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 Dirac equation:
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Weyl fermions

𝑖𝛾𝜇𝜕𝜇 −𝑚 𝜓 = 0

𝛾𝜇 satisfy Clifford algebra

 Helicity operator:

𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3

ℎ𝒑 = 2
𝑳 ∙ 𝒑

𝑝

Chirality operator:

 In case of 𝑚 = 0:

helicity = chirality (conserved in time, Lorentz invariant)

Solutions can be represented by 2-component spinors:

left-handed and right-handed Weyl fermions
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Weyl semimetals

Weyl points: monopoles and 

antimonopoles of Berry 

curvature

Experimental signatures:

1. Fermi arc: surface states 

connecting projections of 

Weyl points   

2. Anomalous transport 

properties: negative 

magnetoresistance
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Linear Hamiltonian

 Simplest case:

𝐻 𝒌 = 𝒌 ∙ 𝝈

Fermi surface is a point
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Linear Hamiltonian

 General case:

𝐻 𝒌 =

𝑖=1

3

𝑣𝑖𝑘𝑖𝜎0 + 

𝑖,𝑗=1

3

𝑘𝑖𝐴𝑖𝑗𝜎𝑗

“kinetic” term
“potential” term

Which Fermi surfaces are possible?
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Linear Hamiltonian: type-I and type-II Weyl points

 “kinetic” term is small enough

 Fermi surface is a point 

Type-I Type-II

 “kinetic” term is large enough

 Fermi surface is open

 Weyl point is a touching between 

electron and hole pockets



|| 13.09.2019Aleksei Khudorozhkov 7

Linear Hamiltonian with magnetic field (z-dir.)

𝐻 𝒌 = 𝐶𝑘𝑧𝜎0 + 𝒌 ∙ 𝝈

 Add magnetic field along z-direction:

𝑘𝑥 → 𝑘𝑥

𝑘𝑦 → 𝑘𝑦 − 𝑖
𝑒

𝑐
𝐵 ො𝑥 = 𝑘𝑦 − 𝑖

𝑒

𝑐
𝐵

𝜕

𝜕𝑘𝑥
𝑘𝑧 → 𝑘𝑧

𝐵 = (0, 0, 𝐵)

𝐴 = (0, 𝐵𝑥, 0)

𝐻 𝒌 =

𝑘𝑧(𝐶 + 1) 𝑘𝑥 − 𝑖𝑘𝑦 −
𝑒

𝑐
𝐵

𝜕

𝜕𝑘𝑥

𝑘𝑥 + 𝑖𝑘𝑦 +
𝑒

𝑐
𝐵

𝜕

𝜕𝑘𝑥
𝑘𝑧(𝐶 − 1)



|| 13.09.2019Aleksei Khudorozhkov 8

Linear Hamiltonian with magnetic field (z-dir.)

 Introduce creation and annihilation operators:

𝐻 =
𝑘𝑧(𝐶 + 1)

2

𝑙
ො𝑎†

2

𝑙
ො𝑎 𝑘𝑧(𝐶 − 1)

ො𝑎, ො𝑎† = 1

𝑙 =
𝑐

𝑒𝐵

ො𝑎 =
𝑙

2

1

𝑙2
𝜕

𝜕𝑘𝑥
+ 𝑘𝑥 + 𝑖𝑘𝑦

ො𝑎† =
𝑙

2
−
1

𝑙2
𝜕

𝜕𝑘𝑥
+ 𝑘𝑥 − 𝑖𝑘𝑦

 Search for solutions in the form:
𝜓 =

𝐶1 ۧ|𝑛

𝐶2 ۧ|𝑚
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Linear Hamiltonian with magnetic field (z-dir.)

𝑘𝑧

𝐸𝐶 = 0

𝑘𝑧

𝐸𝐶 = 0.5

𝐸

𝑘𝑧

𝐶 = 1 𝐸

𝑘𝑧

𝐶 = 2
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Linear Hamiltonian with magnetic field (x-dir.)

𝐻 𝒌 = 𝐶𝑘𝑥𝜎0 + 𝒌 ∙ 𝝈

𝐻 =
𝐶

2

2𝑙
ො𝑎 + ො𝑎† + 𝑘𝑧

2

𝑙
ො𝑎†

2

𝑙
ො𝑎 𝐶

2

2𝑙
ො𝑎 + ො𝑎† − 𝑘𝑧

Instead of rotating the magnetic field, we rotate the 

coordinate system together with the basis of Pauli matrices

 We again use the same procedure of “Landau quantization”:



|| 13.09.2019Aleksei Khudorozhkov 11

Linear Hamiltonian with magnetic field (x-dir.)

