SOFT GLUON PACTORIZATION hT TWO LOOPS IN FULL COLOR

Kai Yan

Max-Planck-Institut für Physik
arXiv: 1912.09370 with Dixon, Herrmann, Zhu.

Factorization of scattering amplitudes

When external particles are unresolved, gauge theory amplitudes factorize into lower-point amplitudes multiplied by a universal emission factor, e.g. splitting amplitudes, soft-gluon emission factors.

- The emission factors are typically simple and nice, a good way to probe analytic properties of the multi-point amplitudes.
- Capture phase-space infrared singularities, ingredients to IR subtraction scheme.

Recent progress at N^3LO: e.g. [Catani, Colferai, Torrini (2019), Del Duca, Duhr, Haindl, Lazopoulos, Michel (2019-20), Catani, de Florian, Rodrigo (2019);Zhu (2020)]

Tree level factorization:

$$
A_{\text {tree }}(1, \ldots, n) \sim \sum_{\lambda} A_{\text {tree }}\left(i, \ldots, j, P^{\lambda}\right) \frac{1}{P_{i, j}^{2}} A_{\text {tree }}\left(P^{\lambda}, j+1, \ldots, i-1\right)
$$

color-ordered amplitudes have poles when region momenta $P_{i, j}:=$ $p_{i}+p_{i+1}+\cdots+p_{j}$ go on shell. At leading power as $P_{i, j}^{2} \rightarrow 0$, they factorize into product of lower-point amplitudes.

Soft gluon factorization

$S^{\text {tree }}\left(s^{+} ; a, b\right)=\frac{\langle a b\rangle}{\langle a q\rangle\langle q b\rangle} \quad S^{\text {tree }}\left(s^{-} ; a, b\right)=-\frac{[a b]}{[a q][q b]}$
(Tree-level) soft emission factor is a sum of gauge invariant dipoles

S depend on the momentum and helicities of the soft gluon, independent of the helicities and particle types of the others

$$
\times S\left(s^{ \pm} ;\{1, \ldots, n-1\}\right)
$$

known up to 2-loop order

Anastasiou, Bern, Dixon, Kosower [0309040].
Duhr, Gehrmann [1309.4393] Li, Zhu [1309.4941]

- Dipole formula describes the planar limit of higher-loop amplitudes in soft limit
- Dipole formula needs to be modified for multi-parton scattering processes

Quadruple correlation in three loop soft anomalous dimension Almelid, Duhr, Gardi [1507.00047], Almelid, Duhr, Gardi, McLeod, White,[1706.10162].

Soft gluon emission from Wilson lines

```
\(S^{(2)}\left(q,\left\{p_{i}\right\}\right)\) can be extracted from 5-pt
amplitude \(1+2 \rightarrow 3+4+q:\)
```

$\left|A_{5}^{(2)}\right\rangle \rightarrow S_{ \pm}^{a,(2)}\left(q ;\left\{p_{i}\right\}\right)\left|A_{4}^{(0)}\right\rangle+$
$S_{ \pm}^{a,(1)}\left(q ;\left\{p_{i}\right\}\right)\left|A_{4}^{(1)}\right\rangle+S_{ \pm}^{a,(0)}\left(q ;\left\{p_{i}\right\}\right)\left|A_{4}^{(2)}\right\rangle$

Or directly obtained from Wilson-line matrix element

$$
\langle q ; a ; \pm| Y_{1} \cdots Y_{n}|0\rangle=S_{a}^{ \pm}\left(q,\left\{n_{i}\right\}\right)\left\langle\underline{\left.0\left|Y_{1} \cdots Y_{n}\right| 0\right\rangle}\right.
$$

$$
\text { = } 1 \text { in pure dim-Reg }
$$

$$
Y_{j}(x):=\mathrm{P} \exp i \mathrm{~g} \int_{0}^{\infty} n_{j} \cdot A^{a} T^{a}\left(x+s n_{j}\right) d s
$$

Represent classical sources traveling in a particular direction $\vec{n}_{j}:=\frac{\vec{p}_{j}}{p^{0}}$

invariance under recalling of momenta of classical sources: S (q) depends on one energy scale (the soft gluon energy), and the angles between the directions of external momenta $\vec{n}_{q},\left\{\vec{n}_{i}, \vec{n}_{j}, \overrightarrow{n_{k}} \ldots\right\}$

Symmetries and kinematics

Stereographic projection:

$$
n^{\mu}=\left(1, \frac{y+\bar{y}}{1+y \bar{y}}, \frac{-i(y-\bar{y})}{1+y \bar{y}}, \frac{1-y \bar{y}}{1+y \bar{y}}\right)
$$

Unit 2-sphere mapped onto y-plane, Lorentz symmetry \rightarrow global SL(2, C)

Through conformal boost $\quad z:=\frac{\left(y-y_{i}\right)\left(y_{j}-y_{k}\right)}{\left(y-y_{j}\right)\left(y_{i}-y_{k}\right)}$
$y_{q} \bigcirc$

Symmetries and kinematics

Stereographic projection:

$$
n^{\mu}=\left(1, \frac{y+\bar{y}}{1+y \bar{y}}, \frac{-i(y-\bar{y})}{1+y \bar{y}}, \frac{1-y \bar{y}}{1+y \bar{y}}\right)
$$

Unit 2-sphere mapped onto y-plane, Lorentz symmetry \rightarrow global SL(2, C)

