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Abstract
In this thesis, we aim to gain deeper insights into the recently proposed non-Abelian

topological charge that describes energy bands and band nodes in solids. First, we give
a short overview on previously reported properties this charge exhibits and on how the
non-commutativity is manifested. Further, we establish a bulk-boundary correspondence
between the surface states and the topological charge. This we do using some existing
models in 1D and 2D as well as with some new constructed models in 3D. These two
three-dimensional models have a similar surface Brillouin zone projection of the nodal
lines but in one case these nodal lines are linked and in the other case they are unlinked.
Using these models we further try to find a difference in the surface spectra between the
linked and the unlinked case which would make it easier to differentiate between them
in experiments. For all models the surface states are studied using various methods
either applied on the actual band dispersion or on a spectrally flattened Hamiltonian.
Finally, we formulate a conjecture on the surface states in the phase with non-Abelian
topological charge of −1.

Abstract German
In dieser Arbeit möchten wir die kürzlich publizierte nicht abelsche topologische In-

variante besser verstehen. Diese Invariante beschreibt Energiebänder und Entartungen
zwischen diesen Bändern, sogenannte Knotenpunkte oder Knotenlinien in Festkörpern.
Zuerst geben wir eine kurze Einführung in die Eigenschaften dieser Invarianten. Weiter
erklären wir, wie sich die nicht vorhandene Kommutativität zeigt. Ebenfalls finden wir
einen Zusammenhang zwischen dem Wert der Invarianten im Innern des Materials mit
den beobachteten Zuständen an den Rändern. Dafür verwenden wir bereits existierende
Modelle in einer und zwei Dimensionen sowie zwei eigens entwickelte Modelle in 3D.
Diese dreidimensionalen Modelle haben ähnliche Projektionen der Knotenlinien in die
Oberflächen Brillouin-Zone mit dem Unterschied, dass im einen Fall diese Knotenlinien
miteinander verlinkt sind und im anderen Fall nicht. Anhand diese zwei Modelle ver-
suchen wir weiter einen Unterschied im Oberflächen Spektrum zwischen verlinkten und
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nicht verlinkten Knotenlinien zu finden. Ein solcher Unterschied würde, es einfacher
machen experimentell die Verlinkung zu überprüfen. In allen Modellen untersuchen
wir die Oberflächenzustände mit verschiedenen Methoden. Diese Methoden verwenden
entweder die wirkliche Bandstruktur der Modelle oder einen Hamiltonian mit flachen
Bändern, aber denselben topologischen Eigenschaften. Abschliessend formulieren wir
eine Hypothese über die Oberflächenzustände in der topologischen Phase mit der nicht
abelschen Invarianten −1.
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1. Introduction
In the past decade, the characterization of phases of matter based on symmetries

has been augmented by a classification based on topological invariants. Topologically
non-trivial phases of matter include a diverse spectrum of systems, with prospective
applications in spintronics and quantum computing. If correlations between the con-
stituent particles are sufficiently weak, the topological characterization of the system is
obtained by considering the electron energy bands. Such topologically non-trivial bands
arise for example in the topological insulator Bi2Se3 [1] or in the Weyl semimetal TaAs
[2]. In this thesis, we focus on the recently proposed non-Abelian topological charge,
which has been shown to characterize electron bands of three-dimensional nodal-line and
nodal-chain semimetals, as well as of certain one-dimensional insulators [3]. The main
goal of the thesis is to find a correspondence between this non-Abelian charge (as an ex-
tension of the Berry phase) and the edge states in different models for various dimensions.

In the first part of the work, which comprises Chapters 2 and 3, we start with a
theoretical clarification on one-dimensional PT -symmetric topological insulator by first
introducing the well known Berry phase and afterwards giving a detailed explanation
of the non-Abelian topological charge. To gain some further insights, we present three
flat band models consisting of three energy bands. By choosing different rotations of
the eigenstates of the flat band models, we are able to realize all topological phases.
We then study these models numerically and analytically to find a first bulk-boundary
correspondence between the non-Abelian charge and the edge states. Finally, we present
a generalizedN -band model of a topological insulator and try to reproduce the numerical
results.
As a second part, consisting of Chapters 4 and 5, we go to higher dimensions and

concentrate on PT -symmetric topological semimetals that exhibit point nodes in 2D
or line nodes in 3D. We first generalize the non-Abelian charge to describe nodes in
models with an arbitrary number of bands N ≥ 3. Furthermore, we introduce some
properties of these nodes that arise from the non-commutativity of the charge. We are
mainly interested in the braiding of nodal points and the linking of nodal lines but we
also check the validity of an adjusted version of doubling theorem for this topological
charge. To better understand these concepts, we then introduce three models. First,
we present a two-dimensional model with nodal points that perform a braiding along a
tuning parameter t. Second, we introduce two models in 3D that have a similar diagonal
projection of the nodal lines but in one model, these nodal lines are linked in the other
model they are unlinked. Using these models, we answer the open questions in the last
part.
Chapters 6 and 7 constitute the last part of the thesis. We first present four different
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techniques to numerically detect surface states. The first three techniques use the actual
band structure and try to visualize the surface states either by only looking at the finite
spectrum or by checking the (surface) localization of the eigenstates. For the last method,
we flatten the Hamiltonian. Thereby, we get clear bulk bands and band gaps while
preserving the topology of the model and are able to clearly resolve the surface states.
Applying these techniques to our different models, we finally establish a bulk-boundary
correspondence for the topological charge. Furthermore, we compare the surface spectra
of the linked and unlinked model and state a conjecture on the topological phase of
charge −1.
We conclude and comment on possible future directions and outlooks in Chapter 8.
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2. PT -symmetric topology
In this thesis, we consider PT -symmetric models1 with negligible spin-orbit coupling.

This allows us to drop the spin degree of freedom from the description. After a suitable
rotation of the Hilbert space, we are always able to represent the PT -symmetry as simple
complex conjugation, i.e. PT = K. Therefore, we only consider real Hamiltonians for
which we can also choose the eigenstates to be real.
In this chapter we review the topological invariants of such real Hamiltonians in one

spatial dimension (1D). First we consider the well-known Berry phase and then, by
an analogy to spin rotations, we motivate the definition of the non-Abelian quaternion
charge. Along the way, we will find that the non-triviality of the 2π-rotation in 3D plays
a crucial role.

2.1. Berry phase
The non-Abelian invariant we study in this work can be seen as a combination of two

phenomena. On the one hand we have the Berry phase quantization for PT -symmetric
topological insulators and on the other hand we know that a 2π-rotation is non-trivial
in 3D. We now start in this section with an introduction of the Berry phase.

2.1.1. Mathematical formulation
The Berry phase is a well understood topological invariant which is often used to

describe phenomena in topological band theory. From the adiabatic theorem, it is known
that a state changing adiabatically in the parameter space along a closed path will return
to its initial state up to a phase. Berry [4] however reported that besides a dynamical
phase (exp(−iEt/~)), the state, in addition, picks up a geometric phase (exp(iγ)), the
Berry phase, which is invariant under gauge transformations, and therefore in principle
an observable.
To find this phase we define a time-dependent Hamiltonian H(R) where R is the

vector of the time-dependent parameters Ri = Ri(t), e.g. magnetic and electric fields or,
in the case of electron energy bands, the momentum. We want to consider an adiabatic
time evolution and ask therefore the parametersR(t) to vary slowly along a path C (open
or closed). At each point R along this path we define an instantaneous orthonormal
basis consisting of the eigenstates |n(R)〉 of H(R). These are found (up to a phase)
by a diagonalization of the Hamiltonian, i.e. H(R)|n(R)〉 = En(R)|n(R)〉. By picking

1PT -symmetry means that the system is invariant under combined parity and time-reversal symmetry
but does not have to be invariant under the two symmetries separately.
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a gauge, we can also fix the phase of the eigenstates to remove the arbitrariness. We
choose the phase (or more precisely the gauge) such that the function |n(R)〉 is smooth
and single valued along the path C. If this is not possible we instead choose a piecewise
smooth and single-valued gauge in a finite neighborhood in the parameter space.
Starting with an initial pure state |n(R(0))〉, we analyze the phase it picks up when

slowly moving along the path C. By the adiabatic theorem, we know that if we start
with an eigenstate at t = 0, we stay in an instantaneous eigenstate of the system for any
other t during the evolution of the Hamiltonian H(R(t)). The only degree of freedom
we have is a phase θ(t) which, as we already know, is in general not zero because of
the dynamical phase factor related to the energy of the eigenstate. However, as already
mentioned above, this is not all that it encompasses. We consider the time evolution of
the system for the state |ψ(t)〉 = exp(−iθ(t))|n(R(t))〉:

H(R(t))|ψ(t)〉 = i~ d
dt |ψ(t)〉 (2.1.1)

This can be rewritten as:

En(R(t))|n(R(t))〉 = ~
(

d
dtθ(t)

)
|n(R(t))〉+ i~ d

dt |n(R(t))〉 (2.1.2)

taking the scalar product by multiplying with 〈n(R(t))| from the left, we have:

En(R(t))− i〈n(R(t))| ddt |n(R(t))〉 = ~
d
dtθ(t) (2.1.3)

This results in the following equation:

θ(t) = 1
~

∫ t

0
En(R(t′))dt′ − i

∫ t

0
〈n(R(t′))| d

dt′ |n(R(t′))〉dt′ (2.1.4)

where the first term on the right hand side represents the dynamical phase or time
evolution of the state and the second term represents the Berry phase γ defined as:

γn = i
∫ t

0
〈n(R(t′))| d

dt′ |n(R(t′))〉dt′ (2.1.5)

Then the corresponding state of the system is given as:

|ψ(t)〉 = exp
(−i
~

∫ t

0
En(R(t′))dt′

)
exp(iγn(t)|n(R(t))〉 (2.1.6)

Going back to our path C, we can rewrite the Berry phase as:

γn = i
∫
C
〈n(R)|∇R|n(R)〉 · dR =

∫
C

dR ·An(R) (2.1.7)

where in the last step we defined the Berry connection as:

An(R) = i〈n(R)| ∂
∂R
|n(R)〉 (2.1.8)

4



For closed paths (which are considered most often when talking about Berry phases) we
simply replace

∫
C by

∮
C.

The Berry phase is real from the fact that 〈n(R)| ∂
∂R
|n(R)〉 is imaginary and therefore

the Berry connection is real, otherwise the state would decay exponentially. On the other
hand, obviously the Berry connection (actually a vector potential) is gauge dependent.
We can perform a gauge transformation with a smooth single-valued function ζ(R):

|n(R(t))〉 −→ eiζ(R)|n(R(t))〉 An(R) −→ An(R)− ∂

∂R
ζ(R) (2.1.9)

So by a gauge transformation, the Berry phase changes by ζ(R(0)) − ζ(R(T )) with
R(T ) the end point of the path C. This might suggest that by a smart choice of ζ(R),
it is possible to gauge away the Berry phase. However, this is clearly not possible if we
choose a closed path with R(0) = R(T ). As we have chosen the eigenstate basis to be
single-valued, we know that for the same set of parameters, we need to return to the
same state, i.e. |n(R(0))〉 = |n(R(T ))〉. Therefore, we find ζ(R(0)) − ζ(R(T )) = 2πm
with m an integer and can only gauge away the Berry phase in the special case where it
is an integer.
If we restrict ourselves to closed contractible paths, i.e. the path has a well-defined

interior without holes, we can apply Stokes’ theorem and find the following formula for
the Berry phase:

γn = − Im
∫

dS · (∇R ∧ 〈n(R)|∇R|n(R)〉) = − Im
∫

dS · 〈∇Rn(R)| ∧ |∇Rn(R)〉)
(2.1.10)

where in the last formula we define the Berry curvature:

F = ∇R ∧A = 〈∇Rn(R)| ∧ |∇Rn(R)〉) (2.1.11)

with ∧ being the wedge product, which in the three-dimensional case is the cross product
×. The Berry phase on closed paths is a gauge-invariant quantity that depends only on
the path in the parameter space and not on its time dependence [4, 5].

2.1.2. Understanding of the Berry phase as parallel transport
This up to now very technical consideration of the Berry phase can also be understood

as the parallel transport of a vector. More precisely, we can relate the Berry phase to
the geometric phenomena of anholonomy. This means that some variables fail to return
to their initial value while the variables they depend on are changed along a closed path.
To understand this phenomena, we first consider the parallel transport of a vector on a
sphere.
As a simple illustration, we take a unit sphere centered at the origin and the starting

point of the vector to be at the upper pole of the sphere at (0, 0, 1) pointing in some
direction e (illustrated in Figure 2.1). For parallel transport, we require the vector to
always lie in a tangent plane of the sphere and to keep its orientation when moving along
the path. We now transport the vector along a simple three-segment path that consists
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of first descending to the equator along a meridian, then move along the equator, and
finally move back up to the pole along a different meridian. Although coming back to
the starting point, the vector will point to a different direction rotated by an angle α
that depends on the details of the path. This observation can also be generalized to
arbitrary starting points and paths.

a

b

Figure 2.1.: Parallel transport: Panel (a) shows the described parallel transport on a
sphere starting at the pole. The blue vector is the transported one e, the yellow
vectors indicate specific positions r and the red dashed lines indicate the path C. In
panel (b), adapted from [6], there is a generalization for an arbitrary path on a sphere.

Following Ref. [6], we can describe this process mathematically. We have a transported
unit vector e attached at a point r on a sphere. During the transport, we shift the point
r on a closed path C around the sphere with two conditions: i) e · r = 0 and ii) the
plane in which e and r lie is not allowed to rotate around r. The second condition can
be reformulated, using the angular velocity of the plane Ω = r ∧ ṙ, as Ω · r = 0. With
this we can define the nonintegrable law for parallel transport: ė = Ω ∧ e. If now r
returns to its initial point, the direction of e will change by an angle α(C), called the
anholonomy. To determine the angle, we first define e′ = r ∧ e to get an orthonormal
frame, and then consider the complex unit vector ψ = 1√

2(e + ie′). Using this vector,
the law for parallel transport reads: Imψ∗ · dψ = 0 with dψ the change of ψ induced
by the change of r to r + dr. In the next step, we express ψ in a local basis u(r), v(r)
of the tangent plane (e.g the longitude and latitude of the sphere) as ψ = ne−iα where
n = 1√

2(u+ iv).
Then the anholonomy becomes:

α(C) =
∮
C

dα = Im
∮
C
n∗ · dn = Im

∫
(dn∗ ∧ dn) · n (2.1.12)

where the last integral is over the area on the sphere enclosed by C.
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In a similar way, it is possible to describe parallel transport of a quantum state. We
reinterpret the complex vector ψ as a state |ψ〉 and the position r as a point in the
parameter space R. In this case we have as a nonintegrable transport law the following
connection:

Im〈ψ|dψ〉 = 0 (2.1.13)
For the geometric phase we find that:

〈ψinitial|ψfinal〉 = exp(iγ(C)) (2.1.14)

which, after a closer look, matches the definition of the Berry phase on a closed loop
(Equation 2.1.10) if we use |ψ〉 = |n(R)〉 exp(iγ) [6, 7, 8].
So we find a direct correspondence between the Berry phase and the geometric parallel

transport. The analog of the Berry connection using the complex vector ψ is given as
ψ∗ · dψ [9].

2.1.3. 1D lattice Hamiltonian
We now want to consider the Berry phase in the case of periodic crystals. If we have

a crystal with periodicity a (lattice parameter) in real space, by the Bloch theorem, we
know that the eigenstates are plane waves with a periodic modulated amplitude. Now
switching to the reciprocal space, the eigenstates2 will again have a periodicity, now of
2π
a
. Using this we can characterize all states within the Brillouin zone (BZ) and label

them with momentum k and band index n. So we arrive at the picture of energy bands
inside the BZ [−π/a, π/a]d where d is the dimension of the system [11].
If we consider periodic boundary conditions, we know that the BZ is a torus. This

torus is a natural parameter space for the definition of the Berry phase. Considering the
states |ψ(n,k)〉, we know they pick up a Berry phase on closed paths inside the BZ.
For simplicity, we look at the one-dimensional case and take as a closed path simply

the BZ [−π/a, π/a]. Like this we can assign a Berry phase to every isolated energy band
in the 1D-system. Due to the symmetry of the Bloch states, the Berry phase in a 1D
crystal is quantized to 0 or π [12]. In the case of PT -symmetric systems this can be
seen if we take a gauge in which the eigenstates of the Hamiltonians are real. Therefore
considering any closed path, the only thing the eigenstate can do (if it has to stay real),
is to switch sign, which corresponds to a Berry phase of π.
If we now consider a PT -symmetric Hamiltonian with N energy bands, there is a

further restriction concerning the Berry phase. Namely, the sum of the Berry phases
over all bands needs to be zero (modulo 2π) [3]. Recently, this has been shown to be
true only if all the atomic orbitals constituting the model lie inside the Wigner-Seitz
cell and not on its boundary. If, in contrast, they are on the unit cell boundaries, the
condition can be violated [13].

2This is actually only true if all the orbitals are centered in the unit cell as they are in all the models,
we consider in this thesis. Further explanation for the case when the orbitals are not centered can
be found in Chapter 3 of Ref. [10].
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2.2. Frame rotation
In this section, we present the second building block of the non-Abelian invariant,

the non-triviality of the 2π-rotation. To do so, we concentrate on three-band models
with isolated bands. Since the eigenstates of such a Hamiltonian are three orthogonal
3-component vectors, they constitute an orthogonal frame, that can always be chosen
to be right-handed. Moving along a closed path around the BZ, the eigenframe changes
continuously. Returning to the same point in the BZ, we know that the Hamiltonian
has to stay the same. With the Berry phase we have observed one possibility, how a
single eigenstate can change. It can flip its sign. For the frame to stay right-handed, we
cannot flip the sign of only one state, but we need to flip an even number of signs. Such
flips of two signs correspond to a π-rotation around the state that does not flip its sign.
Using these properties we can define the parameter space for 3-band models as the

quotient space M3 = SO(3)/D2 where D2 = {1, C2x.C2y.C2z} is the space including the
identity and the three π-rotations around the axes. The topological invariant charac-
terizing the possible topological obstructions of the Hamiltonian along a closed path in
k-space is given by the fundamental group of the parameter space.
To determine this fundamental group we can make use of the theorem by Mermin [14]

that tells us: If the space G is simply connected and H subgroup of it, then we have
that:

Π1(G/H) = Π0(H) (2.2.1)
with Π0 the set of connected components. This fundamental group of the parameter
space M3 then captures the non-Abelian band topology that we discuss in Section 2.3
but before we want to obtain some intuition about M3 by first studying the topology of
SO(3).
Having this in mind, we want to look at the transformations a frame can do on a

closed path and will eventually conclude that the quantization of the Berry phase is not
enough to describe all the possible topological obstructions of energy bands in 1D [3].

