger galaxy clusters or superclusters. These

groups of galaxies which conjointly move in coherent flows therefore tend to have correlated pe-

culiar velocities, introducing correlated systematic errors in the Hubble diagram. This effect is

particularly strong in the low-redshift region of the Hubble diagram, where the supernovae are

physically closer to each other as a function of their angular separation on the sky. Therefore,

the low-redshift sources that are obstructed by the Milky Way, for each of the disk orienta-

tions simulated, are strongly correlated to each other. Removing these obstructed, correlated

supernovae from the Hubble diagram used to determine H0 therefore introduces a bias in the

estimation due to the non-random nature of their exclusion. This bias varies slightly for each

orientation of the Milky Way’s disk, resulting in the anisotropic H0(n⃗GP ) map. The quadrupole

effect that we find in the H0 map is therefore a direct consequence of the high-order multipole

effect in the local inhomogeneous velocity field.
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When the estimation of the Hubble constant relies purely on supernovae at (very) low red-

shifts (z ≤ 0.1), the specific orientation of the Milky Way disk has a significant impact on the

resulting value of H0. However, we anticipate that this bias becomes negligible once sources at

higher redshifts are also included in the analysis. This expectation seems reasonable since at

higher redshifts, sources lie at increasingly large physical distances from each relative to their

angular separations on the sky. We therefore expect that the correlation among supernovae

blocked by the Milky Way diminishes at higher redshifts. Moreover, higher redshifts also span

larger cosmic volumes, leading to a larger number of sources. These combined factors therefore

imply that when high-redshift sources are incorporated into the H0 estimation, the exclusion of

blocked supernovae from the Hubble diagram becomes more akin to excluding a random sample,

resulting in a smaller bias in the inferred value for H0.

This suggests that the blocking of supernovae by the Milky Way’s disk does not introduce

a significant bias in H0 when using observed supernova samples like the Pantheon+ catalogue,

which includes sources up to z = 2.26, as long as the analysis does not rely solely on the low-

redshift full-sky portion of the catalogue. We cannot verify this using the simulated supernova

catalogue used for this study as its full-sky part only extends to z = 0.1. However, this is

definitely something that should be verified using a simulated sample of sources which spans the

full-sky volume at higher redshifts as well.

Nevertheless, addressing the bias introduced by these low-redshift correlated supernovae re-

mains important, even if their impact on H0 is expected to be negligible. This is because they

compromise the assumptions underlying the likelihood function employed in the MCMC analy-

sis. As discussed previously, this bias can simply be averted by introducing a low-redshift cut-off

or, in a more systematic way, by incorporating the velocity covariance in the likelihood analysis

to down-weight the low-redshift supernovae.
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8 Conclusion

Despite considerable efforts, a compelling explanation of the persistent discrepancy between

early-time and late-time measurements of the Hubble constant remains yet to be found. Some

interpret this Hubble tension as a harbinger for new physics beyond the concordance ΛCDM

model. However, the alternative cosmological models proposed thus far have not proven to be

satisfactory substitutes. In this context, we believe it is not only relevant, but imperative to

continue to look for new sources of bias in our late-Universe H0 measurements, performed under

the assumption of the ΛCDM model. The leading method to estimate the Hubble constant in

the local Universe is based on the Type Ia supernovae distance ladder. In this respect, this work

assesses how the blocking of certain supernovae by foreground galaxies can bias our late-time

estimation of the Hubble constant. We find that 2.4% to 9% of the supernovae in our simulated

catalogue are obstructed by a foreground galaxy, depending on the way in which we define the

effective radius of a galaxy. Most of these sources are obstructed by a neighbouring galaxy

located in the same galaxy cluster as their host-galaxy and they are, on average, more magnified

than their visible counterparts.

In its simplest form, this blocking implies that supernovae lying behind a foreground galaxy

are excluded from our observed samples. We find that this selection bias leads to an overesti-

mation of H0 which ranges from 0.03% to 0.09% depending on the chosen definition for galactic

radii. Currently, the impact of this selection bias is not substantial, given the precision of ex-

isting H0 estimations. However, with the forthcoming launch of upcoming surveys such as the

LSST, we anticipate a significant increase in the size of supernovae samples. This will likely

shift the dominant source of error in SNe Ia distance measurements from statistical errors to

systematic errors emphasising the need for more robust consideration of systematic biases. Con-

sequently, smaller systematic errors, including the selection bias discussed here, will therefore

gain importance and require more attention in the upcoming years. Nonetheless, the presented

estimates of the fraction of obstructed supernovae can be regarded as conservative, suggesting

that the impact of this selection bias is likely to be more prominent in observed samples of

supernovae.