Through conformal boost $\quad z:=\frac{\left(y-y_{i}\right)\left(y_{j}-y_{k}\right)}{\left(y-y_{j}\right)\left(y_{i}-y_{k}\right)}$

$$
\left(y_{i}, y_{q}, y_{k}, y_{j}\right) \mapsto\left(0, z_{q}, 1, \infty\right)
$$

Number of independent kinematic variables for

$$
y_{q} \bigcirc
$$

$$
\begin{aligned}
z_{q} & =\frac{\langle i q\rangle\langle k j\rangle}{\langle i j\rangle\langle k q\rangle}, \\
\bar{z}_{q} & =\frac{[i q][k j]}{[i j][k q]}
\end{aligned}
$$ process with n external particles including l soft gluon:

$$
\begin{aligned}
& \text { n external particles including } 1 \text { soft } \\
& 2(n-3)+1 \\
& \text { overall energy scale : } x_{i j}:=\frac{\left(-s_{i j}\right)}{\left(-s_{i q}\right)\left(-s_{q j}\right)}
\end{aligned}
$$

$$
z_{i}=0
$$

$$
z_{k}=1
$$

$$
z_{j}=\infty
$$

General structure of soft factorization at higher-loop orders

$$
S=S_{\text {dipole }}+S_{\text {tripole }}+S_{\text {quadruple }}+\ldots
$$

$$
\begin{gathered}
S_{\text {dipole }}(q,\{i, j\})=S_{\text {tree }}\left[1+a V_{i j}^{q} C_{1}(\epsilon)+\left[a V_{i j}^{q}\right]^{2} \mathrm{C}_{2}(\epsilon)+\ldots\right] \\
V_{i j}^{q}:=\left[\frac{\mu^{2}\left(-s_{i j}\right)}{\left(-s_{i q}\right)\left(-s_{q j}\right)}\right]^{\epsilon}, \quad s_{a b}=\langle a b\rangle[b a]=-\left|p_{a} \cdot p_{b}\right| e^{-i \pi \lambda_{a b}}
\end{gathered}
$$

$$
V_{i j}^{q}:=\left[\frac{\mu^{2}\left(-s_{i j}\right)}{\left(-s_{i q}\right)\left(-s_{q j}\right)}\right]^{\epsilon}, s_{a b}=\langle a b\rangle[b a]=-\left|p_{a} \cdot p_{b}\right| e^{-i \pi \lambda_{a b}} \quad \begin{aligned}
& \lambda_{a b}=1 \text { both incoming/outgoing } \\
& \lambda_{a b}=0, \text { otherwise }
\end{aligned}
$$

$$
\begin{aligned}
& C_{1}(\epsilon)=-\frac{1}{\epsilon^{2}} \frac{\Gamma^{3}(1-\epsilon) \Gamma^{2}(1+\epsilon)}{\Gamma(1-2 \epsilon)}=-\frac{1}{\epsilon^{2}}-\frac{\zeta_{2}}{2}+\epsilon \frac{7}{3} \zeta_{3}+\ldots \quad \text { Uniform transcendental weight } \\
& C_{2}(\epsilon)=C_{A} B_{1}+T_{R} N_{f} B_{2}+C_{A} N_{s} B_{3} \quad T_{R} \rightarrow \frac{C_{A}}{2}, N_{f} \rightarrow 4, N_{s} \rightarrow 6 \text { agrees with planar N=4 SYM }
\end{aligned}
$$

New structure at two-loop order

We obtained the first correction to dipole formula at two-loop order in full color: a tripole emission factor

What can we learn from the result?

- Universal analytic properties (symbol alphabat, location of branch cut)
--- constraints for higher-loop amplitude (bootstrap)
- Integrands for phase-space integrals
--- N^3LO IR subtraction programs
--- Resummation of physical observables

$$
\begin{gathered}
S_{a, i j k}^{+(2)}=V_{q, i j}^{2} f_{a a_{k} b} f_{b a_{i} a_{j}} T_{i}^{a_{i}} T_{j}^{a_{j}} T_{k}^{a_{k}} \\
{\left[\frac{\langle i k\rangle}{\langle i q\rangle\langle q k\rangle} F\left(z_{k}^{i j}, \epsilon\right)-\frac{\langle j k\rangle}{\langle j q\rangle\langle q k\rangle} F\left(z_{k}^{j i}, \epsilon\right)\right]}
\end{gathered}
$$

$$
z_{k}^{i j}=\frac{\langle i q\rangle\langle k j\rangle}{\langle i j\rangle\langle k q\rangle}
$$

- How does the soft gluon talk to the incoming vs. outgoing hard particles ?
---- conceptual issue with factorization of hadronic cross section at the LHC

Non-trivial absorbitive part of loop integrals starts playing a role at N3LO. Could spoil universality of collinear singularity Catani, de Florian, Rodrigo [1112.4405] Forshaw, Seymour, Siodmok [1206.6363].