2.2.1. Non-triviality of 2π-rotations
To see why this characterization of bands using the Berry phase is not enough, we

now want to consider the non-triviality of a 2π-rotation in three-dimensional space.
Therefore, we have a closer look at the topology of SO(3).
A first simple possibility to see that a 2π rotation is topologically non-trivial is the

Dirac belt trick [15]. Consider holding a belt letting the orientation of both ends fixed.
If you now twist the belt by rotating one of its ends with respect to the other by 2π,
there is no possibility to untwist the belt without cutting it, while fixing the orientation
of the ends. In contrast, if you twist the belt by 4π, there is a possibility to untwist it
letting the orientation of both ends fixed3.

3A nice illustration of this trick is the following video: https://www.youtube.com/watch?v=
Vfh21o-JW9Q
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Now, we also want to see this in a more mathematical way. Having a closer look at
SO(3), we see that all rotations can be represented by a rotation axis n and a rotation
angle α. With this in mind, we can represent all rotations as points αn inside a ball of
radius π. This works as we can interpret a rotation with an angle α ∈ (π, 2π] around n
as a rotation with α̃ = 2π − α around the axis −n. Further, we can identify antipodal
points with each other as πn = −πn. In this setting, we can represent a 2π-rotation as
a straight line connecting two antipodal points and thereby going through the center of
the ball. This line then represents a closed path. For this rotation to be topologically
trivial, we should be able to continuously contract the loop to a point. However, there
is no possibility to do this, as the two points where the path intersects the surface of the
ball need to stay at the antipodal positions for the loop to stay closed. In contrast, if we
in addition consider a second 2π-rotation (possibly around a different axis n′), we end
up with a 4π-rotation which can be trivialized by a continuous transformation of the
closed loop. This transformation is done by keeping the ends of the paths at antipodal
positions but connecting the two different paths in the center, to be able to pull them
to the surface of the ball [8]. These two cases are illustrated in Figure 2.2.

Figure 2.2.: Non-triviality of 2π-rotation vs. triviality of 4π-rotation: Panel (a) shows
the 2π-rotation starting at the center of the ball (red dot), going up to the blue dot
which is identified with the blue dot at the bottom, and continuing from there back
to the center. The blue dots need to stay at antipodal positions, therefore, it is not
possible to contract the loop to a point. Panel (b) shows again in blue a 2π-rotation
and a second one in green so the total closed path is actually a 4π-rotation. In panel
(c), we continuously deform the blue and green loops to the yellow path which is a
single closed loop. Now, in panel (d), we simply pull out the yellow loop to the surface
of the sphere (keeping the blue and green dots at antipodal positions) and are able to
shrink it to a point (a constant path, i.e. no rotation).
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2.2.2. Universal covering space of SO(3)
From the considerations in the last section, we can see that while SO(3) is a connected

space, it does not fulfill the stronger condition of being simply connected4. It is connected
as the ball is just one piece, i.e. this means that it is not a union of disjoint non-empty
sets. We can also see this from the fact that the ball is path-connected, i.e. there exists
a path between any two points of the ball. But it is clearly not simply connected as
we have just seen above with the 2π-rotation, which is a closed path that cannot be
contracted to just a point. A different way to see this is the fundamental group. For
rotations in R3 the fundamental group is Π1(SO(3)) = Z2. The non-triviality of the
fundamental group confirms that the space of rotations is not simply connected [8].
Now, we want to have a closer look at the universal cover of SO(3). We know this

cover exists as SO(3) is a manifold and each manifold has a universal cover5. By looking
at the cover, we preserve all local properties but include the non-triviality of the 2π-
rotation. This universal cover will help us to find the fundamental group of the spaceM3
classifying three-band models, as we know that the universal covering space is simply
connected and we thereby will be able to apply Mermin’s Theorem (Eq. 2.2.1).
First, we consider the covering space graphically (Figure 2.3). Yet instead of represent-

ing the rotations using one ball with antipodal points identified, we would now consider
two balls and identify the same position on the different balls with each other. In the
center of one ball we have identity, and the center of the other ball, we call the minus
identity6. Using this setting the 2π-rotation connects the center of the first ball (+1)
with the center of the other ball −1 and thereby clearly is non-trivial. Nevertheless,
locally the two representations are the same, i.e. all rotations by an angle less than π
can be represented using only the ball with center +1.
We now have a closer look at paths corresponding to the 2π- and the 4π-rotations in

such an augmented representation. Again, we start at the identity, following a direction
n to the surface of the ball. However, this time, we then enter the other ball at the same
point and follow the direction −n until arriving at the center of the second ball, i.e. at
minus identity. We now can extend this to a 4π rotation. Therefore, we continue from
minus identity along a possibly different direction n′ to the surface of the second ball
and re-enter the first ball at the corresponding position. From there we follow direction
−n′ back to plus identity. This representation of the rotation using two balls can also be
interpreted as gluing the two balls together which results in a space that is isomorphic to
S3. Now from this isomorphism and the property that all paths on S3 are contractible,
we recover the fact that the 4π-rotation is trivial. Further, we know that S3 has the
same topology as SU(2) with unitary matrices ±1 corresponding to a pair of maximally
distant points. From this, we can see that SU(2) is the double cover of SO(3) and as it
has trivial fundamental group, it is also its universal cover [8].

4This part is quite mathematical, the topological concepts are explained in Appendix A.
5The reason why is explained in Appendix A.4.
6This should not be confused with the inversion operator, which has a negative determinant and thus
does not lie in SO(3).
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Figure 2.3.: Covering space of SO(3): Panel (a) shows the 2π-rotation in the augmented
two ball representation. We start at the identity in the left ball, go up to the blue dot
identified with the blue dot on the other ball, and from there we go to the center of
the second ball. Thereby, we end up at the minus identity. In panel (b), we have the
4π-rotation. We start a second 2π-rotation at the center of the right ball, leave this
ball at the green dot and re-enter the left one to end up at plus identity.

We now describe explicitly the lift from SO(3) to SU(2) following Ref. [16]. Therefore,
we need the generators of the groups. SO(3) is generated by Li with the properties that
(Li)jk = −εijk and the commutators therefore are [Li, Lj] = εijkLk with ε the complete
antisymmetric tensor. Using these, we can write every rotation as:

R(α,n) = exp(−α(n1L1 + n2L2 + n3L3)) (2.2.2)

or equivalently, we can describe the rotations using angles (α, β, γ) as:

R(α, β, γ) = exp(αL1 + βL2 + γL3) (2.2.3)

Similar representations, we can find for SU(2)-rotations. Here the generators are
Si = − i

2σi and the commutators are [Si, Sk] = εijkSk with σi the Pauli matrices. The
equivalence of the structure coefficients of SO(3) and SU(2) imply the local equivalence
of the groups for elements close to the identity, as it was also the case for our one-ball
and two-ball representations of rotations.
We again have two possibilities to represent the rotations using the rotation angle α

and the rotation axis n or the three angles (α, β, γ).

R(α,n) = exp
(
− i

2αn · σ
)

(2.2.4)

R(α, β, γ) = exp(αS1 + βS2 + γS3) (2.2.5)
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So, we find two possible representations for the lift, either, by taking the formulas
including three angles or the ones including the rotation angle and axis [8, 16].

2.3. Non-Abelian topological charge
We have now seen the quantization of the Berry phase for one-dimensional systems.

Then we have specified our discussion to models including three isolated bands described
by the spaceM3 = SO(3)/D2. By only using the Berry phase, we are not able to capture
the non-triviality of the 2π-rotation as the Berry phase only includes sign flips, and for
such a rotation all the signs stay the same.
These two observations motivate an extension of the Berry phase. Following the

discussion above, we consider a model with three bands but the concept can also be
generalized for N ≥ 3 bands.
In a flattened three band model we can assign to each band a Berry phase of either

0 or π with the constraint that the sum of the Berry phases over all bands has to be
0 mod 2π. This leads to four possible phases for the system. If instead we consider the
bands simultaneously as a right-handed frame, the Hamiltonian can be represented as
a rotation of this frame and the topology is described by Π1(M3). We now are able to
determine this fundamental group explicitly by lifting both spaces SO(3) and D2 to their
double covers and then use the theorem of Mermin (Equation 2.2.1). The lift of SO(3)
to its double cover is Spin(3) ∼= SU(2), which is also its universal cover and therefore
has trivial fundamental group. The double cover of the dihedral group D2 is its double
group D2.
We can represent the gauge freedom (Berry phase 0 or π of each band with constraint

that the sum over all Berry phases is 0 mod 2π) as a rotation of the eigenframe by ±π
around one of the eigenstates. To get the double cover of D2, we lift these π-rotations
to ∓σi and the identity to ±1. By assigning

1→ 1 − iσ1 → i − iσ2 → j − iσ3 → k (2.3.1)

we see that the double cover of D2 is isomorphic to the quaternion group:

Q = {±1,±i,±j,±k} (2.3.2)

This is the group of anticommuting imaginary units i2 = j2 = k2 = −1.
So we find:

Π1(M3) = Π1(SO(3)/D2) = Π1(SU(2)/Q) = Π0(Q) = Q (2.3.3)

Using this, we can assign to the system, instead of three Berry phases, one element
of the quaternion group. The topological phases of the system are then described by
the five conjugacy classes of the quaternion group {1}, {−1}, {±i}, {±j}, {±k}. So, we
find one additional topological phase (the one with quaternion charge −1 but all Berry
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phases equal zero), compared to the four possible combinations of Berry phases (that
are (π, π, 0), (π, 0, π), (0, π, π), (0, 0, 0)) summing to zero.
In Section 4.2, we generalize this charge to more bands and we discuss it in more detail.

Thereby, we will focus on the interesting property that the charge is non-commutative.
In general, we will be able to characterize bands of a one-dimensional system and band
nodes of higher-dimensional systems using a non-Abelian charge, given as an element
of the fundamental group of the parameter space MN . As we have seen, in the case of
three bands, this is the quaternion group and for more then three bands, we will call it
the generalized quaternions [3, 14].
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3. Edge states in 1D models
Before studying the non-Abelian charge in more detail for higher-dimensional systems,

we consider three simple one-dimensional models. All of them consist of three flat bands
but with different changes of the eigenstates when moving across the BZ. For simplicity
and without loss of generality, we set the lattice constant a to unity in all models.

3.1. Elementary three-band models
We first consider the models presented in the Supplementary of Ref. [3]. That work

presents two models with flat bands and studies their edge states. Starting from the
simple Hamiltonian with energies {1, 2, 3} and eigenstates represented in the reciprocal
space as unit vectors, in x, y, z-direction, we generate an arbitrary Hamiltonian H(k) by
a suitable (k-dependent) SO(3) rotation of the eigenstates.
In the first model these three eigenvectors are rotated around one of the three axes, as

a function of k. Throughout the BZ the eigenvectors are rotated by an angle π. Each of
these rotations corresponds to a different topological quaternion charge. For the second
model, we include a tuning parameter (angle) t to interpolate between the rotations
around the x-axis and the z-axis, respectively. Here, throughout the BZ a rotation of 2π
is maintained for all angles t. This corresponds to the topological charge −1, as we will
calculate later. As a third model, we consider a rotation by 4π throughout the BZ. With
this model we want to check if a 4π rotation exhibits a trivial spectrum as it corresponds
to the trivial quaternion charge +1. Again we introduce a tuning parameter t, but now
along t the rotation gets trivialized and for t = π/2 it ends up as the identity.
Mathematically, the models are defined as:

• Model 1: Hx,y,z
1 (k) = R1(k)εR1(k)†, where we define:

ε =

1 0 0
0 2 0
0 0 3

 and R1 = expkLx,y,z/2 (3.1.1)

• Model 2: H2(k, t) = R2(k, t)εR2(k, t)†, where we define:

R2(k, t) = expk[Lx cos(t)+Lz sin(t)] for t ∈
[
0, 1

2π
]

(3.1.2)

• Model 3: H3(k, t) = R3(k, t)εR3(k, t)†, where we define:

R3(k, t) = expcos(t)π(cos(k)Ly−sin(k)Lz) for t ∈
[
0, 1

2π
]

(3.1.3)
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To all models a perturbation H′(k) = 1
c

sin(k)1 is added. The parameter c is adjusted
to get sharper bulk states. This perturbation is needed to have bulk states of not exactly
the same energy but to have a small dispersion such that the numerical computation
with open boundary conditions is able to find eigenstates corresponding to certain mo-
mentum, and thus centered in the middle of a 1D chain, rather than an asymmetric
linear combination of states originating from distinct momenta.
In a second step, after the Fourier transformation to the real space, a small Gaussian

disorder was added to the on-site potential. We need this, in order to also have the edge
states at slightly different energies, to find the physical edge state localized at only one
edge rather than a superposition with a finite weight at both edges. This is done with
a diagonal matrix having random Gaussian-distributed entries with mean µ = 0 and
standard deviation σ, chosen to get well localized edge states.

3.2. Computation of the topological invariants
In this section, we present the numerical techniques, we used to study the edge states

of the one dimensional models. First, we explain how to transform the momentum-
space Hamiltonian into a real-space one, and we present a method to visualize its edge
states in the presence of an open boundary. Afterwards, we show the procedure how to
numerically determine the Berry phase of an energy band using the corresponding edge
state. As a last technique, we finally explain, how to calculate the quaternion charge
of a one-dimensional system using the frame spanned by the three eigenstates of the
Hamiltonian.

3.2.1. Transformation to real space
To be able to study edge states, we need a finite system. Therefore, we transfer the

model to real space and choose a finite number of sites along the one-dimensional axis.
To transform the Hamiltonian to the real space, each component of the Hamiltonian
matrix is Fourier expanded in the following way:

Hαβ =
∑
n∈Z

tnαβ exp(ikna) (3.2.1)

where the lattice spacing a is set to unity, and tnαβ represents the hopping amplitude by
n sites (n > 0 to the right, n < 0 to the left) from orbital β to α. To get the Hermicity
of the Hamiltonian H† = H, we need Hαβ = H∗βα, or in terms of the hopping parameters
tnαβ = (t−nβα )∗.
The explanation for the procedure above can be motivated from the one-band model.

There we find for a tight-binding Hamiltonian in real space with uniform hopping tn by
n sites the representation in reciprocal space as:

H(k) =
∑
n∈N

[tn exp(ikna) + (tn)∗ exp(−ikna)] (3.2.2)
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With this it is possible to set up the whole Hamiltonian matrix of the 1D-system with N
sites. The number of sites was set to 11 in the first model, and to 31 in the second and
third one. As there are three orbitals a, b, c the matrix will be of dimension 3N × 3N .
This block matrix consists of N (number of sites) blocks t0 on the diagonal, to the

right (top) there follow the blocks t−1, t−2, ... and to the left (bottom) the blocks t1, t2, ...
up to a cutoff n0, above which the hopping amplitudes are negligible. In the first model,
the blocks drop to zero beyond n0 = 1, in the second model beyond n0 = 2 (we will
justify this in the Section 3.3.3 on the analytic solution) and in the third model beyond
n0 = 4. The components (α, β) of the blocks tn are denoted by tnαβ. We thus represent
the Hamiltonian as follows:

H = (c†1a, c†1b, c
†
1c, c

†
2a, . . . , c

†
Nc) · H · (c1a, c1b, c1c, c2a, . . . , cNc)T (3.2.3)

where H =



t0 t−1 t−2 t−3 · · ·
t1 t0 t−1 t−2 . . .
t2 t1 t0 t−1 . . .
t3 t2 t1 t0

. . .
... . . . . . . . . . ...


(3.2.4)

and c†nα, cnα are the electron creation and annihilation operators on site n in orbital α,
respectively.
The three models are implemented in Python in reciprocal space (k-space) using the

matrix form of the Hamiltonians (3.1.1, 3.1.2, 3.1.3). Then, the Fourier transform is
done using a numerical integration tool in Python (complex version of the tool quad).
The coefficients in the expansion (3.2.1) are given by:

tnαβ = 1
2π

∫ 2π

0
H(k)αβ · exp(inak)dk (3.2.5)

The real space matrix is built as a block matrix and then diagonalized using the
scipy.linalg package in Python. The output of the diagonalization are the eigenvalues
and eigenvectors of the real-space Hamiltonian matrix.
The eigenenergies are found to be approximately 1, 2, 3 for the bulk states, as expected.

