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color-ordered amplitudes have 
poles when region momenta !",$ ≔
&" + &"() + · · · + &$ go on shell.  
At leading power as  !",$+ → 0, they 
factorize into product of lower-point 
amplitudes. 
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Factorization of scattering amplitudes
When external particles are unresolved, gauge theory amplitudes factorize  into lower-point 
amplitudes multiplied by a universal emission factor, e.g. splitting amplitudes, soft-gluon emission 
factors.
• The emission factors are typically simple and nice, a good way to probe

analytic properties of the multi-point amplitudes. 
• Capture phase-space infrared singularities, ingredients to IR subtraction scheme.  

Recent progress at N^3LO:   e.g. [Catani, Colferai, Torrini (2019), Del Duca, Duhr, Haindl, Lazopoulos, Michel (2019-20), Catani, de 
Florian, Rodrigo (2019);Zhu (2020)]

Tree level factorization:
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S depend on the momentum 
and helicities of the soft 
gluon, independent of the 
helicities and particle types 
of the others 

Soft gluon factorization

(Tree-level) soft emission factor 
is a sum of gauge invariant 
dipoles

Quadruple correlation in three loop soft anomalous dimension   
Almelid, Duhr, Gardi [1507.00047], 
Almelid, Duhr,  Gardi,  McLeod, White,[1706.10162]. 
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§ Dipole formula needs to be 
modified for multi-parton
scattering processes 

§ Dipole formula describes the  planar limit of 
higher-loop amplitudes in soft limit

known up to 2-loop order 

Duhr, Gehrmann [1309.4393]  Li, Zhu [1309.4941]

Anastasiou, Bern, Dixon, Kosower [0309040]. 



Soft gluon emission from Wilson lines 
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Feige, Schwartz 
[1403.6472]. 

invariance under recalling of momenta 
of classical sources :   S (q) depends on 
one energy scale (the soft gluon 
energy) ,  and the angles between the 
directions of external momenta  
.J, {./, .0, .L … . }

Or directly obtained from Wilson-line matrix element

+ P (!, {Q/}) can be extracted from 5-pt 
amplitude 1+2 à 3+4+q :
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Stereographic projection: 
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Unit 2-sphere mapped onto y-plane,  
Lorentz symmetry à global SL(2, C) 

Symmetries and kinematics

Through conformal boost 
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Stereographic projection: 
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Unit 2-sphere mapped onto y-plane,  
Lorentz symmetry à global SL(2, C) 

Number of independent kinematic variables for 
process with n external particles including 1 soft 
gluon: 

Symmetries and kinematics
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Through conformal boost 
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General structure of soft factorization at higher-loop orders 
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2-loop and beyond

3-loop and beyond
At the lowest perturbative 
order,  no dependence on 
the matter content, have 
uniform weight property as 
in N=4 SYM 

3-loop correction induced 
by fermion loop ( quartic 
Casimir,  quantum correction 
in abelian theory )



What can we learn from the result?

§ Universal analytic properties  (symbol 
alphabat, location of branch cut)

--- constraints for higher-loop amplitude 
(bootstrap)

§ Integrands for  phase-space integrals 

--- N^3LO IR subtraction programs

--- Resummation of physical observables  

§ How does the soft gluon talk to the 
incoming vs. outgoing hard particles 
? 

---- conceptual issue with factorization 
of hadronic cross section at the LHC

Non-trivial absorbitive part of loop integrals
starts playing a role at N3LO. Could spoil
universality of collinear singularity
Catani, de Florian, Rodrigo  [1112.4405]
Forshaw, Seymour, Siodmok [1206.6363]. 