TWO-LOOP TRIPOLE EMIISSION FACTOR

Regularization scheme: Light-like Wilson line $d=4-2 \epsilon$
diagrams vanish if

1) depend on q only through q.p2
2) contains a scale-less sub-loop

Maximally non-abelian feynman diagrams

A,B belong to an integral family symmetric w.r.t $i \leftrightarrow \mathrm{j}$ define a tripole (i,j,k)

A

B

C

D

Two-loop dipole family

Two hard external partons, e.g. $\mathrm{e}+\mathrm{e}-\rightarrow \quad S_{a,+}^{(2)}(q)=\left(V_{i j}^{q}\right)^{2} f_{a b c} T_{i}^{b} T_{j}^{c} C_{2}(\epsilon) \frac{\langle i j\rangle}{\langle i q\rangle\langle q j\rangle}$ $C_{2}(\epsilon)=C_{A}^{2} B_{1}+C_{A} N_{s} B_{2}+C_{A} N_{f} B_{3}$ qqbar:

Only planar contributions
Master integrals
1309.4941

Il

I2

I3

I4

In the multi-parton scattering process, non-planar contribution from I4 should cancel with the tripole diagrams

Differential equations for the two-loop tripole family

External kinematics $\quad \frac{\left(-s_{i j}\right)}{\left(-s_{i q}\right)\left(-s_{q j}\right)}:=1, \quad \frac{\left(-s_{i k}\right)}{\left(-s_{i q}\right)\left(-s_{q k}\right)}:=u, \quad \frac{\left(-s_{j k}\right)}{\left(-s_{j q}\right)\left(-s_{q k}\right)}:=v$.
8 Master integrals

$$
d \vec{f}=d A(\epsilon, u, v) \vec{f}
$$

Differential equation contains logarithmic singularities at

$$
u=0, v=0, \Delta:=1-2 u-2 v+(u-v)^{2}=0
$$

DE can be brought into canonical form

$$
\begin{gathered}
d \vec{g}=\epsilon \sum_{i} d \ln \alpha_{i}(z, \bar{z}) B_{i} \vec{g}, \\
\alpha:=\left\{z_{k}^{i j}, 1-z_{k}^{i j}, \bar{z}_{k}^{i j}, 1-\bar{z}_{k}^{i j}, z_{k}^{i j}-\bar{z}_{k}^{i j}\right\}
\end{gathered}
$$

$$
\begin{aligned}
& z_{k}^{i j}:=\frac{\langle i q\rangle\langle k j\rangle}{\langle i j\rangle\langle k q\rangle}, \quad \bar{z}_{k}^{i j}:=\frac{[i q][k j]}{[i j][k q]} \\
& u=\left(1-z_{k}^{i j}\right)\left(1-\bar{z}_{k}^{i j}\right), \quad v=z_{k}^{i j} \bar{z}_{k}^{i j} \\
& \sqrt{ } \Delta=z-\bar{z}=4 i \frac{\epsilon\left(p_{i}, p_{j}, p_{k}, q\right)}{s_{i j} s_{k q}}
\end{aligned}
$$

Real-analyticity on the Euclidean sheet

In Euclidean region , i.e. all $x_{i j}:=\frac{\left(-s_{i j}\right)}{\left(-s_{i q}\right)\left(-s_{q j}\right)}>0$, the master integrals are real-analytic.

- $\overline{F(z, \bar{z})}=F(\bar{z}, z), \quad \bar{z}=z^{*}$
- branch cut on the complex z-plane cancel
logarithms in $z \bar{z},(1-z)(1-\bar{z})$ correspond to physical singularities in collinear limit:

$$
q \| p_{i}, p_{j}, \mathrm{p}_{\mathrm{k}}, \quad \mathrm{z} \rightarrow 0,1, \infty
$$

- up to $O\left(\epsilon^{0}\right), 4$ letters $\alpha:=\{z, 1-z, \bar{z}, 1-\bar{z}\}$

Function space of the final answer is covered by Simple-valued Harmonic Polylogarithms:

$$
\begin{aligned}
& \partial_{z} L_{w_{0}, \vec{w}}:=(-1)^{w_{0}} \frac{1}{z-w_{0}} L_{\vec{w}} \\
& L_{0^{n}}:=\frac{1}{n!} \log ^{n}(z \bar{z}), L_{1}:=-\log ((1-z)(1-\bar{z})), \quad L_{\vec{w}}=0, \forall \vec{w} \neq \overrightarrow{0}, \text { at } z=0 .
\end{aligned}
$$

Final result for the (i,j,k) tripole:

$$
S_{a, i j k}^{+(2)}=V_{q, i j}^{2} f_{a a_{k} b} f_{b a_{i} a_{j}} T_{i}^{a_{i}} T_{j}^{a_{j}} T_{k}^{a_{k}}\left[\frac{\langle i k\rangle}{\langle i q\rangle\langle q k\rangle} F\left(z_{k}^{i j}, \epsilon\right)-\frac{\langle j k\rangle}{\langle j q\rangle\langle q k\rangle} F\left(z_{k}^{j i}, \epsilon\right)\right]
$$

Symmetric under exchange of $i \leftrightarrow j, \quad z \leftrightarrow(1-z)$.

$$
\begin{aligned}
& \left(z_{k}^{j i}:=1-z_{k}^{i j}\right) \\
& F(z, \bar{z}, \varepsilon)=\frac{1}{\epsilon^{2}} L_{0} L_{1}+\frac{1}{3 \epsilon}\left(L_{1}^{2} L_{0}-2 L_{0} L_{1}^{2}\right) \\
& \quad-L_{1}\left(\frac{2}{9} L_{0} L_{1}+\frac{1}{3} L_{0}^{2} L_{1}+\frac{13}{18} L_{0} L_{1}^{2}+\frac{7}{12} L_{1}^{3}\right)+ \\
& \quad+\zeta_{2}\left(2 L_{0,1}-L_{0} L_{1}\right)+\frac{40}{3} \zeta_{3} L_{1}+O(\varepsilon)
\end{aligned}
$$