In the first model, in addition, there are states with eigenenergies 1.5, 2, 2.5 for rotations
around the z-,y-,x-axis, respectively, corresponding to edge states (compare Figure 3.2).
For the second model the edge-state energies are found in the whole range between 1
and 3, depending on the angle t. A more intricate dependence of the edge states on t is
observed for the third model which also vary in energy over the whole range between 1
and 3.
Having the energy spectrum that suggests the existence of edge states, we also want

to check their localization properties. To do so we calculate the center of mass (COM)
of each eigenstate. From the diagonalization, we get the eigenvectors. Physically,
the components of these eigenvectors represent the probability amplitude for states
being at a specific site in a specific orbital. So, we label the eigenvectors as: v =
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(v1a, v1b, v1c, v2a, . . . , vNc). Having these coefficients, we calculate the center of mass
using the following formula:

xCOM =
N−1∑
i=0

∑
α=a,b,c

riα|viα|2 =
N−1∑
i=0

i ·

 ∑
α=a,b,c

|viα|2
 (3.2.6)

In the above equations riα corresponds to the positions of orbital α on site i. The
second equality is valid because we assume that all three orbitals a, b, c are centered at
the corresponding site.
We are now able to plot the center of mass of all states on the x-axis and the energy

on the y-axis and can directly see the edge states and their energies. To better under-
stand the correspondence between the edge states and the topological invariants, we now
explain how to calculate the Berry phase and the quaternion charge

3.2.2. Computation of the Berry phase
From Section 2.1, we know that we can define the Berry phase for closed paths and

that in the case of a one-dimensional system the BZ is such a closed path. So to calculate
the Berry phase of one of the energy bands, we integrate its Berry connection over the
whole BZ (Eq. 2.1.7). We find that:

φB =
∫ π

0
A(k)dk with the Berry connection (3.2.7)

A = i〈un(k)|∂k|un(k)〉 (3.2.8)

where |un(k)〉 is the eigenvector of the band with index n with a gauge freedom |un(k)〉 →
eiξ|un(k)〉.
To evaluate the integral numerically, we have to partition our path into N points:

k0, k1, k2, . . . , kN−1 (Figure 3.1a). At each position, we find the eigenvector of the nth
band as |un(ki)〉 (possibly in a discontinuous gauge-see below). For large enough N , we
apply the following formula for the Berry phase [17]:

φB = arg
[
N−1∏
i=0
〈un(ki)|un(ki+1)〉

]
(3.2.9)

= arg [〈un(k0)|un(kN−1)〉〈un(kN−1)|un(kN−2)〉 . . . 〈un(k1)|un(k0)〉] (3.2.10)

with kN = k0. From this formula, we can see that for all the states except for the state
|u(k0)〉 the gauge cancels itself, i.e. we always find eiξi |un(ki)〉〈un(ki)|e−iξi which is the
same as |un(ki)〉〈un(ki)|. Therefore, we only have to choose |u(k0)〉 at the beginning and
the end of the closed path in the same gauge such that it cancels as well.
We can understand the last formula in the above equation from the point of view of

parallel transport. Consider a vector v on a sphere (compare e in Figure 2.1) that is
moved on a closed path on this sphere keeping its orientation. After going around the
closed path we end up with a differently orientated vector v′. This vector v′, we now
want to determine numerically. Therefore, we partition the path into N parts at the
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points: x0, x1, . . . , xN−1. We find the final vector v′ by projecting the initial vector v at
each discrete point onto the tangent plane at this point, i.e. we find:

v′ = P (xn−1) . . . P (x1)P (x0)v (3.2.11)

where P (x) is the projector onto the tangent plane at x. To get the anholonomy angle,
we finally have to take the inverse cosine of the scalar product v′ · v.
By interpreting |un(ki)〉〈un(ki)| as the projector onto the state |un(ki)〉, we see the anal-

ogy between the two formulas. In Equation (3.2.10), we take the initial state |un(k0)〉,
then project it onto the eigenstate at each point ki to find the final state |ũn(k0)〉 after
going around the path. Finally to arrive at the Berry phase, we have to take the complex
argument of the scalar product with the initial vector which due to the reality condition
equals to 0 or π.
This procedure is easily implemented in Python to determine the Berry phase along

any closed path. In the case of these one-dimensional topological insulators the closed
path is always the BZ [−π, π].

Figure 3.1.: Computation of the Berry phase and of the quaternion invariant. In panel
(a), we see the partition of the path for the computation of the Berry phase as dark
red dots. The blue arrows indicates the normalized eigenstate of the nth band at
several locations along the path. At point k0 we have drawn a second light blue arrow
indicating the vector after moving around the path, having Berry phase of π. Panel
(b) shows the computation of the quaternion invariant along the same path. At each
ki we see the frame of eigenstates as blue, red and green arrows, and between the
discrete points we have an infinitesimal rotation dR. The light blue and yellow arrows
show the final direction of the initial blue and red vectors at the same point. The
green vector is the same after once going around the path, so this would represent a
quaternion charge of i,j or k.

3.2.3. Computation of the quaternion charge
As a last technique, we now explain how to determine the quaternion invariant nu-

merically. This is done similarly to the case just seen for the Berry phase but this time
instead of only considering one eigenstate, we take the whole frame spanned by the three
eigenstates.
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The procedure to calculate the quaternion invariant along an arbitrary closed path γ
consists of five steps (compare Supplementary material of Ref. [18] for the algorithm and
Supplement of Ref. [3] for the idea):

i) Partition the path γ into short segments

ii) Find the infinitesimal rotation in SO(3) between the frames at two neighboring
discrete points ki, ki+1

iii) lift this SO(3) rotation to an SU(2) rotation close to identity

iv) multiply all the infinitesimal SU(2) rotations, result is either ±1 or ±iσi

v) get the quaternion charge of the Hamiltonian with the correspondence between the
quaternion charge and the Pauli matrices (Eq. 2.3.1)

We now have a closer look at all of these steps (compare Figure 3.1). Starting with a
path γ in reciprocal space, which is either the BZ in the one-dimensional case or a thread
through the BZ in the two- and three-dimensional case (see Sections 5.1.3 and 5.2.3).
We first partition γ into N segments [ki, ki+1] for the points k0, k1, . . . , kN−1, kN = k0.
At each of these points we diagonalize the Hamiltonian to find the three eigenstates
|u1(ki)〉, |u2(ki)〉, |u3(ki)〉 that span the frame u(ki) ∈ SO(3). We always chose this
frame to be right handed, i.e. the third eigenstate |u3(ki)〉 has to be oriented parallel to
the cross product |u1(ki)〉 × |u2(ki)〉.
For all segments [ki, ki+1], we want to find the infinitesimal rotation dRi the frame

performs. This means, we search for dRi such that u(ki+1) = dRiu(ki). We see that
dRi = u(ki)Tu(ki+1) by the orthonormality of u(ki). However, although we fixed the
frames to be right-handed, we still have some gauge freedom and it is possible that two
of the eigenstates changed their signs from ki to ki+1. Therefore, we need to check if the
rotation is close to the identity and otherwise change the sing of two of the eigenstates
at ki+1, until we find dRi to be close to the identity and thereby fix the gauge.
To lift the infinitesimal SO(3) rotation to SU(2), we first have to decompose it ac-

cording to Equation (2.2.3). Therefore we take the logarithm of dRi and decompose
it as αL1 + βL2 + γL3 to find α, β, γ. To get the lift of this rotation to SU(2), we
can use Equation (2.2.5) with the calculated values of α, β, γ, i.e. we find the lift as:
dRi = exp(αS1 + βS2 + γS3).
Having determined the lifted small rotations, we can multiply all of them together

and the result is a 2 × 2-matrix. Finally we decompose this matrix into the basis
{1,−iσ1,−iσ2,−iσ3}. In this decomposition, we have one parameter close to ±1 and all
the others close to zero (for large enough N). Using the isomorphism in Equation (2.3.1),
we find the quaternion charge corresponding to the largest value in the decomposition.
This procedure is implemented in Python and can be applied to any real symmet-

ric Hamiltonian along any closed path not passing a degeneracy (node). For the one-
dimensional model we chose the path as the BZ, and in the higher-dimensional models
we take the threads shown in Figure 5.5. Whereas for the 1D model, we get one quater-
nion charge describing the system (Section: 3.3.1), for higher dimensional models we find
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the topological phase diagram inside the surface BZ, with projections of the bulk band
nodes forming the boundaries between the different phases (Sections 5.1.3 and 5.2.3).

3.3. Results for the elementary three-band models
In this section, we present the numerical results we found for the one-dimensional

models defined in Equations (3.1.1-3.1.3). We start with the calculation of the Berry
phase and the quaternion invariant. Then, we show how these invariants are related to
the edge states, and finally, we present an analytic solution for the first two models.

3.3.1. Quaternion charge and Berry phase
For all models, we can calculate the quaternion charge and the Berry phase. From

the previous chapter, we know that for three-band models we have four possible phases,
when considering the Berry phase, and five of them when using the quaternion charge
for the topological characterization.
We implement the models in reciprocal space in Python to determine the Berry phase

for each band separately as well as the quaternion charge for the system, numerically
using the techniques presented in Sections 3.2.3 and 3.2.2. As we are considering the
models in k-space, we do not need to include the perturbation H′ for this calculation.
For the quaternion charge, we get the following results:

• π-rotation of the eigenstates around x-axis: charge i

• π-rotation of the eigenstates around y-axis: charge j

• π-rotation of the eigenstates around z-axis: charge k

• 2π-rotation of the eigenstates around axes interpolated between the x- and z-axis
independent on interpolation angle t: charge −1

• 4π-rotation of the eigenstates in H3 for t = 0: charge 1

• No rotation of the eigenstates in H3 for t = π
2 : charge 1

In general, the quaternion charge is only defined up to conjugacy classes, i.e. if we say
a Hamiltonian has charge i, it means that it has either charge +i or −i depending on
the (non-canonical) choice of the initial right-handed frame. However, the charges +1
and −1 describe different phases.
In the case of the Berry phase, we find a phase for each band. We label the bands

1, 2, 3 from low energy to high energy. For the different models, we find the following
phases:

• π-rotation of the eigenstates around x-axis: 0 for band 1 and π for bands 2 and 3

• π-rotation of the eigenstates around y-axis: 0 for band 2 and π for bands 1 and 3
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• Rotation of the eigenstates around z-axis: 0 for band 3 and π for bands 1 and 2

• 2π-rotation of the eigenstates around axes interpolated between the x- and z-axis
independent on interpolation angle t: 0 for all three bands

• 4π-rotation of the eigenstates contracted to identity along t: 0 for all three bands

So, we can assume the following correspondence between the Berry phases and the
quaternion charge. Further, we directly relate the phases to our elementary models.

Elementary Hamiltonian Hx
1 Hy

1 Hz
1 H2 H3

Berry phase band 1 0 π π 0 0
Berry phase band 2 π 0 π 0 0
Berry phase band 3 π π 0 0 0
quaternion charge i j k −1 +1

Table 3.1.: The correspondence between the topological phases described by the Berry
phases and by the quaternion charge, respectively. For H2 and H3 the values of the
invariants are independent of the tunable parameter t.

The observed correspondence tells us that we are not able to detect the non-trivial
phase with quaternion charge −1 by only considering the Berry phase.

3.3.2. Edge states
We are able to see the edge states for the different models by plotting the COM on

the horizontal axis and the corresponding energies on the vertical axis. Some examples
are found in the figures below. For all the plots the parameter for the perturbation H′
was set to c = 1/2000 and the standard deviation of the Gaussian random distribution
to σ = 5 · 10−7.

Model 1

Figure 3.2 shows the results for the first model using the three rotations around the
x-,y- and z-axis, respectively. The edge states are very well localized and can be seen
also if the edge state energy coincides with the energy of the bulk band, so they do not
hybridize.

We can relate this observation to the quaternion charge. Comparing the results from
the edge states for the different rotations with the results in Table 3.1, we can see that
there is always an edge state produced in the middle between the two bands with non-
zero Berry phase. In the case of the y-rotation, the energy of the edge state coincides
with the energy of the middle band with Berry phase zero. In the language of the
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quaternion charge, we can say that charge i produces edge states between the upper two
bands and charge k produces them between the lower two bands. For the charge j it is
not that obvious how to interpret it as from the rules of the quaternion group, we know
that j is equal to −i · k. So from the above picture, it is not clear if the edge states lie
between the edge states corresponding to charges i and k, or simply between the lowest
and highest energy band. This can be checked by adapting the model in a way that we
change the diagonal matrix ε to have entries 1, 2, 4, instead of 1, 2, 3. In this adapted
case, we find the edge states at 1.5, 2.5 and 3, which indicates that for charge j the edge
state simply lies in the middle of the lowest and highest energy band.
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Figure 3.2.: Model 1: π-rotation around one axis for 11 sites. Panel (a) shows the
rotation around the x-axis and we see at both edges of the system a very well localized
edge state (localized on the outermost site) at an energy of 2.5. In panel (b), we have
the rotation around the y-axis and in panel (c), the one around the z-axis. We again
see well localized states at energies 2 and 1.5, respectively.

Model 2

The second model was implemented for the angles t = m
50π with m = 0, 1, 2, . . . , 25

and 31 sites. The results are shown in Figure 3.3. For m = 0 and m = 25, we have
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nearly the same situation as in model 1 for the rotation around the x- and z-axis. The
major difference is that we perform a 2π-rotation here, while in model 1 it was only a
π-rotation. Correspondingly, we now find 2 edge states per edge at energies 1.5 and 2.5,
respectively, but less localized than in model 1.1
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Figure 3.3.: Model 2: 2π-rotation for different angles t and 31 sites. Again we can see
bulk states in the middle and edge states on the boundaries. This time the localization
length, as well as the number of edge states on each edge, changes by tuning the
angle t = m

50π. For m = 0 and 25 we see two edge states per edge localized at a
position around 0.5 from the edge. In the other cases, we always have one state per
site completely localized and two edge states per edge which change localization from
completely to less localized respectively the other way round. All the six edge states
(three per edge) change their energy in different ways.

As the pictures are symmetric in the two edges, we concentrate from now on only on
1This weaker localization is only a numerical artifact as explained later.

23



the states localized on the left edge. For m = 1, we see a third edge state appearing
in the lower band gap at energy 1. Increasing m, one of the two edge states in the
upper gap increases in energy while getting better localized while the other one crosses
the middle band between m = 12 and m = 13 with localization length 0 throughout
the whole process. The edge state in the lower band gap increases its energy and its
localization length by growing m.

To better understand how the localization length and the energy behave as we tune the
angle t, we plot them as a function of t (see Figure 3.4). We observe a cosine behavior
of all the energies, as well as for the localization length of two of the edge states on
each side. Only the edge state crossing the middle band has a localization length of zero
during the whole process. Here, we see the left-right symmetry of the edge spectrum
even better. The dots and crosses, representing the two edge states on the different
sides, are exactly on top of each other. The finite localization length of 0.5 for the cases
with m = 0, 25 can be explained as a numerical artifact of the hybridization of the two
edge states per edge with exactly the same energy and localization lengths of 0 and 1,
respectively. This is confirmed in the next section where we present the analytic solution
with localization length of 0 also for these two cases.
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Figure 3.4.: Energy and localization length of the numerically identified edge states as a
function of the angle t. The left panel shows the energy of the edge states depending
on the angle t = m

50π. The dots and crosses indicate their energies and the lines show
a cosine fit. In the right panel the same is shown for the localization length. For the
red one, we show no fit as it has localization length zero throughout the process (up
to a numerical artifact at m = 0 and 25).

As calculated in the previous section, we know that the Berry phases of all three
bands are zero. This suggests a trivial phase with no edge states. However, considering
the quaternion charge, we calculated a value of −1, which tells us that the phase is
topologically non-trivial. From the properties of the quaternion group, we know that
this is the square of any charge i, j or k. So, we would expect this phase to only have
two edge states per edge but in the same band gap. However, we observe three of them
and one might naively guess that only two of them are topological and the third one is
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trivial, i.e. disappears by small perturbations. Looking at the extreme values of t, for
m = 0, we only see the green and the red edge states whereas for m = 25 we observe
the red and the blue one. Therefore, one cannot globally and meaningfully define which
two out of these three edge states are the topological ones for the continuum of models
spanned by the parameter t.
The interesting thing we observe, here, is that in this phase −1 one of the edge states

passes through the middle band. We also observe this behavior for other models in
higher dimensions (see Section 7.3).

Model 3

Finally, we study the model with the 4π rotation that is trivialized for t = π/2. The
model was implemented for 31 sites and for different angles t. We want to see how do
the edge states evolve during the contraction of the rotation to identity. But before
studying the edge states, we have a closer look on how the rotation is trivialized.
Therefore, we consider the representation of SO(3) as a ball with radius π. For t = 0

the rotation is represented as a circle on the surface of the ball going through the north
and the south pole of the sphere in the y − z-plane for x = 0. Upon increasing t the
circle shrinks while staying in the same plane. Like this we contract the circle to a point
in the origin of the ball which represents the identity (Figure 3.5).

Figure 3.5.: Trivialization of the 4π-rotation. The green line shows the rotation R3(k, t)
of the model H3 for different values of t represented using the a ball of radius π. For
t = 0 the rotation is on the surface of the ball. When increasing t the rotation gets
contracted towards the origin (red dot) for t = π

2 .

Figure 3.6 shows the evolution during this process for the values t = m
50 · π where m

is indicated in the plots. For the 4π-rotation at t = 0, we see four edge states per site
lying exactly on top of each other at energy 2.5. Then by increasing t a fifth edge state
is ejected from the lowest band. From the upper four edge states two start increasing
and the other two are decreasing in energy. For t = π/4 one state crosses the middle
band and joins the fifth one in the lower band gap. Finally for t = π/2 all the edge
states disappear.
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Figure 3.6.: Model 3: starting with a 4π-rotation that gets contracted to identity. In
the middle we clearly see the bulk states, and on the edges we have a varying number
of edge states. For t = 0, we find four edge states per end that lie exactly at the
same position. Along the evolution for t ∈ (0, π2 ), we observe five edge states per edge.
In the end where the rotation is contracted to identity (t = π/2), all the edge states
disappear.

To better see the behavior of the edge states depending on the parameter t = m
50 · π,

we also plotted the energy of the edge states as well as their localization lengths as a
function of m (Figure 3.7).
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Figure 3.7.: Energy and localization length of the edge states as a function of the angle
t for the 4π-rotation. The left panel shows the energy of the edge states depending on
the angle t = m/50π. The dots and crosses indicate the numerically obtained energies
from the two edges. In the right panel the same is shown for the localization length.
For the value m = 25, we see that all edge states disappeared

Although a 4π rotation is trivial, we also observe edge states in this case but we suggest
that these edge states are not topological, i.e. not stable against small perturbations.
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Furthermore, along the process of this continuous trivialization of the 4π-rotation, we
observe five edge states per edge and only for the trivial case where we do not perform
any rotation, we observe no edge states.
Interesting along this trivialization is, that we can observe a degeneracy between the

blue and the red edge states for m ≈ 17 (t ≈ π
3 ). At the moment it is unclear if this

degeneracy is a purely accidental feature of our model, or if there is a deeper topological
origin.