We obtained the first correction to dipole formula at 
two-loop order in full color:  a tripole emission factor 
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New structure at two-loop order
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diagrams vanish if 
1) depend on q only through q.p2 
2) contains a scale-less sub-loop 

Maximally non-abelian feynman diagrams

Regularization scheme: 
Light-like Wilson line 
! = 4 − 2&

'

(

)

A,B belong to an integral family  symmetric w.r.t ' ↔ j define a tripole (i,j,k)



Two-loop dipole family

1309.4941
I1 I2 I3 I4

!" # = !%" &' + !%)* &" + !% )+ &,

In the multi-parton scattering process,  non-planar contribution from I4 
should cancel with the tripole diagrams 
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Two hard external 
partons, e.g.  e+e- à
qqbar:

Master integrals 

Only planar contributions



8 Master integrals  
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Differential equation contains logarithmic singularities at
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Differential equations for the two-loop tripole family



In Euclidean region , i.e. all !"# ≔
(&'())

(&'(+)(&'+))
>0,  the master integrals are real-analytic.  

logarithms in  , ̅,, 1 − , 1 − ̅, correspond to physical 
singularities in collinear limit:  

12345,4 ≔ −1 45
6

2&45
34,  

378 ∶=
6

;!
log;(, ̅,), 36 ≔ −log 1 − , 1 − ̅, , 34= 0, ∀ B ≠ 0, DE , = 0.

Function space of  the final answer is covered by  Simple-valued Harmonic 
Polylogarithms :  

Real-analyticity on the Euclidean sheet

§ G(,, ̅,) = G ̅,, , , ̅, = ,∗

§ branch cut on the complex z-plane cancel 

I ∥ K", K#, pM, z → 0, 1,∞

§ up to Q(R7), 4 letters  S:= {, , 1 − ,, ̅,, 1 − ̅,}
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Final result for the (i,j,k) tripole:
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In the collinear limit 



alternative definition of the 
tripole in terms of unordered 
tuple {i,j,k}

!" #, ̅#
&,&̅→( )* +

0.

!" #, ̅# &,&̅→, ∞ .

. ∥ 0" 12 03,

. ∥ 04,

4 independent color and kinematic structures

sum over 6 permutations 
among the Wilson lines

# ↔ #
# − 1 ↔ 1

1 − #

(9, :, ;) ↔ (:, ;, 9) ↔ (;, 9, :)

Suppressed in all three collinear 
limits on Euclidean sheet



Final answer in terms of SVHPLs:  

The symbol level cross check :  
matches with two-loop five-point amplitudes in 
N=4 SYM in the limit !" → 0

%&' = )[1]; %'. = )[2] )[4];
%.1

= ) 1 ) 4 −
) 3 1 − ) 4

) 2
+ )[3] ()[4]

− )[5]);
%1" = ) 2 ) 4 − ) 5 ; %&" = )[3] (1 − )[5]);

) 1 → %, ) 2 → % ), ) 3 → −% )/(1 − :),

) 4 → 1 + ;
) + ̅:
1 − ̅:

, ) 5 → 1 + ; (1 +
) + ̅:
1 − ̅:

)

In the soft limit d-> 0, 

Abreu, Dixon, Herrmann, Page, Zeng  [1812.08941] 
Chicherin,  Gehrmann, Henn, Wasser, Zhang, Zoia [1812.11057] 
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exponetiation of soft divergence



Region Kinematics analytic 
continuation rule

!" all outgoing #$%& → |#$%&| )$%& → |)$%&|
!* j,k incoming,  q,i

outgoing
#$%& → |#$%&| )$%& →

|)$%&|e,-%.
!- i incoming,  q,j,k

outgoing
#$%& → |#$%&| )$%& → |)$%&|

A0 A1 A2

/%$/0&
/%&/0$

≔ #$%& ,
/&$/%0
/%&/0$

≔ )$%& .

Analytic continuation into physical regions
̅5 ≔ z∗, /89 = − <8 ⋅ <9 >,% .?@A B89=1 both incoming/outgoing

B89=0, otherwise 



! !"#$%& '( ) = !"#$%& ! '( ) ; !"#$%&', = −2/ ", !"#$%& '1 = 0.

Starting from weight 1,  build the analytic continuation for
higher weight  SVHPLs by requiring consistency with the differential equations. 

Analytic continuation in  41 region  requires taking the monodromy of SVHPLs at z=0.  

!"#$%&51 ) , !"#$%&51 1 − ) , !"#$%&57 ) , !"#$%&57 1 − ) are given by weight-3 
classical polylogarithms 

!"#$%&57 1 − ) − 1
7 !"#$%&51 ) =



Single-valuedness in A1 region

!"#$%&'( ) are no longer real-analytic, 
they develop branch cut on the real axis for |z|>1. 