In the collinear limit

$$
\begin{array}{ll}
q \| p_{i}, & F\left(z_{k}^{i j}, \bar{z}_{k}^{i j}\right) \xrightarrow{z, \bar{z} \rightarrow 0} 0 . \\
q \| p_{j} \text { or } p_{k}, & F\left(z_{k}^{i j}, \bar{z}_{k}^{i j}\right) \xrightarrow{z, \bar{z} \rightarrow 1 \text { or } \infty} \infty .
\end{array}
$$

$$
\begin{aligned}
& \text { sum over } 6 \text { permutations } \\
& \text { among the Wilson lines } \\
& , j, k) \leftrightarrow(j, k, i) \leftrightarrow(k, i, j) \\
& \qquad Z \leftrightarrow \frac{z}{4} \sum_{i \neq k \neq j} S_{a, i k j}^{+,(2)}=-\frac{1}{4} \sum_{\substack{\text { tripoles } \\
\{i, j, k\}}} S_{a,\{i, j, k\}}^{+,(2)} \leftrightarrow \frac{1}{1-z}
\end{aligned}
$$

alternative definition of the tripole in terms of unordered tuple $\{\mathrm{i}, \mathrm{j}, \mathrm{k}\}$

$$
\begin{aligned}
& \boldsymbol{S}_{a,\{i, j, k\}}^{+,(2)}=2\left(\boldsymbol{S}_{a, i k j}^{+,(2)}+\boldsymbol{S}_{a, k j i}^{+,(2)}+\boldsymbol{S}_{a, j i k}^{+,(2)}\right) \quad 4 \text { independent color and kinematic structures } \\
&=2 \boldsymbol{T}_{i}^{a_{i}} \boldsymbol{T}_{j}^{a_{j}} \boldsymbol{T}_{k}^{a_{k}}\left\{\frac{\langle i k\rangle}{\langle i q\rangle\langle q k\rangle}\left(V_{i k}^{q}\right)^{2}\left[f^{a a_{j} b} f^{b a_{i} a_{k}} D_{1}(z, \bar{z})+f^{a a_{i} b} f^{b a_{k} a_{j}} D_{2}(z, \bar{z})\right]\right. \\
&+\{i \leftrightarrow j\} \quad\} \begin{array}{l}
\text { Suppressed in all three collinear } \\
\text { limits on Euclidean sheet }
\end{array}
\end{aligned}
$$

$$
\begin{array}{lll}
D_{1}(z, \bar{z})=u^{-2 \epsilon} F(z, \bar{z})+F\left(\frac{-z}{1-z}, \frac{-\bar{z}}{1-\bar{z}}\right) & q \| p_{i} \text { or } p_{k}, & D_{i}(z, \bar{z}) \xrightarrow{z, \bar{z} \rightarrow 0 \text { or } \infty} 0 . \\
D_{2}(z, \bar{z})=u^{-2 \epsilon} F(z, \bar{z})-\left(\frac{u}{v}\right)^{-2 \epsilon}\left[F\left(\frac{1}{z}, \frac{1}{\bar{z}}\right)-F\left(\frac{1-z}{-z}, \frac{1-\bar{z}}{-\bar{z}}\right)\right] & q \| p_{j}, & D_{i}(z, \bar{z}) \xrightarrow{z, \bar{z} \rightarrow 1} \infty .
\end{array}
$$

Final answer in terms of SVHPLs:

The epsilon poles come from the
exponetiation of soft divergence $\frac{1}{\epsilon} \gamma_{K} \sum \log \left(\frac{-\left|s_{i j}\right| e^{-i \pi \lambda_{i j}}}{\mu^{2}}\right)$

$$
\begin{aligned}
D_{1}(z)= & -\frac{1}{\epsilon^{2}}\left(\mathcal{L}_{1}\right)^{2}-\frac{1}{\epsilon}\left(\mathcal{L}_{1}\right)^{3}-\frac{7}{12}\left(\mathcal{L}_{1}\right)^{4}+4 \mathcal{L}_{1,0,1,0}+2 \mathcal{L}_{1,0,1,1}+2 \mathcal{L}_{1,1,1,0} \\
D_{2}(z)= & \frac{1}{\epsilon^{2}} \mathcal{L}_{0} \mathcal{L}_{1}+\frac{1}{\epsilon} \mathcal{L}_{0}\left(\mathcal{L}_{1}\right)^{2}+\frac{2}{3} \mathcal{L}_{0}\left(\mathcal{L}_{1}\right)^{3}+6 \zeta_{2}\left(\mathcal{L}_{0,1}-\mathcal{L}_{1,0}\right) \\
& +2\left(\mathcal{L}_{0,0,0,1}-\mathcal{L}_{0,0,1,0}+\mathcal{L}_{0,1,0,0}+\mathcal{L}_{0,1,0,1}-\mathcal{L}_{1,0,0,0}\right)
\end{aligned}
$$

The symbol level cross check : matches with two-loop five-point amplitudes in $\mathrm{N}=4 \mathrm{SYM}$ in the limit $p_{5} \rightarrow 0$

$$
\begin{aligned}
& s_{12}=x[1] ; s_{23}=x[2] x[4] ; \quad \text { In the soft limit d-> } 0, \\
& s_{34} \\
& =x[1]\left(x[4]-\frac{x[3](1-x[4])}{x[2]}\right)+x[3](x[4] \\
& -x[5]) \text {; } \\
& s_{45}=x[2](x[4]-x[5]) ; s_{15}=x[3](1-x[5]) ; \\
& \text { In the soft limit d-> } 0 \text {, } \\
& x[1] \rightarrow s, \quad x[2] \rightarrow s x, \quad x[3] \rightarrow-s x /(1-z), \\
& x[4] \rightarrow 1+d\left(\frac{x+\bar{z}}{1-\bar{z}}\right), \quad x[5] \rightarrow 1+d\left(1+\frac{x+\bar{z}}{1-\bar{z}}\right)
\end{aligned}
$$