3.3.3. Analytic solution
The observed cosine dependence of the energy and the localization length on t in the

second model suggests a possible simple analytic solution, depending on the angle t. In
this section, we consider the first two Hamiltonians H1,H2 without the perturbation H′.
In this case, we can explicitly find the blocks tn for the tight binding model in real space
(Equation 3.2.4). We did not search for an analytic solution for the last model, as it
includes too many blocks tn.

Model 1

First, we consider the model Hx,y,z
1 , where the solution is much easier to find. Here,

we only have nearest neighbor hopping. As the solutions for the three possible rotation
axes are found in a similar way, we present the explicit solution only for the rotation
around the x-axis, i.e. the Hamiltonian Hx

1 . We find the following blocks:

t0 =

1 0 0
0 2.5 0
0 0 2.5

 (3.3.1)

t1 =

0 0 0
0 −1

4 −1
4 i

0 −1
4 i 1

4

 t−1 =

0 0 0
0 −1

4
1
4 i

0 1
4 i 1

4

 (3.3.2)

So the matrix in real space becomes quite simple as the first band has energy 1 and
is completely decoupled from the other two bands. Therefore we can ignore it and solve
the system for the other two bands. In this way we easily find the edge states with
energy 2.5 as:

vedge,1 = (0,−i, 1, 0, . . . , 0) (3.3.3)
vedge,2 = (0, . . . , 0, i, 1) (3.3.4)

where the number of zeros depends on the number of sites, we take for the finite system.
From this, we can confirm that the edge states are really localized on the outermost site.
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Model 2

The second model is a bit more complicated. First, we need to include the depen-
dence on the angle t and second we not only have nearest neighbor hopping but also
second nearest neighbor hopping, i.e. we also need to include the blocks t2, t−2. To find
the hopping amplitude, we first have to write down the Hamiltonian as a single ma-
trix and not a multiplication of them. Then, we write out all the sin(nk) and cos(nk)
in terms of exponential functions. From this form, we can directly read out the hop-
pings in real space as the coefficients in front of the exponentials. For example a term
1
8 cos(2t) [exp(2ik) + exp(−2ik)] represents a hopping of 1

8 cos(2t) by 2 sites in positive
and negative k-direction. Using this method2, we find the following blocks:

t0 =


13
8 −

1
4 cos(2t)− 3

8 cos(4t) 0 −3
8 sin(4t)

0 2 + 1
2 cos(2t) 0

−3
8 sin(4t) 0 19

8 −
1
4 cos(2t) + 3

8 cos(4t)

 (3.3.5)

t1 =


1
4(−1 + cos(4t)) − i

2 sin(t)(1 + cos(2t)) 1
4 sin(4t)

− i
2 sin(t)(1 + cos(2t)) 0 i

2 cos(t)(−1 + cos(2t))
1
4 sin(4t) i

2 cos(t)(−1 + cos(2t)) 1
4(1− cos(4t))

 (3.3.6)

t2 =


1
16(−1 + 2 cos(2t)− cos(4t)) i

4 sin(t) cos(2t) − 1
16 sin(4t)

i
4 sin(t) cos(2t) −1

4 cos(2t) − i
4 cos(t) cos(2t)

− 1
16 sin(4t) − i

4 cos(t) cos(2t) 1
16(1 + 2 cos(2t) + cos(4t))


(3.3.7)

The remaining blocks are given as:

t−1 = (t1)∗ and t−2 = (t2)∗ (3.3.8)

using the Hermicity of the Hamiltonian.
This time the real-space matrix becomes quite complicated and it is not possible to

directly find the analytic solution. From the cosine fit in Figure 3.4, we are able to guess
the energy of the edge state that crosses the middle band as:

Eedge state, red = 2 + 1
2 cos(2t) (3.3.9)

We know that if this is an eigenstate, the determinant of the matrix minus the eigen-
value on the diagonal has to be zero. We therefore define the Hamiltonian for 10 sites
H10 which is a 30× 30 matrix, and check using Mathemtatica that:

det(H10 − Eedge state, red 1) = 0 (3.3.10)

which confirms that this is the correct energy for the edge state. To find the correspond-
ing eigenstates, we look at the matrix H10 − (2 + 1

2 cos(2t))1. Keeping in mind that
Figure 3.4 further suggests that the state is localized at the outermost side, we take as

2We used Mathematica for the analytic calculations.
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an Ansatz for the left edge state vedge,1 = (a, b, c, 0, . . . , 0) and vedge,2 = (0, . . . , 0, a′, b′, c′)
for the right one. Using again Mathematica, we can solve the following equations for
i = 1, 2:

H10vedge,i =
(

2 + 1
2 cos(2t)

)
vedge,i (3.3.11)

and find the two edge states as:

vedge,1 = 1√
2

(sin(t), i,− cos(t), 0, . . . , 0) (3.3.12)

vedge,2 = 1√
2

(0, . . . , 0, sin(t),−i,− cos(t)) (3.3.13)

So, we see that the state is really localized completely at the edge.
From the numerical results, we know there are two more edge states. For them we

were not able to find the analytic solution. The suggested solutions from the fits are:

Eedge state, blue = 5
4 −

1
4 cos(2t) Eedge state, green = 11

4 −
1
4 cos(2t) (3.3.14)

But putting them into Equation (3.3.10) the analytic result for the determinant is not
zero. Yet if we calculate the determinant numerical for different values of t it gets
very close to zero. A possible reason for this could be that we work with quite small
finite systems and that our guessed energies in Eq. (3.3.14) become exact only in the
thermodynamic limit, i.e. if we let the number of sites go to infinity.

3.4. Models with four and more bands
We now focus on the non-Abelian charge −1 that is missed that is missed by the Berry

phase. To study the stability of the topology and the edge states observed in this phase
for three bands, we now extent the second model representing a 2π-rotation to N ≥ 3
bands and start with the extension to four bands. With this generalized model, we then
want to check if we still observe one edge state crossing the middle bands.

3.4.1. Ideal four-band model
We consider a model with four flat bands at energies 1, 2, 3, 4. For this model, we

rotate three eigenstates according to model 2 (Equation 3.1.2) letting the last eigenstate
untouched. Therefore, we split the model into two parts. In the first part, we let the
eigenstate of energy 1 constant while rotating the other three and in the second part, we
let the one with energy 4 constant. This, we do using the Heaviside function θ(t) which
is equal zero for t ≤ 0 and equal 1 for t > 0. So, we define the model as:

H4(k, t) = θ
(1

2π − t
)
H4,A(k, t)+θ

(
t− 1

2π
)
H4,B

(
k, t− 1

2π
)

for t ∈ [0, π] (3.4.1)
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H4,i(k, t) = Ri(k, t)εRi(k, t)† where ε =


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 (3.4.2)

for i = A,B. We define the rotations using R2(k, t) from Equation (3.1.2) as block
matrices consisting of a 3× 3 block (R2(k, t)) and a 1× 1 block (identity):

RA(k, t) =
(

1 0
0 R2(k, t)

)
RB(k, t) =

(
R2(k, t) 0

0 1

)
(3.4.3)

With these definition the Hamiltonian in Equation (3.4.1) is well defined and contin-
uous also for the angle t = π/2. At t = π/2 we have that H4,1(k, t) = H4,2

(
k, t− 1

2π
)

is simply the Hamiltonian with eigenvalues 1, 2, 3, 4 and eigenvectors as the unit vectors
along the axes of the four-dimensional space. We use the same perturbations introduced
for the three-band model to find physical eigenstates for both the bulk and the edges.
The model is implemented in the same way as explained in Section 3.2. Also for this

model, we find a Berry phase of zero for all four bands, what would suggest a trivial
phase. Here, we cannot calculate the quaternion charge, as it is only defined for three
bands but using the generalized non-Abelian charge proposed in Ref. [3] also for more
than three bands, we would expect a topological phase analogous to the phase −1 here
as well.
We used the same method as for three-band models to visualize the edge states. There-

fore, we plotted the COM vs. energy for different angles t = m
25π with m = 0, . . . , 25 and

for 31 sites.
We observe the same behavior as for three bands between m = 0 and m = 12 as well

as between 13 and 25. Between 12 and 13, i.e. for t = π/2, we would again have a
situation with only two edge states per site, as for m = 0 and 25, but with an energy
of 2.5. For most of the angles, we observe again three edge states per site. Always two
of them in the same band gap and a third one in a neighboring one. Such a behavior is
not surprising, as we simply added a fourth trivial band. First, we observe an additional
bulk band at energy 1 and in the second part at energy 4 whereas the other three band
show the behavior of model 2. More clearly, we see this by looking at the energy and
localization lengths as a function of the angle t = m

25π. It is really just a stacking of
twice the situation shown in Figure 3.4 where in the plot of the energy vs. the angle for
one half the energies are shifted by 1.
As expected, we again observe a non-trivial topological phase although all the Berry

phases are zero. Furthermore, the red edge state crosses two energy bands to evolve
from the highest to the lowest band gap with a localization lengths of zero throughout
the whole process, similar to the observation for the three-band model. These results
suggest that we could extend our model in this way to any N ≥ 3 bands, and we would
always observe one edge state per edge moving uppermost to the lowest band gap with
a localization lengths of zero and thereby crossing all the middle bands .
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Figure 3.8.: Energy and localization length of the edge states as a function of the angle
t in the model with 4 bands (Eq. 3.4.1). The left panel shows the energy of the edge
states depending on the angle t = m

25π. The dots and crosses indicate the numerically
obtained energies for the different edges. In the right panel the same is shown for the
localization length.

As a last step concerning the one-dimensional models, we have a look at how the
states are distributed among the bulk bands. More specifically, we study how edge states
are pumped between the bulk bands in the generalized “−1” phase, and the possible
associated filling anomaly. Therefore, we extend our models to an arbitrary number of
bands.

3.4.2. Generalization to N bands
We now consider a model with N bands similar to the one constructed for four bands

in Eq. (3.4.1). It consists of N flat bands with energies ε = 1, 2, . . . , N and eigenstates
vi as unit vectors of the N -dimensional space (eigenstate vi corresponding to energy
εi = i). We then start by rotating the eigenstates corresponding to the highest three
energies according to R2(k, t) in H2, then continue with the eigenstates vN−3, vN−2, vN−1
and so on. In total, we apply the elementary model H2 (N − 2) times, the last time for
eigenstates v3, v2, v1.
This model is in fact an interpolation between (N − 2) ideal realizations of the phase

with non-Abelian charge −1 where we take H2 as the elementary building block for the
interpolations. By “ideal” realization, we mean that we perform a 2π-rotation3 of the
eigenstates of two consecutive bands while leaving the other (N − 2) eigenstates con-
stant across the BZ. We first rotate the two states corresponding to the highest energies,
interpolate to a rotation of the second and third highest, until we end up with a rotation
between the states corresponding to the lowest two energies.

3This 2π-rotation remains non-trivial also in the higher-dimensional space of rotations SO(N) that
we need for the generalized non-Abelian charge, analyzed in Section 4.2.
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3.4.3. Pumping of edge states and filling anomaly
For the model with N bands presented above, we are able to count the states in each

bulk band. At the beginning we have (N−2) states in each of the highest two bulk bands
and 4 states in the uppermost band gap, whereas all other bulk bands host N states.
Two of the edge states merge into the highest band during the interpolation whereas the
other two cross the second highest band and end up in the second uppermost band gap.
So, we have (N − 2) bulk states in the second and in third highest bands, and 4 edge
states in the second uppermost band gap and N bulk states in all other bands. In fact
with each such performed cycle (interpolation of two ideal realization), we pump two
edge states down by one band gap. So after N − 2 cycles we did pump two edge states
from the uppermost to the lowest band gap. This pumping4 of edge states between bulk
bands in the phase −1 could lead to additional future insights into the band topology
of such systems5.

We finally study the possible presence of filling anomaly in the (generalized) −1 phase.
Filling anomaly associated with a topological band means the impossibility to simulta-
neously (i) be at integer filling, and (ii) respect the symmetry of the system. Condition
(ii) is sometimes replaced by the presence of zero-energy excitation. Since in our models
the topological edge states are distributed over several band gaps, one could generalize
filling anomaly to the impossibility to fulfill (i) and (ii) for at least one integer filling
fraction [21].
To study this filling anomaly, we now look at the chemical potential for filling fractions

ν = 1/N, 2/N, . . . , (N − 1)/N which correspond to an integer number of electrons per
unit cell. For these fillings, we look where the chemical potential lies and if we find
gapless excitations. We first look at filling ν = (N − 1)/N for the situation where
we perform the rotation of model 2 for the eigenstates of the uppermost three bands.
During the whole interpolation we have the chemical potential in the middle of the band
gap at ν = (2N − 1)/2 but only for the angle t = 0 we have a gapless excitation. The
same is true for all other interpolations between two ideal realizations. Thus, we have
gapless excitation for some of the considered filling fractions only in the case of the ideal
realization of the phase with charge −1. In general, for a filling ν = (2i+ 1)/2, we have
a gapless excitation if we perform a 2π-rotation of the bands i and i+ 1. Therefore, we
conclude that for the phase −1, in general, we do not observe a filling anomaly, except
we consider an ideal realization of the N -band model. However, we do observe the filling
anomaly for the first model H1 which has a non-zero Berry phase for two of the energy
bands.

4Such pumping of states related to topology was first mentioned by Laughlin [19], but he referred to a
pumping of states across the so-called Corbino disc, i.e. in space, whereas here we pump the states
in energy.

5In our model, we only pump one edge states from the highest to the lowest band gap. Using period-
ically driven systems, so-called Floquet systems, it could be possible to perform a full closed cycle,
by pumping the edge state around a quasi-energy circle [20].
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4. PT -symmetric topology in higher
dimensions

In this chapter, we look at topological semimetals in higher dimensions. Band nodes
of such semimetals are described by topological invariants. We mainly concentrate on
PT -symmetric systems, which generally exhibit band nodes of codimension 2, i.e. we
look at point nodes in 2D and line nodes in 3D [22]. We discuss the generalization of
the previously introduced non-Abelian invariant to arbitrary many N ≥ 3 bands, and
apply it to PT -symmetric semimetals in two and three dimensions. Thereby we focus
on the non-commutativity and its implications. Our discussion of these topics reviews
Refs. [3, 23]. We also present several further PT -protected topological properties and
analyze them using the non-Abelian charge. At the end of the section, we postulate
certain open questions related to the topology of the PT -symmetric semimetals, which
are addressed in the remainder of the work..

4.1. Topological semimetals
In the previous two chapters, we had a closer look at topological insulators in one

dimension. We now extend the introduced concepts to topological semimetals. A
semimetal in general is defined as a system where the conduction and the valence band
are degenerate at some momenta k ∈ BZ. Such a semimetal is called topological if it is
robust against perturbations that do not break symmetries. In general, we do not need
symmetries to produce stable band crossings, but the presence of a symmetry has an
impact on the type of the expected band nodes (through their codimension)[22].
There are different types of topological semimetals. On the one hand, we can have

points nodes, i.e. the bands cross each other at points. Such systems are called Dirac-
or Weyl-semimetals. In contrast, we can also have nodal lines. These are band crossing
along a curve inside the BZ. A nodal line can either be a closed curve inside the BZ, or
it could extend and wind around the BZ torus in a periodic way and thereby be closed
as well. Such systems are called nodal-line semimetals. We now want to see, how such
nodes can be characterized by topological invariants [24].
In Section 2.1, we introduced the Berry phase to characterize bands in a one-dimensional
PT -symmetric topological insulators. Similarly, for two-dimensional topological insula-
tors without PT -symmetry, one can define an integer topological invariant called the
Chern number, that is assigned to the two-dimensional energy band of the insulator.
The Chern number is defined as the integration of the Berry curvature F (defined in
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Eq. 2.1.11) over the two dimensional BZ M), i.e.

c = 1
2π

∮
M
FdS (4.1.1)

[25]. These two topological invariants describing bands in an insulator can be extended
to characterize nodes in semimetals. This is achieved by enclosing the nodes with a
closed loop or a closed surface (illustration in Figure 4.1). Enclosing a nodal point in
2D or a nodal line in 3D with a closed loop, we assign to it a Berry phase by integrating
the Berry connection along this loop (Eq. 2.1.7 with C the closed loop). On the other
hand, we can enclose a nodal point in 3D by a closed surface and assign to it a Chern
number by integrating the Berry curvature over this surface (Eq. 4.1.1 with M the en-
closing surface).

Figure 4.1.: Generalization of topological invariants from topological insulators to topo-
logical semimetals. Panel (a) shows on the left the path through the BZ to define the
Berry phase for one-dimensional topological insulator. On the right the path to define
the Berry phase of a nodal line (NL) is shown. In Panel (b) we present an analogous
construction with the Chern number. The left part shows the BZ as the closed surface
where the Chern number is defined. On the right is the generalization for Weyl points
(WP) in 3D that are enclosed by a sphere.

To see this construction in action, we now have a look at two examples. First, we
recall the case of single-layer graphene. This is an example of a two-dimensional PT -
symmetric system with point nodes. Graphene is well known to have a spectrum with
Dirac cones meeting at so-called Dirac point nodes. By the concept explained above we
can enclose these Dirac points by a tiny circle and determine the Berry phase around
these circles. For graphene the Berry phase is quantized to 0 or π on any path, and
reaches the value of π for paths enclosing one of the two Dirac point nodes [26].
The second example, we consider, are Weyl semimetals. These are three-dimensional

systems with broken PT -symmetry. Such Weyl-points, i.e. nodal points in 3D, can be
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enclosed by a tiny sphere. We then characterize the nodes by determining the Chern
number over this sphere. The Chern number of Weyl-points is quantized to integers, and
the sum of the Chern number of all Weyl-points has to vanish, which is known as the
Nielsen-Ninomiya doubling theorem [27, 28]. Now, we have seen two examples of nodal
points with present or broken PT -symmetry characterized by the Berry phase and the
Chern number, respectively.