Although the argument of ln ,-.,-.̅
is ambiguous along the branch cut, the value of the specific 

combination  ln ,-.,- ̅.̅ (ln ,-.,-.̅ + 22 " ) (ln ,-.,-.̅ − 22 " )
vanishes everywhere on the branch cut. 
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Single-valuedness in A1 region

there is one-to-one correspondence between (z, zb) 
and a point in  kinematic phases-space in the A_1 
region 

Given (z, zb) are complex conjugate variables, 



!" = 0 !% = 1 !' = ∞

!)

! ≔ + − +" (+' − +%)
+ − +' (+" − +%)

+"

+'

+)

+%

Single-valuedness in A1 region

The hypersuface z= zb is kinematically accessible. 
In the vicinity of the boundary, the amplitude must 
be continuous and ambiguity must cancel. 

there is one-to-one correspondence between (z, zb) 
and a point in  kinematic phases-space in the A_1 
region 

Given (z, zb) are complex conjugate variables, 



They offer strong constraints for bootstrapping higher-loop 
scattering amplitudes real part '( )*+,-./0 1 − 3 45 6(89)

similar property was observed recently in multi-Regge limit of five-point 
scattering amplitudes Caron-Huot, Chicherin, Henn, Zhang, Zoia [2003.03120]

§ )*+,-./; 3 , )*+,-./; 1 − 3 , )*+,-./0 3 , )*+,-./0 1 − 3
are continuous and differentiable  for ̅3 = 3∗, 3 ≠ 1 ('A 0)

§ may construct parity-even functions )*+,-./C 3 +
)*+,-./C ̅3 , ;

EFE̅ [ )*+,-./C 3 - )*+,-./C ̅3 ] , which have 
well-defined and non-vanishing limit on the  hypersurface 
z = ̅3

§ These are properties of physical amplitudes, not individual 
feynman diagrams  (in particular, not for F(z, zb) )
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Collinear Factorization  

!"2+

Splitting amplitudes are independent of color or kinematics of non-collinear 
external legs 

8( = 3 8:,
8(*+ = 1 − 3 8:

Tree-level amplitudes factorizes on the two-particle pole  6(,(*+= 0,  when two adjacent external 
momenta are collinear.     

The statement holds to all-loop order for time-like splitting s_{i,i+1} >0 (as a 
consequence of color coherence).  à tripole terms are power-suppressed 
collinear limit in A0 region 
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Collinear Factorization violation  

!"2+

Space-like splitting   i+1 à i + P : 

Splitting amplitude depends on color 
and kinematics of non-collinear 
external legs 

≠

7
7

,
(∈9,:∈;

<( = <: >(: =,
:∈;

<@ = <: >@: + 2 <( = <B + cnumber

The two-loop splitting amplitudes 
contain the non-fac. IR poles, JK/MK

which distinguish the direction of non-
collinear legs [1112.4405] [1206.6363]. 

1

M
NO,log(

− T(: U
2(V-WX

YK
)

%J

M
×

The physical origin of the 
breakdown is related to the 
feynman prescription( 
causality of the theory).

[ \7 7

>(: = 1, both	incoming/outgoing,	

>(: = 0, otherwise.	
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Soft-collinear Factorization 

*+,(.) 0", %1, 11 = −45
5

√78

5

⟨ "5⟩

*;
(<) (%1, {+>}) → A>B

" <
C;DE4>

D4B
E F< G

⟨>B⟩

>" ⟨"B ⟩

+5

q

Consider L-loop dipole emission,  with q collinear to +5, 
where particle 1 is an incoming parton with momentum -+5

A>B
" := 

HI (,JKL)

(,JK8)(,J8L)

M

.

Factorization breaking terms in th dipole formular are purely imaginary 
(anti-hermittian),  do not account for the non-universal IR pole in the soft 
limit for the splitting amplitude.  

taking collinear limit, 



-- in !" region where {j(=1) , k} are incoming and {i, q} are 
outgoing:   do not vanish in the collinear limit, due to the  A1-
discontinuity.