Abreu, Dixon, Herrmann, Page, Zeng [1812.08941]
Chicherin, Gehrmann, Henn, Wasser, Zhang, Zoia [1812.11057]

Analytic continuation into physical regions

$$
\begin{aligned}
& \bar{z}:=\mathrm{z}^{*}, \quad s_{a b}=-\left|p_{a} \cdot p_{b}\right| e^{-i \pi \lambda_{a b}} \quad \lambda_{a b}=1 \text { both incoming/outgoing } \\
& \lambda_{a b}=0 \text {, otherwise } \\
& \frac{s_{i k} s_{q j}}{s_{i j} s_{q k}}:=u_{k}^{i j}, \\
& \frac{s_{j k} s_{i q}}{s_{i j} s_{q k}}:=v_{k}^{i j} .
\end{aligned}
$$

Analytic continuation in A_{1} region requires taking the monodromy of SVHPLs at $\mathrm{z}=0$.

$$
\left.D_{i}(z, \bar{z})\right|_{A_{1}}=\left.D_{i}(z, \bar{z})\right|_{A_{0}}+\operatorname{disc}_{A_{1}} D_{i}(z, \bar{z}) \quad \operatorname{disc}_{A_{1}} D_{i}(z, \bar{z})=\underset{z \rightarrow z e^{-2 \pi \mathrm{i}}}{ }\left[D_{i}(z, \bar{z})\right]
$$

Starting from weight 1 , build the analytic continuation for higher weight SVHPLs by requiring consistency with the differential equations.

$$
d \operatorname{disc}_{A_{1}} L_{w}(z)=\operatorname{disc}_{A_{1}} d L_{w}(z) ; \quad \operatorname{disc}_{A_{1}} L_{0}=-2 \pi i, \quad \operatorname{disc}_{A_{1}} L_{1}=0
$$

$$
\operatorname{disc}_{A_{1}} D_{1}(z), \operatorname{disc}_{A_{1}} D_{1}(1-z), \operatorname{disc}_{A_{1}} D_{2}(z), \operatorname{disc}_{A_{1}} D_{2}(1-z)
$$

are given by weight-3 classical polylogarithms

$$
\begin{array}{|rr}
\operatorname{disc}_{A_{1}} D_{2}(1-z)-\frac{1}{2} \operatorname{disc}_{A_{1}} D_{1}(z)= & +2 \mathrm{i} \pi\left\{\frac{\log |1-z|^{2}}{\epsilon^{2}}-\frac{2}{\epsilon} \log |z|^{2} \log |1-z|^{2}-\frac{1}{12} \log ^{3}|1-z|^{2}\right. \\
-4 \pi^{2}\left\{\frac{\log |1-z|^{2}}{\epsilon}-2 \log |z|^{2} \log |1-z|^{2}\right\} & +2 \log ^{2}|z|^{2} \log |1-z|^{2}-16 \zeta_{2} \log |1-z|^{2} \\
& \left.+\frac{1}{4} \log \left(\frac{1-z}{1-\bar{z}}\right)\left[\log ^{2}\left(\frac{1-z}{1-\bar{z}}\right)+4 \pi^{2}\right]\right\}
\end{array}
$$

Single-valuedness in Al region

$\operatorname{disc}_{A_{1}} D_{i}(z)$ are no longer real-analytic, they develop branch cut on the real axis for $|z|>1$.

Although the argument of $\ln \frac{1-z}{1-\bar{z}}$
is ambiguous along the branch cut, the value of the specific
combination $\ln \frac{1-z}{1-\overline{\bar{z}}}\left(\ln \frac{1-z}{1-\bar{z}}+2 \pi i\right)\left(\ln \frac{1-z}{1-\bar{z}}-2 \pi i\right)$
vanishes everywhere on the branch cut.

Single-valuedness in Al region

Given (z, zb) are complex conjugate variables,
there is one-to-one correspondence between (z, zb) and a point in kinematic phases-space in the A_l region
$y_{q} \bigcirc$

Single-valuedness in Al region

Given (z, zb) are complex conjugate variables,
there is one-to-one correspondence between (z, zb) and a point in kinematic phases-space in the A_l region

The hypersuface $\mathrm{z}=\mathrm{zb}$ is kinematically accessible. In the vicinity of the boundary, the amplitude must be continuous and ambiguity must cancel.