In this work, we focus on semimetals with PT -symmetry and negligible spin orbit
coupling, which exhibit point nodes in 2D and line nodes in 3D. These nodes can
be described using the Berry phase and are thereby the natural extension of the one-
dimensional PT -symmetric topological insulators discussed in the previous two chapters.
Following the construction in Figure 4.1, we see that in 2D, as well as in 3D, we can
enclose the node by a tiny circle and assign to it a topological charge1. This observation
motivates the extension of the non-Abelian charge defined for PT -symmetric insulators
to describe nodal points and nodal lines in higher dimensions. We want to see what one
can learn about the nodes from the perspective of the non-Abelian topological invariant.
Therefore, we consider the general case of N bands and we use again the fact that
topological obstructions can be described using elements of the fundamental group of
the order-parameter space [3].

4.2. Non-Abelian charge
In this section, we give a rigorous introduction to the non-Abelian charge for systems

with N ≥ 3 bands following Ref. [3]. We first give a quite mathematical definition,
then we present some constraints on nodal line composition, and finally introduce the
interesting property of the braiding of nodal points and the linking of nodal lines.

4.2.1. Mathematical definition
We want to define a topological invariant to describe nodal points (NP) and nodal lines

(NL) in semimetals. Therefore, we start by introducing a convenient way to characterize
nodes. This is done by looking at the Hamiltonian on a manifold around the node. For
semimetals the nodes we are interested in occur between the valence (highest occupied)
and the conduction (lowest unoccupied) band. With the restriction of PT -symmetry
and negligible spin-orbit coupling our Hamiltonian is real and we can always find the
eigenstates to span a real orthonormal basis of the Hilbert space. We now consider a
Hamiltonian with N bands from which n are occupied and l = N − n are unoccupied.
For 1 ≤ j ≤ N we find its eigenstates as |ujk〉 and for i < j we have eigenenergies εi ≤ εj.
The set of nodes we want to characterize is given by: NH = {k ∈ BZ|εnk = εn+1

k }. We do

1We can see the similarity between nodal points in 2D and nodal lines in 3D if we consider the 3D
case as world lines of the 2D case. This means that we interpret the third momentum component as
the time such that we end up with a 2D case evolving in time. We consider such a model consisting
of point nodes extended to world lines in Section 5.1.
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not change the topology of the Hamiltonian if we set the energies of all occupied bands
to −1 and the ones of all unoccupied bands to +1 for all k /∈ NH. We thereby end up
with a simple Hamiltonian for all momenta not in the set NH .

H(n,l) = −
n∑
j=1
|ujk〉〈u

j
k|+

n+l∑
j=n+1

|ujk〉〈u
j
k| (4.2.1)

The restriction to momenta k that are not nodes is no problem as we define the topolog-
ical invariant of the node on a manifold around the node, where the above Hamiltonian
is well-defined.
We are interested in the order-parameter space M(n,l) of such spectrally flattened

Hamiltonians, in particular in the fundamental group of this space, as we already know
that we can assign an element of this group to each node.
From Equation (4.2.1), we see that the Hamiltonian is defined by a frame consisting

of N orthonormal N -component vectors and is invariant under mixing the n first or the
l last vectors. Therefore, we find the parameter space as a quotient space:

M(n,l) = O(n+ l)/O(n)×O(l) (4.2.2)

called the real Grassmanian. We can find its fundamental group in the Supplementary
of [3] as:

Π1(M(n,l)) =
Z for n = l = 1
Z2 for n+ l ≥ 3

(4.2.3)

Using this characterization, we see that for three or more bands there are two values
of the topological invariant to assign to a path. More precisely, the Hamiltonian on any
closed path γ is either trivial or non-trivial, in the latter case the path encloses a node.
In Chapter 2 we have seen that the Berry phase describes a single energy band, whereas

the non-Abelian charge characterizes the system consisting of all three energy bands.
In analogy to this one-dimensional description, we now also want to generalize this
characterization of the nodes in one band gap to a situation where we consider all band
gaps at once as a system.
To do so we consider models with N ≥ 3 bands, eigenstates |ujk〉 for 1 ≤ j ≤ N and

energies εi ≤ εj for i < j. We now have a set of nodes for each band gap defined as
N j
H = {k ∈ BZ|εjk = εj+1

k } and the total set of nodes is then given by NH = ⋃N−1
j=1 N

j
H.

For all k not in the set of nodes, we then simplify the Hamiltonian without changing its
topology by setting the energies to εj = j. The resulting Hamiltonian looks as follows:

HN(k) =
N∑
j=1

j|ujk〉〈u
j
k| (4.2.4)

This spectrally flattened Hamiltonian is defined by the orthonormal frame {|ujk〉}Nj=1
consisting of N -component vectors with gauge freedom |ujk〉 → −|u

j
k〉. Using this we can

define the order parameter space of N -band Hamiltonians MN as orthonormal frames
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O(N) modulo a multiplication of any eigenstate by ±1, i.e. the group O(1) for each
eigenstate. This represents the gauge degree of freedom while preserving reality of the
eigenstates. To simplify, we can restrict the frames to be right-handed, so we find the
order parameter space to be the group SO(N) modulo π-rotations flipping the sign of
an even number of |ujk〉 (flip of only one would lead to a left-handed frame).
From Section 2.3, we already know that for three bands we have M3 = SO(3)/D2 and

Π1(M3) = Q. We are now looking for a generalization of this. More specifically, we are
looking for a description of the group switching an even number of signs of the vectors
|ujk〉Nj=1. Therefore, we define the Abelian group PNh ≡ O(1)N generated by reflection
with respect to N mutually perpendicular axes in N -dimensional Euclidean space and
PN as the special component of it (to stay with right-handed frames), by taking only
the elements with positive determinant. We arrive at the quotient space:

MN = O(N)/O(1)N = SO(N)/PN (4.2.5)

To compute the fundamental group of this space, we again want to use the theorem
of Mermin (Equation 2.2.1). As in the case of three bands, we can do this by taking
Spin(N), the double (and also universal) cover of SO(N). Now, we also need the double
cover of PN denoted by P̄N . So by Mermin’s theorem we find that:

Π1(MN) = Π1(Spin(N)/PN) = Π0(P̄N) = P̄N (4.2.6)

The group P̄N is known as the Salingaros vee group and it is non-Abelian for N ≥ 3.
For a mathematical description consider the Supplement of Ref. [3].
Similar to the quaternion group discussed for three bands, the generators of the Salin-

garos vee group anticommute and square to −1, so they can be expressed using the real
Clifford algebra Cl0,N−1. We go into more detail on what the elements of the group
describe in Section 4.2.3.
We now have a look at the number of conjugacy classes of this group, as we will see in

the Section 4.2.2 that the nodes of a semimetal can be described by conjugacy classes
of this group. It was shown by [3] that in the case of an odd number of bands, we find
2N−1 + 1 conjugacy classes and for an even number we have 2N−1 + 2 conjugacy classes.
We now look at the number of different topological phases in N -band models. In

the one-dimensional case for the quaternion group, we have already seen that we find
four phases by considering the Berry phase but five phases when using the quaternion
charge for the characterization. This can be generalized for 1D-system consisting of N
bands. We know that we can assign to each band either a Berry phase of 0 or π with
the constraint that the sum over all Berry phases is equal 0 mod π [12], leading to 2N−1

possible phases. Considering instead the non-Abelian charge that assigns an conjugacy
class of the group P̄N to the system, we find one or two additional phases depending
on whether the number of bands is even or odd. Therefore, in general we can observe
more topological phases characterized by the non-Abelian charge compared to the Berry
phase. The relevance of the non-Abelian charge for the characterization of nodes is
further discussed in Section 4.3.
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4.2.2. The role of conjugacy classes
As already mentioned, we now argue why the characterization of nodes can only be

done up to conjugacy. Therefore, we consider first the two-dimensional case and then
extend it to 3D using world lines.
In general, we assign a charge to a nodal point by taking a loop that starts at a base

point X0, then winds around the node and finally ends up at the base point again. So,
we have a closed curve along which we calculate the topological charge, we assign to the
node. The Hamiltonian along the path can be interpreted as a 1D-system, similar to
those analyzed in Chapter 3. It is important that we only enclose one node with our
loop. We now look at a specific example and explain why we can only assign the charge
up to conjugacy.

Figure 4.2.: Illustration that shows why the charge is only defined up to conjugacy class.
There are two nodes Y1, Y2 in different band gaps. We have two different paths with
the same base point X0 going around the blue node Y1 that assign different charges to
it. Adapted from [3].

Assume we have two nodal points Y1, Y2 and a fixed base point X0. We further fix
the direction to go around the node as counterclockwise. There are several topologically
distinct possibilities to enclose the node Y1, two of which are shown in Figure 4.2. Either
we can take the direct path Γ1,a around the node Y1 or we take the path Γ1,b that in
addition winds behind the second node Y2. This second path is homotopic (can be
continuously deformed) to the path going around the node Y2 counterclockwise (path
Γ2), then around Y1 counterclockwise (path Γ1,a), and finally around Y2 clockwise (path
Γ−1

2 ). Using this we find:
Γ1,b ∼ Γ−1

2 ◦ Γ1,a ◦ Γ2 (4.2.7)
where ◦ represents the composition of paths that is read from right to left. Ascribing the
element gi ∈ Π1(MN) to the path Γi we find g1,b ∼ g2 · g1,a · g−1

2 which is the definition
for elements g1,a and g1,b to be conjugate, i.e. in the same conjugacy class. Therefore,
depending on the path we choose around the node, we can get different elements of a
conjugacy class describing the node but not elements of other conjugacy classes. This
makes the characterization using conjugacy classes unique.
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There is a second source of non-uniqueness of the charge arising from the choice of
the initial right-handed frame. At the base point of our path, we choose a right handed
frame consisting of the eigenstates at this position. However, this choice is not unique
as by flipping the orientation of an even number of initial eigenstates, i.e. by a π-
rotation around the state not flipping its orientation, we again have a right-handed
frame. This ambiguity leads to a conjugation of the quaternion charge assign to the path
with an element of the quaternion group. However, again we see that also including this
observation we still have a unique characterization using the conjugacy classes.
In the case of Abelian groups, each element has its own conjugacy class. This we

see from the fact that for any element g we find that h · g · h−1 = h · h−1 · g = g ∀h
and therefore g is the only element in its conjugacy class. For example, the groups
Z,Z2 characterizing nodes using the Berry phase or the Chern number are Abelian.
This implies that for Abelian groups the characterization with elements is unique and
independent of the path.

4.2.3. Correspondence between non-Abelian charge and band nodes
In the previous two sections, we have seen that nodes in models with N ≥ 3 bands

are characterized by the conjugacy classes of the group P̄N . We now have a closer look
at this correspondence.
Similar to the edge states in 1D-models (Chapter 3), a node between two consecutive

bands j and j + 1 corresponds to an elementary π-rotation of the eigenstates |ujk〉 and
|uj+1
k 〉 of the flat band Hamiltonian H = ε = diag(1, . . . , N) along a path Γ ' S1 around

the node. These π-rotations we can relate to elements gj of the group P̄N (also called
generalized quaternions). The conjugacy class of gj then represents a node between
the bands (j, j + 1). With this notation all the conjugacy classes of the group P̄N are
collections of nodes in different band gaps.
The elements gj ∈ P̄N have the following properties which follow from the Clifford-

algebra representation of PN [3]:

gj · gj+1 = −gj+1 · gj and g2
j = −1 (4.2.8)

The first property represents the anticommutation of nodes in neighboring band gaps
as well as the commutation of all other pairs of nodes, whereas the second property
includes the topological non-triviality of the 2π-rotation. Therefore, we deduce that the
exchange of nodes not in neighboring band gaps is trivial but the exchange of nodes in
consecutive band gaps is non-trivial. We now check the implications of this non-trivial
exchange for the simple case of the quaternion charge.

We now restrict ourselves to Hamiltonians with three bands and the quaternion charge,
although we can easily extend these observations to more than three bands. We assign to
each conjugacy class a specific type of node and find that the charge {±k} corresponds
to a node in the lower band gap and {±i} to a node in the upper one. Using the rule that
{±i} · {±k} = {∓j}, we find that the charge {±j} corresponds to a path that encloses
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one node in each band gap. For illustrations, we use the color blue for nodes in the
upper band gap ({±i}) and red for the ones in the lower band gap ({±k}) [3].
In the previous section, we have seen that the characterization of nodes is only possible

up to conjugacy. For nodal lines, we will nevertheless give a meaning to the elements,
i.e. the sign of the charge. We relate the sign of the charge to the orientation of the
nodal line with respect to a fixed base point using a fixed path.

4.3. Non-Abelian band nodes
We now have a closer look at what the special properties of the non-Abelian charge are.

We are in particular interested in the specialties that arise from the non-commutativity.
First, we illustrate the properties of the charge explicitly using the case of three bands
and the quaternion group. Then, we look at the constraints on nodal line compositions,
going into more detail concerning the linking. Finally, we check if an analog of the
Nielsen-Ninomiya doubling theorem also holds for this non-Abelian charge.

4.3.1. Braiding of band nodes

Figure 4.3.: Non-trivial exchange of point nodes in 2D. We have two nodes created in
the same band gap with charges ±i and one node in the other band gap with charge +k
(red). Bringing the blue nodes ±i together along the orange path, they can annihilate
if, in contrast, they are brought together along the purple line, they cannot annihilate.
Adapted from [3].

First, we look at the exchange of nodes which in the non-trivial case is called “braid-
ing”. For the sake of simplicity, we start with the case of nodal points in 2D. Similar
to the argumentation why we only use conjugacy classes, we have a base point X0 and
consider different paths (see Figure 4.3). This time we create a pair of nodes inside the
path Γ1 with charges ±i. They need to have opposite charge to be created or annihilated
(as (−i) · i = 1 and is therefore trivial). If we now have a node in a different band gap +k
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and take a path starting from the base point, which encloses the two nodes ±i by going
around node k (path Γ2), we know from Equation (4.2.7) that the charge of the upper
node −i is conjugated as: k(−i)(−k) = i. So the charge of the upper node changes from
charge −i to +i. Then the two nodes in the same band gap both have charge +i and
they cannot annihilate ((+i) · (+i) = −1). This tells us that it depends on the path we
choose to bring the nodes together if they can annihilate or not. Bringing them together
in a direct way, they can annihilate, but choosing a path winding behind a different
node, they cannot annihilate. This is a first manifestation of the non-Abelian topology.

We can generalize this to nodal lines in 3D by interpreting the paths along which
we bring the nodal points together as world lines. Considering the time as the third
momentum component, we have nodal lines in three dimensions and we deduce, that
they change their orientation (sign) if going under a nodal line of different charge.

Figure 4.4.: Orientation change of nodal lines using fixed paths. As argued in the text
we can fix a path to determine the orientation of the nodal line. This path is shown
in green, the black dotted arrow indicated the direction we take around the loop. We
see that at the moment the red NL is in front of the blue NL, the orientation changes.
The orientations of nodal lines are indicated by red and blue arrows. Adapted from
[3].

To understand this in more detail, we consider the situation shown in Figure 4.4. We
have a base point (vantage point) X0 and look at the nodal lines from there. Now, we
fix the choice of a path to determine the topological charge of all nodal lines in the same
way. First, we go along a straight line to the nodal line, then enclose it with a tight
loop and finally come back to the base point following the same straight line. To see
what happens to the orientations of the nodal lines we consider a blue NL with charge
{±i} going under a red NL with charge {±k}. Then, we choose two paths enclosing the
blue nodal line right before and after it goes under the red one. The first called ΓB1 and
the second ΓB2. In addition, we have a loop ΓR enclosing the red NL at any point. As
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already done twice (compare Eq. 4.2.7), we now know that ΓB2 ∼ Γ−1
R ◦ ΓB1 ◦ ΓR. By

choosing the charge of the blue NL on path ΓB,1 to be +i and the charge of the red NL
to be +k, we find the charge of the blue NL on the path ΓB,2 as k · i · (−k) = −i. So,
the blue line changes its orientation. The same argument is valid for a red line moving
under a blue line. From this we conclude that whenever a nodal line moves under a
nodal line in the other band gap, it changes its orientation.

We can generalize this for the case of more than three bands. Here, we have to distin-
guish nodes in consecutive band gaps from nodes in further distant band gaps. Nodes
that are not in neighboring band gaps have commuting topological charges, and will
therefore keep the orientation when moving under each other. For nodes in neighboring
band gaps, the charges anticommute, and we have the same situation as for the two
gaps in a three band model. So, the orientation of a nodal line in a band gap changes
whenever it goes under a nodal line of a neighboring band gap.

Figure 4.5.: Reciprocal braiding of band nodes: Panel (a) shows the braiding of two
nodes. (b) shows the path enclosing the braid starting from the base point X0 and the
two paths enclosing the blue and red nodal line separately. In (c) the path enclosing
the braiding is split into one enclosing the upper crossing point and one the lower one.
Panel (d) includes paths only enclosing one of the two nodal lines needed to express
the path around the braid. Adapted from [3].