 There is no solution in the form 𝜓 =
𝐶1 ۧ|𝑛

𝐶2 ۧ|𝑚

 We will search it in the form of a linear combination:

𝜓 = 𝐴0
ۧ|0

0
+ 𝐵0

0

ۧ|0
+ 𝐴1

ۧ|1

0
+ 𝐵1

0

ۧ|1
+⋯+ 𝐴𝑁

ۧ|𝑁

0
+ 𝐵𝑁

0

ۧ|𝑁
+⋯
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Linear Hamiltonian with magnetic field (x-dir.)

 For 0 ≤ 𝐶 < 1:

𝑘𝑧

𝐸

 For 𝐶 > 1:

same as for 𝐶 = 0
with magnetic field 

along z-direction

𝑘𝑧

𝐸

gap opens
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Linear Hamiltonian with magnetic field (x-dir.)

 Several flaws of numerical solution:

1. Ghost states: states where the contribution from | ۧ𝑁 states is dominant

𝑘𝑧

𝐸
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Linear Hamiltonian with magnetic field (x-dir.)

 Several flaws of numerical solution:

2. Replacement of an infinite system of equations with a finite one

𝐶 = 1.5;𝑁 = 300

𝑘𝑧

𝐸

𝐶 = 1.5;𝑁 = 301

𝑘𝑧

𝐸

Analytically proven that with 𝐶 > 1, there is no solution with 

𝐸 = 0, 𝑘𝑧 = 0.

gapno gap

why???
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Non-linear Hamiltonian

 We try to avoid an infinite number of LLs “diving” under the 

Fermi level (which is bad for transport properties).

 For this, we want to close Fermi surface by adding non-

linear terms to 𝐻.

FS for linear 𝐻
(type-II Weyl point)

+ non-linear terms

?
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Non-linear Hamiltonian (example 1)

𝐻 𝒌 = 𝐶𝑘𝑧𝜎0 + 𝑘𝑥 + 𝑘𝑦
2 + 𝑘𝑧

2 𝜎𝑥 + 𝑘𝑦 + 𝑘𝑥
2 + 𝑘𝑧

2 𝜎𝑦 + 𝑘𝑧 − 𝑘𝑥𝑘𝑦 𝜎𝑧

dispersion relation

bands with opposite 

curvature
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Non-linear Hamiltonian (example 1)

𝐻 𝒌 = 𝐶𝑘𝑧𝜎0 + 𝑘𝑥 + 𝑘𝑦
2 + 𝑘𝑧

2 𝜎𝑥 + 𝑘𝑦 + 𝑘𝑥
2 + 𝑘𝑧

2 𝜎𝑦 + 𝑘𝑧 − 𝑘𝑥𝑘𝑦 𝜎𝑧

Fermi surface
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𝑘𝑧

𝐸

𝑘𝑧

𝐸
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Non-linear Hamiltonian (example 1)

𝐻 𝒌 = 𝐶𝑘𝑧𝜎0 + 𝑘𝑥 + 𝑘𝑦
2 + 𝑘𝑧

2 𝜎𝑥 + 𝑘𝑦 + 𝑘𝑥
2 + 𝑘𝑧

2 𝜎𝑦 + 𝑘𝑧 − 𝑘𝑥𝑘𝑦 𝜎𝑧

 With magnetic field:

close-up view far-away view

LLs “dive” under the Fermi 

level

they come to the initial 

side

chiral LL
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Non-linear Hamiltonian (example 2)

dispersion relation

bands with same 

curvature

𝐻 𝒌 = (𝐶𝑘𝑧 + 10𝑘𝑥
2 + 4𝑘𝑦

2 + 𝑘𝑧
2)𝜎0 + 𝒌 ∙ 𝝈
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Non-linear Hamiltonian (example 2)

𝐻 𝒌 = (𝐶𝑘𝑧 + 10𝑘𝑥
2 + 4𝑘𝑦

2 + 𝑘𝑧
2)𝜎0 + 𝒌 ∙ 𝝈

Fermi surface
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Non-linear Hamiltonian (example 2)

 With magnetic field:

close-up view far-away view

LLs “dive” under the Fermi 

level

they come to the initial 

side

chiral LL

𝐻 𝒌 = (𝐶𝑘𝑧 + 10𝑘𝑥
2 + 4𝑘𝑦

2 + 𝑘𝑧
2)𝜎0 + 𝒌 ∙ 𝝈

𝑘𝑧

𝐸

𝑘𝑧

𝐸
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Further steps

 Study other possible variants of higher-order terms to find 

closed Fermi surfaces.

 Calculate magnetoelectric response (essentially, 

conductivity tensor depending on 𝐵), knowing LLs structure.

• Using semi-classical Boltzmann transport theory or

• Using fully quantum approach with the use of Green’s functions

 See if this model can explain any experimental results.

 Maybe study the model describing 2 Weyl points with 

opposite chiralities or try tight-binding approach.