- $\operatorname{disc}_{A_{1}} D_{1}(z), \operatorname{disc}_{A_{1}} D_{1}(1-z), \operatorname{disc}_{A_{1}} D_{2}(z), \operatorname{disc}_{A_{1}} D_{2}(1-z)$ are continuous and differentiable for $\bar{z}=z^{*}, z \neq 1$ (or 0)
- may construct parity-even functions $\operatorname{disc}_{A_{1}} D_{i}(z)+$ $\operatorname{disc}_{A_{1}} D_{i}(\bar{z}), \frac{1}{z-\bar{z}}\left[\operatorname{disc}_{A_{1}} D_{i}(z)-\operatorname{disc}_{A_{1}} D_{i}(\bar{z})\right]$, which have well-defined and non-vanishing limit on the hypersurface $\mathrm{z}=\bar{z}$
- These are properties of physical amplitudes, not individual feynman diagrams (in particular, not for $F(z, z b)$)

They offer strong constraints for bootstrapping higher-loop scattering amplitudes

real part of disc ${A_{1}} D_{2}(1-z)$ at $O\left(\epsilon^{0}\right)$
similar property was observed recently in multi-Regge limit of five-point scattering amplitudes Caron-Huot, Chicherin, Henn, Zhang, Zoia [2003.03120]

COLLINEAR FACTORIZATION VIOLATION

Collinear Factorization

Tree-level amplitudes factorizes on the two-particle pole $P_{i, i+1}=0$, when two adjacent external momenta are collinear.

$$
A_{n}(\ldots, i, i+1, \ldots) \xrightarrow{i \| i+1} \sum_{\lambda} \operatorname{Split}_{-\lambda}(z ; i, i+1) A_{n-1}\left(\ldots, P^{\lambda}, \ldots\right)_{i}
$$

$$
\begin{gathered}
\lambda_{i}=\sqrt{z} \lambda_{P} \\
\lambda_{i+1}=\sqrt{1-z} \lambda_{P}
\end{gathered}
$$

Splitting amplitudes are independent of color or kinematics of non-collinear external legs
The statement holds to all-loop order for time-like splitting s_\{i,i+1\}>0(as a consequence of color coherence). \rightarrow tripole terms are power-suppressed collinear limit in A0 region

Collinear Factorization violation

Space-like splitting i+l $\rightarrow \mathrm{i}+\mathrm{P}$:
Splitting amplitude depends on color and kinematics of non-collinear external legs

$$
A_{n}(\ldots, i, i+1, \ldots) \xrightarrow{i \| i+1} \sum_{\lambda} \text { Split }_{-\lambda} A_{n-1}\left(\ldots, P^{\lambda}, \ldots\right)
$$

The physical origin of the breakdown is related to the feynman prescription(causality of the theory).

$$
\begin{array}{ll}
\frac{1}{\epsilon} \gamma_{K} \sum \log \left(\frac{-\left|s_{i j}\right| e^{-i \pi \lambda_{i j}}}{\mu^{2}}\right) & \lambda_{i j}=1, \text { both incom } \\
\lambda_{i j}=0, \text { otherwise. }
\end{array}
$$

$$
\frac{i \pi}{\epsilon} \times \sum_{i \in R, j \in L} T_{i} \cdot T_{j} \lambda_{i j}=\sum_{j \in L} T_{P} \cdot T_{j} \lambda_{P j}+2 T_{i} \cdot T_{k}+\text { cnumber }
$$

The two-loop splitting amplitudes contain the non-fac. IR poles, π^{2} / ϵ^{2} which distinguish the direction of noncollinear legs [1112.4405] [1206.6363].

Soft-collinear Factorization

Consider L-loop dipole emission, with q collinear to p_{1}, where particle l is an incoming parton with momentum - p_{1}

$$
S_{a}^{(L)}\left(q^{+},\left\{p_{i}\right\}\right) \rightarrow\left(V_{i j}^{q}\right)^{L} f_{a b c} T_{i}^{b} T_{j}^{c} C_{L}(\epsilon) \frac{\langle i j\rangle}{\langle i q\rangle\langle q j\rangle} \quad V_{i j}^{q}:=\left[\frac{\mu^{2}\left(-s_{i j}\right)}{\left(-s_{i q)}\left(-s_{q j}\right)\right.}\right]^{\epsilon}
$$

q

$$
\begin{array}{r}
\left.\mathbf{S} \mathbf{p}^{(L)}\right|_{\text {dipole }} \stackrel{q-\text { soft }}{\sim}\left(\frac{\mu^{2}}{x_{q} s_{1 q}}\right)^{L \epsilon} C_{L}(\epsilon)\left\{\mathrm{i} \sin (L \pi \epsilon) \sum_{k \neq 1}(-1)^{\lambda_{k q}} \boldsymbol{T}_{q} \cdot \boldsymbol{T}_{k}+\frac{C_{A}}{2} \cos (L \pi \epsilon)\right\} \mathbf{S p}^{(0)} \\
\\
S_{-}^{(0)}\left(z_{q}, q^{+}, 1^{+}\right)=-T_{1} \frac{1}{\sqrt{x_{q}}} \frac{1}{\langle q 1\rangle}
\end{array}
$$

Factorization breaking terms in th dipole formular are purely imaginary (anti-hermittian), do not account for the non-universal IR pole in the soft limit for the splitting amplitude.

Origin of collinear factorization violation

Consider the tripole terms in the space-like collinear limit:
--in A_{2} region: suppressed in the collinear limit
-- in A_{1} region where $\{j(=1), \mathrm{k}\}$ are incoming and $\{\mathrm{i}, \mathrm{q}\}$ are outgoing: do not vanish in the collinear limit, due to the Aldiscontinuity.