--in !# region:  suppressed in the collinear limit

$

%
1 '

Origin of collinear factorization violation 

Consider the tripole terms  in the space-like collinear limit:  

Region Kinematics analytic continuation rule

!" j,k incoming,  
q,i outgoing

()*+ → |()*+| .)*+ →
|.)*+|e0#*1

!# i incoming,  
q,j,k outgoing

()*+ → |()*+| .)*+ → |.)*+|



lim
$,$̅ →(

)*, +,,,-.
/0
] = lim

$,$̅ →(
3456/0 )*,{+,,,-}

.

= 9(
*0 (

:;< ⟨(>⟩
@A

;<B0<

CD
exp[−24K] 2 9+

*L9-
*M

× lim
$,$̅ → (

O**LPOP*0*M 3456/0Q( 1 − S, 1 − ̅S + O**0POP*M*L 3456/0QC 1 − S, 1 − ̅S

The factorization 
breaking  IR poles 
agrees with 
litereature
[1112.4405] 
[1206.6363]. 

Two-loop space-like splitting amplitude in the soft-collinear limit 



Squared splitting amplitude

The second line us given by commutator between two Hermitian operator 
[(T q · T i), (T q · T k)].  At N^3LO, expectation value on tree amplitudes 
⟨M(0)|···|M(0)⟩ is traceless in color space, the color sum vanishes. 
The second line will contribute only at N^4LO and beyond. 

Factorization violation comes from the first line:

The non-fac. IR poles  cancel at cross section level up to  N^3LO
We  made a concrete argument that the finite part does not 
factorize.



An counterexample was construct for the 
single-spin asymmetry  (in a simplified 
model theory)
. 

Schwartz, K.Y., Zhu  [1703.08572]

Collins,Qiu, [0705.2141]

§ Transverse-momentum-dependent pdf 
factorization 

§ Event shapes at hadron colliders

In an  EFT for Glauber gluon,  a particular 
type of effective diagram produces the same 
two-loop constant as we find the soft emission 
factor. 

Mechanism for factorization breaking has been studied in various contexts:

We see a convergence of  stories in different frameworks.



Consider space-like collinear splitting:  P" → 1 − &' (" + &'("
Phase-space integrals of the 1-> 2 splitting amplitude generate
collinear divergences that depend on the color of non-collinear particles 

New type of phase-space collinear singularity 

*+,-. /0 ,
1213456. ≔ *

+,-.
-.,

(1213456.(1 − &')

lim
>?→@

(1213456. 1 − &' = BC D
2EFG2H1G I

J"[ J' L J, J' L JI + J' L JI J' L J, ]J" −15 OP +Q(BP)

Relavant at N^3LO for partonic cross-section for  1+2 à q+ 3+ 4 + …  with high-pT jets in the 
final state (e.g.  Dijet production at hadron colliders  )

Given the two-loop result for  lim
>?→@

|/0|"→,

understanding multi-parton color evolution in the long distance is crucial for the 
estimation of theoretical uncertainties.  



Conventional picture of factorization of  hadronic cross section: 

[Gribov, Lipatov, 1972a]; 
[Altarelli, Parisi ,1977 ]

Factorization scale dependence of  d "# is process-independent,  compensated by pdf evolution

$# = &
$'(
'(

$')
')

*+
(
'(, -. $ /#+0(

2(
'(
, 3, -.)*0

)
'), -. + 6(Λ89:/3)

Pdf evolution kernel at N^3LO and beyond might need to be corrected by <=>=?.+@(2)
depending on the specific underlying scattering process. 

lim
D→F

<=>=?.+@.(2) ≠
? 0 KLM NOPQR − TUQ VML$OWQRLX YQ QℎU [\]

Need to compute the phase-space integral over one-loop |_V|F→` to confirm this argument!



We provide the first result for two-loop soft emission factor beyond leading 
color.  The result reveals certain intricate analytic properties of multi-parton
scattering amplitudes and may serve as a building block for studying 
singularities for N3LO  phase-space integrals.

Summary

Future directions

§ Beyond two loop: bootstrapping  higher-loop results from the 
constraints on their analytic behaviours

§ Application to precision event shapes at hadron colliders, 
where N^3LO is within reach, e.g transverse thrust, transverse 
energy correlators

§ Probing collinear  factorization breaking from the soft limit:

need triple-real, one-loop double-real and two-loop single-real 
soft emission facots (all available)

19010.4497



Thank you for your attention .