To date, the primary focus of improving the SNe Ia distance ladder has been increasing the

accuracy and precision with which we can determine the luminosity of supernovae, and thus

their use as reliable standard candles. In contrast, error of the indirect determination of su-

pernovae’s redshift through that of their host-galaxy has received less attention, often being

regarded as negligible. However, we show here that supernova blocking can also have an impact

on these redshift determinations, namely if obstructed supernovae are erroneously assigned the

redshift of their foreground galaxy instead of that of their host-galaxy. We find that such host-

galaxy misidentifications can result in an underestimation of H0 of the order of 1.95% in the

scenario where the mismatch probability is proportional to the angular separation between the
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obstructed supernova and its foreground galaxy. This represents a non-negligible shift in the

central value of H0, indicating the importance of further investigation into the impact of this

mismatching using observed supernova samples.

Lastly, we examine the selection bias induced by the specific orientation of the Milky Way’s

plane on the estimation of the Hubble constant. Our analysis reveals that this selection bias

is quite significant when the measurement of the Hubble constant relies on low redshift sources

only (z ≤ 0.1), as it can lead to a shift in the central value of H0 of ∼ 0.9 km/s/Mpc. However,

once higher redshift sources are included into the analysis as well, it is expected that this bias

becomes negligible.

The overall bias resulting from supernova blocking is a combination of these three effects, with

the misidentification of the host-galaxies of obstructed sources being the dominant component.

We therefore conclude that further efforts to improve the accuracy of our late-time estimation

of the Hubble constant should include two important steps. Firstly, incorporating the consider-

ation of host misidentification of obstructed supernovae in our matching algorithms. Secondly,

correcting for the selection bias induced by total supernovae blocking when we reach larger ob-

served supernovae samples. Finally, our analysis reveals that while certain errors remaining in

our late-time estimation of the Hubble constant could potentially alleviate the Hubble tension,

others might also aggravate it. Therefore, the results presented here also substantiate the fact

that it seems unlikely that unrelated systematic errors alone can resolve this tension.
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A Extrema of the linear map described by

a matrix

We consider a (real) matrix M which represents a linear map and a vector v⃗. The Rayleigh

quotient of M and v⃗ is defined as

RM (v⃗) =
||Mv⃗||2

||v⃗||2
=

v⃗TMv⃗

v⃗T v⃗
(83)

The Rayleigh quotient of a matrix and a vector represents the “amplifying effect” of the linear

map represented by the matrix M on the vector v⃗. Therefore, the maximum (resp. minimum)

of the linear map is in the direction on the vector v⃗max (resp. v⃗min) for which the Rayleigh

quotient is maximized (resp. minimized). The amplitude of this maximum (resp. minimum) is

given by the value of the Rayleigh quotient for v⃗max (resp. v⃗min).

Suppose that M is a symmetric n × n matrix and let {λ1, ..., λn} be its eigenvalues. Since

M is a real, symmetric matrix, there exists an ortho-normal basis {ê1, ..., ên} of Rn where êi is

the eigenvector associated with λi.

Since {ê1, ..., ên} of Rn form an ortho-normal basis for Rn, any vector v⃗ ∈ Rn can be rewritten

uniquely in terms of this ortho-normal basis and a set of coefficients αi as

v⃗ =
n∑

i=1

αiêi. (84)

In addition, since RM (v⃗) does not depend on the norm of v⃗, we can impose the constraint

||v⃗||2 = 1.

We can therefore rewrite

v⃗T v⃗ =
( n∑

i=1

αiêi

)T( n∑
i=1

αiêi

)
=

n∑
i=1

α2
i , (85)

v⃗TMv⃗ =
( n∑

i=1

αiêi

)T( n∑
i=1

αiλiêi

)
=

n∑
i=1

α2
iλi. (86)

The Rayleigh quotient therefore becomes

RM (v⃗) =

∑n
i=1 α

2
iλi∑n

i=1 α
2
i

. (87)

This quotient is a weighted average of the eigenvalues with weight α2
i summing to 1. Suppose

the k-th eigenvalue is the largest. The Rayleigh quotient will then be maximized if the weight

on λk is α2
k = 1 and α2

i ̸=k = 0 for all other terms. Such a vector is a basis vector, namely the
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eigenvector corresponding to the largest eigenvalue. The maximum of the linear map described

by the matrix is therefore in the direction of the eigenvector associated with the largest eigen-

value.

For the same reasons, the minimum of the linear map described by the matrix is therefore

in the direction of the eigenvector associated with the smallest eigenvalue.
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