Having seen these orientation changes, we now consider the braiding of nodal lines
a bit closer as we will encounter it again in the model presented in Section 5.1. By
braiding we mean that two nodal lines (or world lines of nodal points, see Ref. [29])
move twice across each other, so that each of them goes under the other once. So, we
start for example with charges i (blue) on the left and k (red) on the right, then first
move the red under the blue to the left and thereby change its orientation to −k and
then move the blue under the red changing its orientation to −i. Finally, we end up
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with both nodes at the same position as in the beginning but with opposite charges
(Figure 4.5a). Now we show that this braiding is non trivial and we cannot undo it by
moving the two nodal lines across each other, while letting the ends fixed. This relates
to the non-triviality of the 2π rotation and we could already expect the braiding to have
a non-Abelian charge of −1. We now show this in a more specific way.
To obtain the charge of the braid, we enclose the two crossings of blue and red nodal

lines by a loop Γbraid starting and ending at the base pointX0 (illustration in Figure 4.5b-
d). We now want to express this loop using a homotopic loop that is a combination of the
trivial loops ΓR and ΓB going around the red and blue nodes, respectively. Therefore,
we first divide it into two loops one going around the top and one around the bottom
crossing: Γbraid ∼ Γtop ◦ Γbottom. If at the top the red line goes under the blue line
the loop Γtop is homotopic to going first around the blue and then around the red, i.e.
Γtop ∼ ΓR ◦ ΓB.
To get the loop around the crossing at the bottom with the red line above the blue,

we introduce a loop going around the red line after the top crossing: Γ′R ∼ Γ−1
B ◦ΓR ◦ΓB.

Considering that the loop changes direction at the flection point of the nodal line we
find that: Γbottom ∼ Γ−1

b ◦ Γ′−1
R . Therefore, we express the whole loop as:

Γbraid = Γtop ◦ Γbottom = ΓR ◦ ΓB ◦ Γ−1
B ◦ Γ′−1

R = ΓR ◦ Γ−1
B ◦ Γ−1

R ◦ ΓB (4.3.1)

Assigning the orientation of nodal lines such that a loop ΓB corresponds to the charge
+i, we find for the charge of the braid:

nbraid = i · (−k) · (−i) · k = j2 = −1 (4.3.2)

So this braiding has a non-trivial topological charge.

4.3.2. Constraints on nodal line compositions
We have some further implications from the non-commutativity of the charge, namely

there are some constraints on how nodal lines can be organized together in momentum
space. For simplicity we again consider only three bands, before generalizing to more
bands. We find three constraints on compositions of nodal lines.

i) Nodal lines with different color (charge) cannot cross. This means, we cannot undo
a linking of two different nodal lines.

ii) A nodal ring of one color can only enclose an even number of nodal lines of the
other color.

iii) The meaning of i4 = 1 is really that four nodal lines with same charge and orientation
can annihilate.

For the second property, we consider a simple illustration of linked nodal lines and
look at their orientations (Figure 4.6). If we have a blue NL ring in the upper band gap
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and want to link it with only one red nodal line, there is an ambiguity in the definition
of the orientation of the NL ring. Linking it, instead, with two red nodal lines we are
able to uniquely determine the orientation.

Figure 4.6.: Linking possibilities of nodal lines. Panel (a) shows the situation where the
blue nodal line encloses only one red nodal line. The black arrow indicates where a
problem with the orientations occurs as the orientation would have to change without
passing below a red nodal line. In (b) the possible linking with two nodal lines of the
other color is shown.

This directly implies the first property. Figure 4.7 shows the situation before and after
moving two NL rings of different color across each other. Yet we have just seen that the
second of these situations is not possible which implies that we cannot move different
kinds of nodal lines across each other by a continuous deformation of the Hamiltonian.
An illustration on how to annihilate four nodal lines of same charge and orientation

can be found in the Supplementary of [3] (Figure S14).

Figure 4.7.: Allowed and forbidden nodal line compositions. Panel (a) shows the allowed
composition of two nodal rings. Whereas in (b) we have a problem concerning the
orientation of both nodal rings. This pair of illustrations implies that red and blue
nodal lines cannot pass through one another.

We now generalize these constraints to more than three bands in the same way as we
did it in the last section. Considering that nodal lines in non-neighboring band gaps
have commuting charges, we do not have any constraints on them. They can clearly
cross each other and enclose an arbitrary number of nodal lines that do not occur in
neighboring band gaps. Interesting is only the case of nodal lines in neighboring band
gaps as their charges anticommute. They have the same constraints as we just saw for
the three band models and the quaternion charge. Clearly, the last property, that four
nodal lines with the same charge and orientation can annihilate, holds in any band gap
independent of the number of bands.

44



4.3.3. Linking of nodal lines
In the following chapters, we consider models with linked vs. unlinked nodal lines.

Therefore, we want to argue why this linking is interesting in topological materials.
Up to now we have considered the topological characterization of nodal lines using the

first homotopy (or fundamental) group. This we have done by enclosing the nodal lines
with a closed loop isomorphic to the circle S1. In 3D we can also enclose a ring-shaped
nodal line with the sphere S2 and then characterize the topology of the nodal lines by
the second homotopy group of the parameter space Π2(M)2 [24].
Studying the linking of nodal lines, we restrict ourselves to ring-shaped nodal lines,

so-called NL rings. If we enclose such a ring with a sphere S2, we can assign to it
an element of the second homotopy group Π2(M). As we are mainly interested in the
characterization of nodes in the band gap between the conduction and the valence band,
we concentrate on the characterization of Hamiltonians with n occupied and l unoccupied
bands, described in Equation (4.2.1). In this case, we have the parameter space given as
the real Grassmanian M(n,l) = O(n+ l)/O(n)×O(n). The first homotopy group of this
space describes the Berry phase which in the case of n + l ≥ 3 is quantized to 0 or π,
whereas the second homotopy group characterizes the monopole charge. This monopole
charge is of interest, as it can be related to higher-order topology [30]. We do not go into
more detail on the higher-order topology here but we briefly elaborate on the relation
between the monopole charge and the linking number of a NL ring [23].
We can define two linking numbers that describe the linking of a NL ring with nodal

lines in neighboring band gaps. By the subscript ±1, we denote either the band gap
above or below the one hosting the NL ring. The value of wa±1 is ±1 for nodal lines
linked with the ring, +1 for the orientation away from the ring and −1 if orientated
towards the ring. Using this we can define the following quantities [23]:

η± =
∑
a

wa±1 ∈ Z (4.3.3)

that counts the number of sources and sinks, respectively and

ν± = 1
2(η+ ± η−) ∈ Z (4.3.4)

So, the number η+ (η−) represents the linking with nodal lines in the band gap above
(below) the band gap of the NL ring and ν± is simply a linear combination of them.
For a three band model, we only have two band gaps and there is only one linking

number with the neighboring band gap. From the properties of the non-Abelian charge,
it is clear that the linking number has to be a multiple of 2, i.e. η = 2n with n ∈ Z,
called the Euler class. So the linking number corresponds to elements of the group 2Z.
In the case of a four-band model, we find an integer linking number to the nodal lines

in the band gap above as well as below with the constraint that the sum of them has to
be even (η− + η+ = even), due to the constraint (ii) on nodal line compositions. Thus
ν± define a Z+ Z topological invariant, corresponding to two Euler numbers.

2For the definition of the second homotopy group consider the Appendix A.2.
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If we consider many band models with more than six bands, using the non-Abelian
charge, it is possible to show that the linking number in that case has the group structure
of Z2. This is done, based on the fact that in many band models, it is possible to trivialize
the linking with an even number of nodal lines. The exact prove of this procedure and
the linking numbers of all other possible combinations of occupied and unoccupied bands
are shown in Ref. [23].
For any number of bands the linking numbers exhibit the same group structure as the

monopole charge. So, we can interpret the monopole charge as an information on the
linking [23].
A similar result was found by Ref. [31]. They proved the equivalence of the linking

number and the monopole charge using the second Stiefel-Whitney class.
We have now seen, why the linking of nodal lines is interesting for topological materials

and that it can be related to the monopole charge of nodal lines. This relation can be
shown quite easily by using the properties of the non-Abelian charge [23]. As a last
step concerning the non-Abelian charge we want to check if the well known doubling
theorem (first published by Nielsen and Ninomiya [28] in the context of Weyl fermions
and neutrino physics) can be generalized for the non-Abelian charge.

4.3.4. Violation of the doubling theorem
In this section, we show that the Nielsen Ninomiya doubling theorem does not hold

for the non-Abelian charge, by which we mean it is possible to produce band nodes with
a total non-trivial charge. We do this in analogy to the formulation using Dirac strings3
done in Ref. [32].
The fermion doubling theorem, in general, states that topological point nodes in the

bulk of a lattice Hamiltonian can only occur in pairs such that the total charge of all
band nodes vanishes. Examples for the doubling theorem are Dirac points in graphene
or Weyl points in 3D Weyl semimetals. In other words, we can say that if a Weyl point
has a winding number +1, there must exist a second one with winding number −1, so
the sum over all winding numbers in the BZ has to be zero [33].
A counter example to this was found by Ref. [32]. Using Dirac strings, the work shows

that it is possible to have a total winding number of ±2 in systems with nonzero Euler
class when starting with two nodes having winding number +1 and −1.
We now want to check the doubling theorem for the non-Abelian charge. The question

is if we can show that the product of all nodal points in 2D or cross-sections of nodal
lines in 3D inside the BZ is trivial (equal 1). Using the same arguments as Ref. [32],
we see that we could also end up with total non-Abelian charge of −1. To see this, we
consider point nodes in 2D with Dirac strings. In our context a Dirac string is a tool
to implement the non-commutativity of the charges, i.e. if a blue node passes the Dirac
string of a red node it reverses its charge and vice versa.

3In general Dirac strings are used to include discontinuities in the gauge of a system.
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Figure 4.8.: Violation of the doubling theorem for the non-Abelian charge. In panel (a)
two red nodal points are created. One of them (b) is moved to the right and two blue
nodal points are created. In (c) one of these blue nodes is moved across the BZ and
changes its sign when crossing the Dirac string of the red nodes. Panel (d) and (e)
show that the red nodes are annihilated but the blue ones leave behind a non-Abelian
charge of −1. Adapted from [32], Figure 6.

At time zero, two nodal points with charges ±k in the lower band gap (red) are
created. This is possible as the total quaternion charge is k · (−k) = 1 and therefore
the system is in a trivial state. One of them is moved across the BZ and then they
are pairwise annihilated leaving behind a Dirac string across the BZ. Now, we create
two nodal points in the other band gap ±i (blue). Again, we move one of them (charge
−i) across the BZ but the moment it crosses the Dirac string of the red nodal line it
changes its sign to +i. If we now bring them together by crossing the BZ boundary, they
cannot annihilate anymore because (+i) · (+i) = −1 and we end up with a non-trivial
total charge (compare Figure 4.8). Hence, we prove that the doubling theorem does not
hold for the non-Abelian charge and we can actually have a non-trivial total charge of
all nodal points inside the BZ. This can also be extended to 3D by looking at different
two-dimensional cross-sections through the three-dimensional BZ.

4.4. Open questions and goals
At the end of this quite theoretical first part, we state the goals, we address ourselves

to in the numerical analysis of different models describing topological PT -symmetric
semimetals. In the following chapters, we will focus on three open problems:

• Better understanding of the correspondence between the edge/surface states of
topological materials and the quaternion charge.

• Possibility to differentiate linked and unlinked nodal lines by looking at the surface
spectrum.

• Better understanding of the topological phase with non-Abelian charge −1. From
the numerical results on the one-dimensional models (Chapter 3, we have the
following conjecture: In the topological phase with non-Abelian charge −1 there
is always an edge state crossing the middle band from one band gap to the other.
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5. Models
For the numerical analysis of the surface states and the bulk-boundary correspondence

between the surface states and the non-Abelian topological charge, we use different
models. First, one two-dimensional model with point nodes including a tuning parameter
(time) that allows us to interpret the point nodes as world lines. Second, we constructed
two three-dimensional models in one case with linked and in the other with unlinked
nodal-line rings. The diagonal surface BZ projection of these two models looks very
similar.
In this chapter, we introduce these three models and show their nodal-line structures.

Furthermore, we calculate the quaternion charge of these models along paths through
the BZ to arrive at a topological phase diagram consisting of areas with different non-
Abelian topological invariants. For all models the lattice parameter a is set to unity.

5.1. 2D braiding model
First, we introduce a two dimensional model with point nodes (Weyl points) that

perform a braiding when considering their motion with a tuning parameter t. This
model was proposed by Ref. [29]. Then, we have a closer look at this braiding of the
nodal points during the evolution along t. Finally, we look at the model from the point
of view of the quaternion charge and calculate its value for all threads projecting onto
points in the surface BZ1.

5.1.1. Model in reciprocal and real space
Ref. [29] presents a model with three orbitals per site, an on-site potential on the first

orbital and an on-site hopping between the other two orbitals. Furthermore, next nearest
hopping between different orbitals is included, resulting in the following Hamiltonian
matrix2:

H2D(k, t) =

 f(t) g(k) g∗(k)
g∗(k) 0 h(k, t)
g(k) h∗(k, t) 0

 (5.1.1)

for k inside the BZ [−π, π]2 and the tuning parameter t ∈ [−10, 10]. The on site potential
f(t) for the first orbital and the couplings g(k) (between the first and the second or third

1The surface BZ is the projection of the bulk BZ along some axis, therefore for a BZ of dimension N ,
it has dimension (N − 1). For the construction of the surface BZ see Figure 6.3.

2The model is taken from an earlier version of the paper: arXiv version 3, Jan 15 2020 [34].
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orbitals) and h(k, t) (between the second and third orbitals) are defined as follows:

f(t) = F[8,−](t) g(k) = −i ·
(
e−ikx − e−iky

)
(5.1.2)

h(k, t) = h0(t) + h1(t) ·
(
eikx + eiky

)
(5.1.3)

with h0(t) = F[2,−](t) and h1(t) = (10− F[8,+](t)) (5.1.4)

where F[ν,±](t) = 1
2(|t+ ν| ± |t− ν|) (5.1.5)

The function F[ν,±](t) is piecewise linear and has kinks at positions t = ±ν. This
implies that also the functions f(t), h0(t) and h1(t) are piecewise linear, compare Figure
5.1.
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Auxiliary functions
f(t)
h0(t)
h1(t)

Figure 5.1.: Auxiliary functions used in the definition of the Hamiltonian. The functions
f(t) and h0(t) are point reflected at zero. Therefore, we have no on site hopping for
the case t = 0. In contrast, the function h1(t) is mirror reflected w.r.t. the y-axis and
non-zero for t = 0.

To get a better understanding of this Hamiltonian, we first have a look at the energy
spectrum with periodic boundary conditions in both directions x and y. Figure 5.2
shows the energy surfaces for the values t = −2, 0, 4. For all values of t the nodal points
lie on the diagonals of the BZ. This is why we will be mainly interested in the diagonal
projections of this Hamiltonian.

Before going into more detail concerning the behavior of the nodal points in this model,
we want to transform it into real space. For the Hamiltonian defined in Eq. (5.1.1) it
is possible to directly read out the hopping amplitudes for the tight-binding model. We
label the orbitals as A,B and C (from top to bottom in the matrix) and find the real
space hopping parameter shown in Figure 5.3. Using these parameters we are able to
set up the finite real space model with different types of edges (Section 6.1).
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Figure 5.2.: 2D model: Spectrum of the Hamiltonian for values t = −2, 0, 4. Panel (a)
shows the two-dimensional spectrum of H2D for t = −2. We clearly see two nodal
points along one of the diagonals in the upper band gap, as well as a band touching in
the middle of the BZ for the lower band gap. Panel (b) shows the spectrum for t = 0.
Here, we observe two nodal points in the upper and two of them in the lower band
gap. All four nodal points lie on the same diagonal of the BZ. Panel (c) shows the
situation for t = 4. We again observe four nodal points two of them in the upper band
gap on one diagonal and the other two in the lower band gap on the other diagonal.
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Figure 5.3.: Hopping amplitudes in real space for the two-dimensional braiding model.
The red dots represent orbital A, the green ones orbital B and the blue ones orbital C.
The hopping probability from the unit cell in the center are represented by the arrows
with different colors.

5.1.2. Braiding of the point nodes
We now have a further look at the evolution of the nodal points as a function of t. The

parameter t can be interpreted either as the time or as a third momentum component.
The later assumption allows us to interpret the trajectories of the nodal points as nodal
lines in a 3D model.
Looking at the spectrum for three values of t, we already realized that the nodes lie

on the BZ diagonals. This is also true for all other values of t.
From the previous chapters on the non-Abelian charge, we know that the presence

of a node in the neighboring band gap can influence the node in the considered band
gap. For example, we have seen in Figure 4.3 that in the presence of a node in the
neighboring band gap, it depends on the path we choose to bring two nodes together if
they can annihilate. This property is also manifested by the Hamiltonian H2D.
We follow the evolution of the nodal points by looking at the spectrum of the Hamil-

tonian along the two diagonals (11) and (11̄) of the BZ. As in Section 4.3, we denote
by {±k} the nodes in the lower band gap with color red and by {±i} the nodes in the
upper band gap having color blue.
For t = −9, there appears a pair of nodes in the upper band gap at Γ and move out-

wards along the diagonal (11̄). Later, for t = −6 a second pair of nodes appears but this
time in the lower band gap and at M moving towards the center Γ along the diagonal
(11). At t = −2 these two nodes in the lower band gap meet at Γ and start moving
outwards along the other diagonal (11̄). Therefore, as observed in the two-dimensional
spectrum for t = 0 (Figure 5.2) all the nodal points lie on the same diagonal (11̄). For
t = 2 the nodes in the upper band gap meet inM (at the boundary of the BZ) and start
moving towards Γ along the diagonal (11). Finally, for t = 6, the nodes in the upper
band annihilate at Γ and for t = 9 the other two nodes in the lower band gap annihilate
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in M . This process is shown in Figure 5.4

Figure 5.4.: Braiding of the point nodes along the tuning parameter t. For simplicity the
figures only show the schematics and not the actual trajectories of the nodal points.
These are slightly different and shown in Figure 5.7. Panel (a) shows the two diagonal
cuts through the BZ. The red circle indicates the position where the red nodal points
change the direction and the blue circles show the direction change of the blue nodal
points. By the periodicity all four blue circles indicate the same position in reciprocal
space. The dotted lines indicate nodal points moving along the projected direction. In
addition the folding into the surface BZ is shown (explained in Figure 5.6). The black
dotted lines show the boundaries of the surface BZ and the lighter blue and red doted
lines indicate the folded nodal lines. In panel (b) the same is shown in a 3D picture
where we see the world lines of the nodal points in the two-dimensional BZ. The red
and blue triangle show the sign changes of the charges.