Region	Kinematics	analytic continuation rule	
A_{1}	j,k incoming, q, i outgoing	$u_{k}^{i j} \rightarrow\left\|u_{k}^{i j}\right\|$	$v_{k}^{i j} \rightarrow$ $\left\|v_{k}^{i j}\right\| \mathrm{e}^{-2 i \pi}$
A_{2}	i incoming, $\mathrm{q}, \mathrm{j}, \mathrm{k}$ outgoing	$u_{k}^{i j} \rightarrow\left\|u_{k}^{i j}\right\|$	$v_{k}^{i j} \rightarrow\left\|v_{k}^{i j}\right\|$

$$
\begin{aligned}
\lim _{z, \bar{Z} \rightarrow 1}\left[\left.S_{a,\{i, j, k\}}^{+}\right|_{A_{1}}\right] & =\lim _{z, \bar{Z} \rightarrow 1} \operatorname{disc}_{A_{1}} S_{a,\{i, j, k\}}^{+} \\
& =T_{1}^{a_{1}} \frac{1}{\sqrt{-x_{q}}\langle 1 q\rangle}\left(\frac{\mu^{2}}{x_{q} s_{1 q}}\right)^{2 \epsilon} \exp [-2 i \pi] 2 T_{i}^{a_{i}} T_{k}^{a_{k}}
\end{aligned}
$$

$$
\times \lim _{z, \bar{Z} \rightarrow 1}\left[f^{a a_{i} b} f^{b a_{1} a_{k}} \operatorname{disc}_{A_{1}} D_{1}(1-z, 1-\bar{z})+f^{a a_{1} b} f^{b a_{k} a_{i}} \operatorname{disc}_{A_{1}} D_{2}(1-z, 1-\bar{z})\right]
$$

Two-loop space-like splitting amplitude in the soft-collinear limit

$$
\begin{aligned}
&\left.\mathbf{S p}^{(2)}\right|_{\text {tripole }} \stackrel{q-\text { soft }}{\simeq}-\left.\frac{1}{4} \sum_{\substack{\text { tripoles }}} \boldsymbol{S}_{a,\{i, 1,1, k\}}^{+,(2)}\right|_{q \| p_{1}} \\
&=\left(\frac{\mu^{2}}{x_{q} s_{1 q}}\right)^{2 \epsilon} \sum_{i \neq k \neq 1} \delta_{0, \lambda_{i k}} \delta_{1, \lambda_{1 k}}\left\{f^{b a_{k} a_{i}} \boldsymbol{T}_{q}^{b} \boldsymbol{T}_{k}^{a_{k}} \boldsymbol{T}_{i}^{a_{i}} \times[\right. \\
&\left.\frac{1}{\epsilon^{2}}\left(\mathrm{i} \pi \log v_{k}^{1 i}-\pi^{2}\right)-\frac{\mathrm{i} \pi^{3}}{3} \log v_{k}^{1 i}+4 \mathrm{i} \pi \zeta_{3}+30 \zeta_{4}+\frac{8 \pi}{3}\left(\arg \left(z_{k}^{1 i}\right)^{3}-\pi^{2} \arg \left(z_{k}^{1 i}\right)\right)\right] \\
&+ {\left.\left[\left(\boldsymbol{T}_{q} \cdot \boldsymbol{T}_{i}\right)\left(\boldsymbol{T}_{q} \cdot \boldsymbol{T}_{k}\right)+\left(\boldsymbol{T}_{q} \cdot \boldsymbol{T}_{k}\right)\left(\boldsymbol{T}_{q} \cdot \boldsymbol{T}_{i}\right)\right]\left(\frac{\pi^{2}}{\epsilon^{2}}-30 \zeta_{4}\right)\right\} \mathbf{S p}^{(0)} }
\end{aligned}
$$

The factorization breaking IR poles agrees with litereature [1112.4405] [1206.6363].

Squared splitting amplitude

$$
\begin{aligned}
& \left.\mathbf{S p}^{\dagger} \mathbf{S p}\right|_{\text {non-fac. }} \stackrel{q-\text { soft }}{\sim} \bar{a}^{2} g_{s}^{2} \sum_{i \neq k \neq 1} \delta_{0, \lambda_{i k}} \mathbf{S p}^{(0) \dagger}\left\{\left[\left(\boldsymbol{T}_{q} \cdot \boldsymbol{T}_{i}\right)\left(\boldsymbol{T}_{q} \boldsymbol{T}_{k}\right)+\left(\boldsymbol{T}_{q} \cdot \boldsymbol{T}_{k}\right)\left(\boldsymbol{T}_{q} \boldsymbol{T}_{i}\right)\right]\left(-15 \zeta_{4}\right)\right. \\
& \left.+2 \pi \mathrm{i} \delta_{1, \lambda_{1 k}} f^{b a_{k} a_{i}} \boldsymbol{T}_{q}^{b} \boldsymbol{T}_{k}^{a_{k}} \boldsymbol{T}_{i}^{a_{i}}\left(\frac{\mu^{2}}{x_{q} s_{1 q}}\right)^{2 \epsilon}\left[\left(\frac{1}{\epsilon^{2}}-2 \zeta_{2}\right) \log v_{k}^{1 i}+4 \zeta_{3}\right]\right\} \mathbf{S p}^{(0)}+\mathcal{O}\left(\bar{a}^{4}\right)
\end{aligned}
$$

$\begin{aligned} & \text { The second line us given by commutator between two Hermitian operator } \\ & {[(\mathrm{Tq} \cdot \mathrm{Ti}),(\mathrm{Tq} \cdot \mathrm{T} \mathrm{k})] \text {. At } \mathrm{N}^{\wedge} 3 \mathrm{LO}, \text { expectation value on tree amplitudes }}\end{aligned} \quad v_{k}^{1 i}=\frac{s_{i k} s_{1 q}}{s_{1 i} s_{k q}}, \quad z_{k}^{1 i}=\frac{\langle k i\rangle\langle 1 q\rangle}{\langle 1 i\rangle\langle k q\rangle}$ $\langle M(0)| \cdots|M(0)\rangle$ is traceless in color space, the color sum vanishes.
The second line will contribute only at $\mathrm{N}^{\wedge} 4 \mathrm{LO}$ and beyond.
Factorization violation comes from the first line:

The non-fac. IR poles cancel at cross section level up to $\mathrm{N}^{\wedge} 3 \mathrm{LO}$ We made a concrete argument that the finite part does not factorize.