In this process the blue nodes as well as the red nodes meet one time but fail to
annihilate. This is a manifestation of the non-Abelian braiding. Even tough the blue
as well as the red nodes were created as a node-antinode pair, they fail to annihilate at
t = −2 and t = 2 for the blue and the red nodes, respectively. We can see this from
the fact that a nodal line changes its orientation when moving under a nodal line of
different charge. This is also true for nodal points, i.e. a nodal point changes its sign if
its world line moves under the world line of a nodal point with different charge. These
sign changes are indicated in Figure 5.4 as triangles. Considering these sign changes, we
observe that at the red circle where the two red nodes meet the first time, one of them
changed its sign and they will have the same charge which leads to a total charge of −1,
so they cannot annihilate. In contrast, until they meet a second time at the boundary
of the BZ for t = 9, again one of them has changed its sign which then leads to a total
charge of +1 and they are able to annihilate. The same is true for the blue nodal points.
They have a non-trivial total charge of −1 at the blue circles.
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5.1.3. Quaternion charge
We now studied the quaternion charge for single nodes and how they change because

of the braiding. Another possibility to look at the quaternion charge for a two dimen-
sional model, is to define one-dimensional closed paths through the BZ and define the
quaternion charge of this threads. We then end up with regions of different quaternion
charge inside the surface BZ projection that are bounded by nodal lines. We now want
to determine these regions for different projections. The projections are done along the
kx-axis (the projection along ky looks exactly the same) as well as along the two diago-
nals. Figure 5.5 defines the corresponding threads.

Figure 5.5.: One-dimensional threads through the two dimensional BZ to define the
quaternion charge of the 2D-model. The blue dots indicate the same points just in a
different copy of the BZ such that all paths γφ are closed.

When calculating the quaternion charge along these threads in Figure 5.5b and c, we
observe a folding of the BZ. This is also observed by the surface BZ projection along
the diagonals. We only take threads through the middle of the BZ and miss some part
at two corners. These parts then appear along other threads through the BZ, what we
call the folding of the BZ. The procedure of this folding is shown in Figure 5.6.

In Section 3.2.3, we discuss how to calculate the quaternion charge numerically for
real one-dimensional systems. The Hamiltonian H2D (Eq. 5.1.1) is complex. To be able
to apply the same technique, we need to make this Hamiltonian real-symmetric3. For
a PT -symmetric Hamiltonian, this can be done by a constant (k-independent) unitary
transformation. Such a constant transformation cannot change the topological invariant
of the Hamiltonian up to a group automorphism of the quaternion group, i.e. it is unique
for charges +1 and−1 but could interchange the charges i,j and k [3]. In our case Ref. [29]

3The Hamiltonian has to be symmetric as we still require the Hermicity H† = H.
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suggests the following transformation:

H2D,real(k, t) = VH2D(k, t)V † with V =
√

1⊕ σx =

 i 0 0
0 −1+i

2
1+i
2

0 1+i
2

−1+i
2

 (5.1.6)

Figure 5.6.: Folding of the BZ along the diagonal projection onto the surface BZ. The
black square in panel (a) is the actual BZ. The dotted dark red rhomboid indicates
the area, we cover with the threads in Figure 5.5b. By periodicity the two green
(blue) triangles represent the same part of the system. The line between the two
corners represents a nodal line through the BZ. Panel (b) shows how this nodal line
is represented in the folded BZ. The parts of the line with the same color (shape)
represent the same in panels (a) and (b).

We are now able to calculate the quaternion charge of the real Hamiltonian (Eq. 5.1.6)
along the one-dimensional threads in Figure 5.5. This is done by defining a 1D version
of the Hamiltonian for a parameter φ and a family of closed paths γφ (threads) through
the BZ. The 1D Hamiltonian looks as follows:

H1D,φ(k, t) = H2D,real(γφ(k), t) (5.1.7)

where k ∈ [−π, π] is the one-dimensional momentum along which we determine the
quaternion charge, and φ ∈ [−π, π] indicates the position of the thread in the BZ.
We take three different families of the paths γφ along the kx-axis and the two diagonal

axes:

γφ,x(k) =
(
k
φ

)
γφ,(11)(k) =

(
k

φ+ k

)
γφ,(11̄)(k) =

(
k

φ− k

)
(5.1.8)
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Using these paths, we find the topological phase diagrams in Figure 5.7. Between two
regions of different color in these diagrams, there must occur a node. So, we can recog-
nize the evolution of the nodal points along t from Figure 5.4 in the phase diagrams.
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Figure 5.7.: Quaternion charge phase diagram for the 2D-models for different projections
of the BZ. Panel (a) shows the phase diagram for threads along the x-axis, panel (b)
along the diagonal (11) and (c) along (11̄). The different colors indicate the phases
of different topological charge and the red and blue lines show the trajectories of the
nodal points in the lower and upper band gap, respectively.

For the projection along the kx-axis (Figure 5.7a), we clearly recognize the nodal
structure of the model. The green phase starting at φ = 0 for t = −9 indicates the
node in the upper band gap and the violet region starting at the boundary for t = −6
represents the occurrence of the red node in the lower band gap. The orange region with
charge j is enclosed by the two nodes and appears/disappears at the braiding points
where the trajectories of one nodes goes under the trajectory of the other node.
Panel (b) in Figure 5.7 shows the projection along the (11) diagonal. This can be

compared to the cut along the (11̄) diagonal in Figure 5.4a. We again see the pair of
blue nodes created at t = −9. The red pair created at t = −6 cannot be seen as they
move along the projected diagonal (indicated by the red dotted line in the figure). At
t = −2 the blue nodes are at the boundaries of the projected BZ (indicated by blue
circles) but by looking at the BZ folding, they appear in a different copy of the BZ and
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move towards the center along the orange-violet boundary. For t = 2 they disappear as
they start moving along the projected diagonal (blue dotted line). The red nodes appear
at t = −2 in the center as then they move along the diagonal (11̄) which is visible in
this projection. They reach the boundary of the projected BZ (red circles) for t = 2
and start moving towards the center in a different copy of the BZ enclosing the violet
region until they annihilate at t = 9. As for the kx-projection, we find an orange region
between the crossing points of the world lines. But in addition, we find the yellow region
with charge −1 which we are mainly interested in.
With the same folding of the actual BZ into the surface BZ projection, we look at the

last phase diagram (Figure 5.7c). Here, the projection along the (11̄) diagonal is shown
and we observe the right panel in 5.4a. We cannot see the blue nodes created at t = −9
(blue dotted line) but we see the red ones appearing in the center at t = −6. They move
towards the boundary (red circles) and back to the center until at t = −2 they start
moving along the projected diagonal and therefore are not visible anymore (red dotted
line). The blue nodes appear at t = 2 where they start moving along the diagonal (11).
They move to the boundary of the projection (blue circles) and then back to the center
enclosing the green region. In this projection, we only find the yellow region −1 but no
orange region.

We find the phase with non-Abelian charge −1, in which we are mainly interested, for
both diagonal projection. Therefore, we can test our conjecture that in the phase −1
there is a surface state crossing the middle band on this model. This we do in Section
7.3.

5.2. 3D models
After this two-dimensional model with point nodes interpreted as world lines, we now

have a look at truly three-dimensional models with nodal lines that are periodic in the
third momentum component kz. We construct two models that look very similar in the
diagonal surface BZ projection but in one case the nodal lines in the bulk are linked and
in the other case they are unlinked.

5.2.1. Construction
Again, we want to have a three-band model to be able to use the quaternion charge

for the description. Therefore, the model has three orbitals A,B,C represented in the
Hamiltonian matrix from top to bottom. We choose A to be a py-orbital, B a px-orbital
and C an s-orbital.
With these orbitals, we set up the Hamiltonian as a tight binding model. From the

symmetries of the orbitals there are already some restrictions on the hopping amplitudes
[35]. For example it is not possible to have a nearest neighbor hopping between the px
and the py orbitals as there is no overlap. Furthermore, due to the symmetry of the

56



orbitals, the nodal lines are pinned to the high symmetry planes kx, ky = 0,±π in the
BZ.
During the process of the construction, we included hoppings by up to four primitive

lattice vectors but in the end, we only needed hoppings by three primitive lattice vectors
for the linked model and by two for the unlinked one. To find the models, we set up a
Hamiltonian with all symmetry-compatible hopping amplitudes as parameters in Python
and Mathematica. By checking the Hermicity and the behavior under mirror reflection,
i.e.

H = H† and (5.2.1)
H(mk) = m̂Hm̂−1 for: m̂ = m̂x, m̂y (5.2.2)

wheremk is the mirror-reflected momentum, and m̂ is the mirror operator in the Hilbert
space spanned by the (py, px, s) basis, we ensure that the Hamiltonian has the right prop-
erties. We now look at the band structure for different projections of the BZ or cuts
through the BZ to find and adjust band nodes. Using Mathematica, we added sliders
for the hopping amplitudes to directly adjust the hopping parameters.

Figure 5.8.: Construction of the linked Hamiltonian. The upper panel shows the band
inversion to construct the nodal lines in the kx = 0 and ky = 0 planes. In the lower
panel, we show how the deformation is done to arrive at the linking. The dotted line
show the continuation in the neighboring BZ.

The construction of the linked model follows the idea of Ref. [31] that uses a double
band inversion in a four-band model to produce linked nodal rings with a monopole
charge. Here, we want to use only three bands to arrive at linked nodal lines. Our idea
is to start from three flat bands and then, add some − cos(2kz) shape to the upper two
bands coming from orbitals py, px. Afterwards, we increase the energy of the s-orbital
band to first cross the band from orbital px, thereby creating a red (lower band gap)
NL ring in the kx = 0 plane. Further increasing the energy, it also crosses the py-band
creating a blue NL ring in the ky = 0 plane. The last and most difficult step is to now
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adjust the hopping parameters such that the blue nodal lines are enlarged and then
reconnect at kz = 0 and kz = ±π inside the BZ to end up with linked nodal lines
(compare Figure 5.8). We achieve this by including electron hoppings by up to two
primitive lattice vectors, e.g. terms of the form cos(2k).
In addition to this linking of the nodal lines lying in the kx = 0 and ky = 0 planes,

respectively, we require that there are no additional nodal lines in the kx, ky = ±π-
planes. To do so, we simply add some additional hopping parameters to suppress the
nodal lines occurring in these planes. Including these hopping parameters, we end up
with the following Hamiltonian consisting of hoppings by up to three primitive lattice
vectors.

Hlinked =

φA t∗AB t∗AC
tAB φB t∗BC
tAC tBC φC

 (5.2.3)

with the entries:

φA =9− 3 · (cos(kx) + cos(ky)) + 4 · cos(2kz) (5.2.4)
φB =6.25− 3 · cos(kx)− 2.5 · cos(ky)− 1.5 · cos(2kx)

+ 4 · cos(2kz)− 1 · cos(2kx) cos(ky)
(5.2.5)

φC =1− 2 · cos(2kx)− 1 · cos(2kz) (5.2.6)
tAB =2 · sin(kx) sin(ky) (5.2.7)
tAC =− i sin(ky) (5.2.8)
tBC =− i sin(kx) (5.2.9)

The construction of the unlinked model is easier. To achieve an approximately equiv-
alent diagonal projection as for the linked model, we can shift the NL rings from the
plane kx = 0 to the kx = ±π plane and instead of centering them in the middle, we
center them at the boundary of the plane.
Again we start with three flat bands and give the bands of orbitals px, py a dispersion

with the shape of cos(2kz). For both kx = ky = 0, we let the s-band intersect with the
py-band to form two red NL rings in the plane ky = 0. This is done by giving the s-band
a − cos(kx) shape. By further giving the px-band a cos(k) shape along kx and ky, we
also find the NL rings in the kx = ±π plane. So, we end up with the following model
including hoppings by up to two primitive lattice vectors for the unlinked model:

Hunlinked =

φA t∗AB t∗AC
tAB φB t∗BC
tAC tBC φC

 (5.2.10)
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with the entries:

φA =− 6.6 + 2 · cos(ky) + 3 · cos(2kz) (5.2.11)
φB =2 + 2 · (cos(kx) + cos(ky)) + 3 · cos(2kz) (5.2.12)
φC =− 3.5− 2 · cos(kx) (5.2.13)
tAB =2 · sin(kx) sin(ky) (5.2.14)
tAC =− i sin(ky) (5.2.15)
tBC =− i sin(kx) (5.2.16)

5.2.2. Nodal lines of the models
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Figure 5.9.: Mirror eigenvalues for the high symmetry planes in the linked model. The
different colors show the sing of the mirror eigenvalue and the boundaries between the
colors indicate the position of the nodal lines. The upper three diagrams show the
mirror eigenvalue for the kx = 0 plane, and we see that we have two NL rings in the
lower band gap. In the lower line there is the same for the ky = 0 plane, where we have
two NL rings (one of them at the kz boundary of the BZ) and two nodal lines through
the BZ in the upper band gap. The other high symmetry planes corresponding to
kx = ±π, ky = ±π show no changes in mirror eigenvalues.

We now have a closer look at the nodal-line structure of these models. One possibility
to make nodal lines visible on a mirror symmetric plane, is to look at the eigenvalues of
the mirror operator. We can calculate the mirror eigenvalues for each band individually.
For a nodal line in the planes kx = 0,±π, the mirror eigenvalue of m̂x changes from +1
to −1 or vice versa for the lower two bands if we cross a nodal line in the lower band
gap. In the case of a nodal line in the upper band gap the mirror eigenvalue changes for
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the upper two bands. The same is true for the ky = 0,±π and the operator m̂y. We can
apply this to our linked and unlinked model to check the nodal line structure.
For our models, having orbital basis (py, px, s) the mirror operators are the following:

m̂x =

1 0 0
0 −1 0
0 0 1

 and m̂y =

−1 0 0
0 1 0
0 0 1

 (5.2.17)

We now apply this procedure to our two models and look at the mirror eigenvalues at
specific planes and for the different bands. In the linked model, the only mirror eigen-
value changes occur for the planes kx = 0 and ky = 0 (Figure 5.9). For the unlinked case,
we find the mirror eigenvalue changes in the ky = 0 and the kx = ±π planes (Figure 5.10).
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Figure 5.10.: Mirror eigenvalues for the high symmetry planes in the unlinked model.
Again the colors represent the sing of the mirror eigenvalue and the boundaries the
nodal lines. The upper line shows the results for the kx = π plane (due to the
periodicity the kx = −π plane looks exactly the same). We find two NL rings in
the upper band gap both at the boundary in ky-direction. The lower three diagrams
show the mirror eigenvalues on the ky = 0 plane and we find two NL rings (one of
them at the kz boundary) in the lower band gap. The other high symmetry planes
corresponding to kx = 0, ky = ±π show no changes in mirror eigenvalues.

Using these results from the mirror eigenvalues, we can also illustrate the nodal lines
inside the three-dimensional BZ for both the linked and the unlinked model. By looking
at the nodal lines along a diagonal, we can see the similarity of the surface BZ projections
of the two models (Figure 5.11).
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a b

c d

Figure 5.11.: Nodal lines inside the three-dimensional BZ for the linked and the unlinked
model. Panel (a) shows the nodal-line structure of the linked model in the 3D BZ.
Blue lines correspond to nodal lines in the upper band gap and red lines represent
the nodal lines in the lower band gap. In panel (b) we see the nodal-line structure
for the unlinked model. The transparent blue planes are not intersected by any nodal
lines and are therefore taken for the calculation of the quaternion charge. Panels (c)
(linked) and (d) (unlinked) show the same nodal-line structures projected along the
diagonal and we can see the similarity between the two models. The main difference
are the additional straight nodal lines along the kz direction for the linked model. In
addition, the red and blue lines are interchanged between the two models

5.2.3. Quaternion charge
As for the two-dimensional braiding model, we now look at the quaternion charge phase

diagrams. Therefore, we have to define a one-dimensional version of the Hamiltonian
along some threads through the BZ and we need the Hamiltonian to be real. The reality
of the Hamiltonian, we again get by a constant unitary transformation.
We know that our Hamiltonian is PT -symmetric. For the Hamiltonian to be real-

symmetric, we need the PT -symmetry to be represented as simple complex conjugation.
Therefore, we look at what these symmetries explicitly do to our orbitals. The parity
changes the sign of the px and py orbital, i.e. it is represented as a diagonal matrix
with entries (−1,−1, 1) on the diagonal. Furthermore, the time reversal symmetry is
simple identity times complex conjugation (time reversal does not influence the orbitals).
Then the PT -symmetry of our system is represented the diagonal matrix diag(−1,−1, 1)
times complex conjugation K. We now search for a unitary transformation U of the PT -
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symmetry operator O such that:

O 7→ UOU † = K for: O =

−1 0 0
0 −1 0
0 0 1

K (5.2.18)

We then easily find the transformation to be the following matrix:

U =

 i 0 0
0 i 0
0 0 1

 (5.2.19)

With this we can define the real-symmetric version of the (un)linked Hamiltonian as:

H̃(un)linked(kx, ky, kz) = UH(un)linked(kx, ky, kz)U † (5.2.20)

We now do the same as for the quaternion charge in the two-dimensional model. As
we are interested in the surface BZ projection along the diagonals, we chose the threads
along the diagonal in the kx-ky-plane and treat kz in the same way as we did for the
tuning parameter t. In this model the projection along both diagonals is the same and
we only need one family of paths and choose γφ,(11) in Eq. (5.1.8). For φ ∈ [−π, π] and
kz ∈ [−π, π], we then find the 1D Hamiltonian to determine the quaternion charge along
k ∈ [−π, π] as:

H1D,φ,(un)linked(k, kz) = H̃(un)linked(γφ(k), kz) (5.2.21)
The resulting topological phase diagrams of the linked and unlinked models are shown

in Figure 5.12. Here, we do not restrict ourselves to conjugacy classes but really look
at the charges including the sings. In that way it is possible to also see the orientations
of the nodal lines. However, to be able to really see the charges and not only up to
conjugacy, we need to fix the frames we take at the start positions to determine the
charge. Therefore, we take a continuous choice of initial frames by choosing a plane
inside the BZ which is not intersected by any nodal line (planes are indicated in Figure
5.11a,b) and starting all the threads at this plane. By this choice the initial frames differ
from neighboring ones only by infinitesimal rotations. We were not able to do this in
the two-dimensional braiding model, as there exists no such plane.