Mechanism for factorization breaking has been studied in various contexts:

- Transverse-momentum-dependent pdf factorization

An counterexample was construct for the single-spin asymmetry (in a simplified model theory)

Collins,Qiu, [0705.2141]

- Event shapes at hadron colliders

In an EFT for Glauber gluon, a particular

$$
-\left(\mathbf{T}_{2} \cdot \mathbf{T}_{j}\right)\left(\mathbf{T}_{2} \cdot \mathbf{T}_{3}\right) \mathbf{S p}^{0} \overline{\mathcal{M}}^{0}
$$

$$
\times\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}(i \pi)^{2}\left(\frac{4 \pi \mu^{2}}{\vec{p}_{2, \perp}^{2}}\right)^{2 \epsilon}[\Gamma(-\epsilon)]^{2} \frac{\Gamma(1-\epsilon) \Gamma(1+2 \epsilon)}{\Gamma(1-3 \epsilon)}
$$ type of effective diagram produces the same two-loop constant as we find the soft emission factor.

We see a convergence of stories in different frameworks.

New type of phase-space collinear singularity

Consider space-like collinear splitting: $\mathrm{P}_{1} \rightarrow\left(1-x_{q}\right) P_{1}+x_{q} P_{1}$ Phase-space integrals of the l-> 2 splitting amplitude generate collinear divergences that depend on the color of non-collinear particles

$$
\int d^{2} q_{T}|S p|_{n o n-f a c .}^{2}:=\int \frac{d^{2} q_{T}}{q_{T}^{2}} P_{\text {non-fac. }}\left(1-x_{q}\right)
$$

Given the two-loop result for $\lim _{x_{q} \rightarrow 0}|S p|^{1 \rightarrow 2}$
$\lim _{x_{q} \rightarrow 0} P_{\text {non-fac. }}\left(1-x_{q}\right)=a^{3} \sum_{\text {outgoing } j}\left(T_{1}\left[\left(T_{q} \cdot T_{2}\right)\left(T_{q} \cdot T_{j}\right)+\left(T_{q} \cdot T_{j}\right)\left(T_{q} \cdot T_{2}\right)\right] T_{1}\right)\left(-15 \zeta_{4}\right) \quad+O\left(a^{4}\right)$
Relavant at $\mathrm{N}^{\wedge} 3 \mathrm{LO}$ for partonic cross-section for $1+2 \rightarrow q+3+4+\ldots$ with high-pT jets in the final state (e.g. Dijet production at hadron colliders)
understanding multi-parton color evolution in the long distance is crucial for the estimation of theoretical uncertainties.

Conventional picture of factorization of hadronic cross section:

$$
d \sigma=\int \frac{d \xi_{A}}{\xi_{A}} \frac{d \xi_{B}}{\xi_{B}} \phi_{\frac{a}{A}}\left(\xi_{A}, \mu_{f}\right) d \widehat{\sigma_{a b}}\left(\frac{x_{A}}{\xi_{A}}, Q, \mu_{f}\right) \phi_{\frac{b}{B}}\left(\xi_{B}, \mu_{f}\right)+O\left(\Lambda_{Q C D} / Q\right)
$$

Factorization scale dependence of d $\hat{\sigma}$ is process-independent, compensated by pdf evolution

$$
\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \phi_{i / h}\left(x, \mu, \mu^{2}\right)=\sum_{j=f, \bar{f}, G} \int_{x}^{1} \frac{\mathrm{~d} \xi}{\xi} P_{i j}\left(\frac{x}{\xi}, \alpha_{s}\left(\mu^{2}\right)\right) \phi_{j / h}\left(\xi, \mu, \mu^{2}\right) \quad[\text { [Gribov, Lipatov, 1972a]; }
$$

Pdf evolution kernel at $\mathrm{N}^{\wedge} 3 \mathrm{LO}$ and beyond might need to be corrected by $P_{\text {non-fac }}(x)$ depending on the specific underlying scattering process.

$$
\lim _{x \rightarrow 1} P_{\text {non-fac. }}(x) \neq ? \quad \text { for multi }- \text { jet production at the LHC }
$$

Need to compute the phase-space integral over one-loop $|S p|^{1 \rightarrow 3}$ to confirm this argument!

Summary

We provide the first result for two-loop soft emission factor beyond leading color. The result reveals certain intricate analytic properties of multi-parton scattering amplitudes and may serve as a building block for studying singularities for N3LO phase-space integrals.

Future directions

- Beyond two loop: bootstrapping higher-loop results from the constraints on their analytic behaviours
- Application to precision event shapes at hadron colliders, where $\mathrm{N}^{\wedge} 3 \mathrm{LO}$ is within reach, e.g transverse thrust, transverse energy correlators
- Probing collinear factorization breaking from the soft limit: need triple-real, one-loop double-real and two-loop single-real soft emission facots (all available)

Thank you for your attention .