In the diagram for the unlinked model, we easily recognize the NL structure. We find
the regions enclosed by red nodal lines (lower band gap) to have charge k and the ones
enclosed by blue nodal lines (upper band gap) to have charge i. The orange regions are
the ones where the red and the blue overlap and are enclosed by one nodal line of each
color.
A bit more difficult to understand is the phase diagram for the linked model. We

can understand the different phases in the following way. If we crossing a nodal line
of charge i, we enter a region of charge i. If we then cross a nodal line of a different
charge, e.g. charge k, we end up in a region of charge j = k · i. In this way it is easier
to understand the phase diagram. We first look at the red nodal lines, they include the
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orange and violet region. On the other hand, the blue nodal lines lie along the boundary
between the orange and the violet regions as well as between the blue and the green
regions. For a better insight, we can analyze the quaternion charge using the above
convention by crossing nodal lines along a path starting at kz = 0, φ = −π going along
the kz = 0 line until φ = 0 and then increasing kz to end up at φ = 0, kz = π. We
start in the trivial (blue) region, then we first pass a nodal line of charge −i ending up
in the dark green region. Again, we cross a blue nodal line but this time with opposite
orientation, i.e. charge i, which leads again to a trivial region. Increasing kz we first cross
a red nodal line, giving a violet region of charge k. By the above convention we know
that now crossing a nodal line of charge −i we end up in a region of charge j = −i · k
(orange). Crossing another blue nodal line this time with opposite orientation i we again
are in the violet region and finally crossing a red nodal line with charge -k, we are back
in the trivial (blue) region.
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Figure 5.12.: Phase diagram of the quaternion charge for the linked and unlinked model.
The different colors indicate the phases of different topological charge.

We can do this for arbitrary paths to determine all orientations of the nodal lines.
Noteworthy here is the blue nodal lines crossing the whole BZ along kz direction have
the same orientation and are therefore not able to annihilate. This is the reason why we
were not able to get rid of these lines during the construction. Furthermore, we unfor-
tunately do not have a region with charge −1 and are not able to check our conjecture
on these models.

5.2.4. Similarity of the models
One of the open questions is, if we are able to differentiate the linked and the unlinked

model by only looking at the surface spectrum. Unfortunately, we are not as we will see
in Section 7.2 and we are able to already suggest this similarity of the models using the
quaternion charge.
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To see this, we assume4 a correspondence between the topological charges and the
surface states. Then to be able to see the linking, we should already see a difference in
the topological phase diagrams. The blue nodal lines crossing the BZ cannot annihilate
because they have the same orientation5, so we cannot get rid of the green regions in the
phase diagram of the linked nodal lines (Figure 5.12a). But we could try to add these
regions to the phase diagram of the unlinked model (Figure 5.12b). As in the unlinked
model the middle NL ring is in the lower band gap (red), we try to add the nodal lines
also in the lower band gap. To do so, we create a node-antinode pair of nodal lines
crossing the BZ along the kz-direction at the left end of the BZ. We then shift the nodal
line with charge −k towards the middle until it lies close to the nodal line structure.
At the same time the nodal line with charge +k crosses the BZ boundary and is shifted
towards the nodal line structure from the right. By some deformation of the nodal line
rings, we realize that we get the same regions as in the phase diagram for the linked
model up to conjugacy classes. Only charges i and k are exchanged, i.e. nodal lines in
the lower and the upper band gap switched. This can be seen in Figure 5.13.

Figure 5.13.: Schematics of the topological phase diagram including orientations of the
nodal lines. Panel (a) shows the nodal lines of the linked model including their orien-
tations schematically. In addition the regions of different charges are indicated with
colors. Panel (b) shows the same for the linked model. In panel (c) we added two
straight nodal lines with different orientations to the unlinked model and then deter-
mined the regions of different charges. If we only consider the charges up to conjugacy,
we can see that panel (a) and (c) look the same just with i and k exchanged.

Therefore, under the assumption of a direct correspondence between the surface states
and the topological phases, we already know that it is not possible to tell if two NL rings
are linked or not by only looking at the surface spectrum.

4Our results for the surface states of the different models suggest such a bulk-boundary correspondence.
See Section 7.1.

5To determine the orientation of the nodal lines, we use the following convention. A nodal line
moving from left to right has orientation − and the one moving from right to left has orientation +.
Furthermore, we determine the topological region after crossing the NL by multiplying the charge
before the NL with the invariant of the NL (±i, for blue NL and ±k for red NL) from the left.
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6. Techniques to study models
In this chapter, we present the methods we use to study the surface states in the

different models. First, we show the procedure to set up finite Hamiltonians in the slab
geometry1 using different edges. Then, we explain four different methods to visualize
the surface states. The first three methods implement the actual band structure of the
Hamiltonian whereas the last method flattens the bands while keeping the topology of
the model unchanged.

6.1. Finite models
To be able to observe surface states, we first need to set up finite models in real space.

This is done inside the x-y-plane2. In all models presented in Chapter 5, we consider the
z-axis (for the 2D model Eq. (5.1.1) the parameter t and for the 3D models Eq.s (5.2.3)
and (5.2.10) the third momentum-component kz.) as a tuning parameter, and study the
surface states for cuts at different positions along this axis. Inside the (kx, ky)-plane, we
can consider different types of edges. We can either have open boundary conditions in
the x or y directions, or we have open boundaries along one of the diagonals. For all
the cases, the construction is done, using enlarged unit cells (compare Figure 6.1). A
system that is infinite in one direction (momentum k) and has a width L in the other
direction can then be interpreted as a periodic one-dimensional system with 3L orbitals
on each site. So we can represent the finite system for each value of kz or t, respectively,
as a 3L× 3L-matrix of the following form:

Hfinite(k) =



t0 t−1 t−2 t−3 · · ·
t1 t0 t−1 t−2 . . .
t2 t1 t0 t−1 . . .
t3 t2 t1 t0

. . .
... . . . . . . . . . ...


(6.1.1)

where tn are 3×3 matrices representing the hopping amplitudes between different small
unit cells. More precisely the element at position (α, β) in block tn represents a hopping
from orbital β in the small unit cell i to orbital α in the small unit cell i − n. The
k-independent part of these hopping amplitudes corresponds to processes within the

1By this, we mean that the model has open boundary conditions along one direction (either along an
axis or along a diagonal) and periodic boundaries along the other two directions.

2Compare to the procedure for graphene, e.g. Chapter 7 of Ref. [5].
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enlarged unit cell while the part including an additional phase factor e±imk correspond
to a hopping by ±m enlarged unit cells to the left.

Figure 6.1.: Enlarged unit cells for the construction of the finite model. The green ellipses
show the enlarged unit cells, each containing L = 5 original unit cells (represented as
dark green dots. The blue arrows indicate along which direction the systems are
periodic and thereby infinite.

To better understand this, we explicitly analyze two examples, one which is finite
along an axis and the other finite along a diagonal. First, we construct the Hamiltonian
matrix for the two-dimensional braiding model, with finite length in y-direction. For
simple illustration, we here set L = 5, although in the numerical analysis in Chapter 7,
we consider larger values. In this case, we have open boundary conditions with five sites
in the y-direction and periodic ones in the x-direction. Therefore, we can still consider
k = kx as a good quantum number. A hopping by m enlarged unit cells to the left then
picks up a factor of eimk. The Hamiltonian matrix is found by explicitly sketching the
system with all the hopping amplitudes (Figure 6.2a). Using this, we find the following
blocks depending on the tuning parameter t and the quantum number k in the one-
dimensional BZ [−π, π]. For this geometry and the 2D Hamiltonian (Eq. 5.1.1), we find
the following blocks in the slab geometry Hamiltonian Eq. (6.1.1):

t0 =

 f(t) −ie−ik ieik

ieik 0 h0(t) + h1(t)eik

−ie−ik h0(t) + h1(t)e−ik 0



t1 =

 0 0 −i
−i 0 h1(t)
0 0 0

 t−1 = t1†

(6.1.2)

In exactly the same way, we find the Hamiltonian that is finite in x-direction and
periodic in y-direction. For this case we have k = ky as a good quantum number and
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find the following blocks for the Hamiltonian:

t0 =

 f(t) ie−ik −ieik

−ieik 0 h0(t) + h1(t)eik

ie−ik h0(t) + h1(t)e−ik 0



t1 =

0 0 i
i 0 h1(t)
0 0 0

 t−1 = t1†

(6.1.3)

a

b

Figure 6.2.: Construction of the finite models. The blue, green and red dots represent
orbitals A,B and C. Indicated by the different colors are the hopping amplitudes be-
tween all the orbitals for the two-dimensional braiding model (Eq. 5.1.1). Therefore
we only consider the hoppings from the enlarged unit cell in the middle. Panel (a)
shows the situation for the system finite in y-direction whereas the panel (b) sketches
a model finite in the (11)-direction. From the figures we can read out the hopping
blocks for the finite Hamiltonian. Hoppings that do not change layers correspond to
the block t0, whereas hoppings by n layers down (up) correspond to the blocks tn (t−n).
The same can also be sketched for the 3D-model but including many more hopping
parameters.
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For the diagonals the procedure is the same but now the enlarged unit cell is always
shifted by one smaller unit cell up or down for the construction (compare Figure 6.1c,d).
We look at this in more detail for the system finite along the (11)-diagonal and infinite
along (11̄). Figure 6.2b shows what the system looks like with these shifted enlarged
unit cells. We define the enlarged unit cells such that they consist of L smaller unit cells
along the y-axis. In this setting we can take k = k− = 1√

2 (kx − ky) as a good quantum
number in which the system is infinite. Again, we draw all the hopping amplitudes and
are then able to read out the blocks in the Hamiltonian.

t0 =

f(t) 0 0
0 0 h1(t)
0 h1(t) 0



t1 =


0 0 i

(
eik − 1

)
i
(
eik − 1

)
0 h1(t)

(
eik + 1

)
0 0 0

 t−1 = t1†

(6.1.4)

We also find the hopping blocks for the system which is finite along the (11̄)-diagonal
and infinite along (11). Now, we choose k = k+ = 1√

2 (kx + ky) as the good quantum
number and the blocks look as follows:

t0 =

f(t) 0 0
0 0 h1(t)
0 h1(t) 0



t1 =

 0 −ie−ik −i
−i 0 h1(t)
−ie−ik h1(t)e−ik 0

 t−1 = t1†

(6.1.5)

For the three-dimensional models in the linked (Eq. 5.2.3) and the unlinked (Eq. 5.2.10)
case, we are mainly interested in the system that is finite along the (110)-diagonal. In
addition, we also looked at the linked model finite along the x-axis. The resulting finite
models for these Hamiltonians can be found in Appendix B.

Having constructed these finite models, we now look at three different techniques to
find the surface states of them.

6.2. Energy spectra
A simple technique to detect surface states is to compare the energy spectra of open

vs. periodic boundary conditions along some momentum φ. This method is often used
for the zero modes in graphene, e.g. [36].
For simplicity, we denote by φ (instead of kx, ky or k) the continuous momentum in
the 1D system with enlarged unit cell, i.e. φ is the surface BZ momentum. To find
the energy spectrum for the open boundary conditions for a specific value of kz and
t, respectively, we take the Hamiltonian matrix of the finite system (Eq. 6.1.1) and
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diagonalize it inside the one-dimensional surface BZ (so for φ in [−π, π]) for the fixed
value of kz or t, respectively. This is done numerically using Python for discrete values
of φ. We then end up with 3L energy bands inside the surface BZ.
We want to compare these energy bands to the projection of the infinite model onto

the surface BZ (Figure 6.3). The projection along the x-(y-)axis, corresponds to a finite
system along the x-(y-)axis. We again do this numerically using Python. Therefore,
we take discrete values of φ and kp where by φ we denote the surface BZ momentum
and by kp the momentum along which we do the projection. For the projection along
the kp-axis, we diagonalize the 3 × 3-Hamiltonian matrix (Eq. 5.1.1, 5.2.3 or 5.2.10,
respectively) for the first value of kp and all the values of φ in the 1D surface BZ [−π, π]
and plot the three resulting energy bands inside this BZ. We then do the same for all
other fixed values of kp in the same plot and arrive at the surface BZ projection with
3N bands (N is the number of discrete values along kp).

Figure 6.3.: Different surface BZ projections. Panel (a) shows the construction of the
surface BZ projection along either the x- or the y-axis for N = 5. The light green dots
on one green line are all projected onto the same position in the surface BZ (dark green
dot). In panel (b) the same is shown for the diagonal projection along either diagonal
and for N = 7. Here the purple rectangle represents the same dots as the original
BZ. The factors of

√
2 in the surface BZ in panel (b) are dropped in the analysis in

Chapter 7, by implicitly replacing a 7→
√

2a

In the case of the diagonal surface BZ projection, we have to keep in mind that the
surface BZ extends only from X to M to X but we have to include the whole BZ in the
projection. This we do by replacing the square BZ (black in Figure 6.3) with the purple
dotted rectangle. Each point in the original BZ then corresponds to exactly one point
in the purple rectangle, and the volume of the rectangle is (2π)2 as the one of the square
BZ. We again take φ and kp as defined above and do the construction in the same way
as for the projections along one of the axes. The only difference is that now we have φ in
the range

[
−π/
√

2, π/
√

2
]
and therefore kp in the range

[
−
√

2π,
√

2π
]
. A possible choice

for φ and kp is shown in Figure 6.3. Later, in the plots of the projected spectrum, we
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replace the original lattice parameter a by a′ =
√

2a and set this new lattice parameter
a′ to unity. With this we again find the surface BZ momenta φ in the range [−π, π].
We can now choose some fixed values of kz and t3, and compare the plot of the finite

system with the surface BZ projection. In both plots we should clearly find the bulk
bands with energy gaps. The surface states we find as additional lines inside these en-
ergy gaps of the finite system but not in the projection of the infinite system. These
additional lines, i.e. the surface states, typically occur between two band nodes. An
example for this method can be found in Figure 6.4
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Figure 6.4.: Example for the comparison of open vs. periodic boundary conditions for the
2D braiding model at t = −2. Panel (a) shows the spectrum of the infinite Hamiltonian
projected along the y-axis. In panel (b) we see the spectrum of a finite Hamiltonian
with 100 layers along the y-direction. We clearly see one additional line in the upper
band gap in the middle and one in the lower band gap on the boundaries of the
surface BZ, in the case of open boundary conditions. Each of these lines corresponds
one surface state on each end of the system.

Unfortunately this method is not able to clearly resolve energy bands representing
surface states that lie close to the bulk bands, and is unable to visualize surface states
lying within the bulk bands. Therefore, we present a second technique that uses the
surface spectral function.

6.3. Surface spectral function
The second technique, we present, is based on plotting the surface spectral function

to detect surface states and therefore allows us to visualize certain surface states that
lie close to or within the bulk energy spectrum. Up to now we treated a state to
have a specific energy and momentum. To overcome the discreteness of the numerically

3Later in the results, we will also choose arbitrary paths in the surface BZ, specified by coordinates
(φ, t) and (φ, kz), respectively.
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computed spectra of finite systems, we assign each state ψ at momentum k and energy εk
a Lorentzian-smeared spectral function Aηψ(ε, k) where η is the energy smearing factor4.
This spectral function is then defined as:

Aηψ(ε, k) = 1
π

η

(ε− εk)2 + η2 (6.3.1)

In the limit η → 0 this represents the delta-distribution Aηψ(ε, k) = δ(ε− εk).
We can now define the surface spectral function at each point (ε, k) in the following

way:

A(ε, k) =
∑
ψ@k

Probability(ψ is at the edge) · Aηψ(ε, k) (6.3.2)

=
∑
ψ@k

∑
orbitals α

|ψαi=edge|2A
η
ψ(ε, k) (6.3.3)

where the sum over all ψ at some specific k is the sum over all eigenstates of the finite
system at this momentum k. The second sum appearing in the second line is over all
the orbitals at the site i = edge corresponding to one of the two edges and ψαi is the
probability amplitude of the state for being on site i in orbital α. For most of the
points (ε, k) the value of the function is very close to zero. The first factor in the sum
in Equation (6.3.3) is very small for all states that are not localized close to the edge,
while the second factor is close to zero if the energy ε is not in a close neighborhood of
an eigenvalue of the Hamiltonian. This implies that the surface spectral function only
attains a significant value at some (ε, k) if there is a state well localized at the surface
for this momentum and energy.
We can use this technique to visualize the surface states in contour plots. In our mod-

els we again do this for specific values of kz and t, respectively, and later for paths in the
surface BZ, using the finite Hamiltonian matrices of the form (6.1.1). With Python we
first define a meshgrid of discrete points for k in the one-dimensional BZ as well as for ε
in the range of energy of the Hamiltonian. At each point of the meshgrid, we calculate
the surface spectral function (6.3.3). The value of this function is then represented by
different colors, very low values are represented in blue and higher ones in yellow/green.
For a good choice of the steps in the mesh grid and the parameter η, we can see the
surface states as clear yellow/green areas in the contour plots (Example shown in Figure
6.5).

By again looking at the formula for the surface spectral function (6.3.3), we see that
there is a second possibility to get large values at some points (ε, k). If the dispersion
of a bulk band at a certain kp is very narrow and centered at energy εp, then the bands
cumulatively lead to a noticeable value of A(εp, kp) which becomes visible in the plot
(light blue lines in Figure 6.5).

4This smearing is often used in ARPES experiments, e.g. Ref. [37].
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Figure 6.5.: Example for the method using the surface spectral function. The value of
the surface spectral function indicated by the colorbar is expressed in arbitrary units.
As in Figure 6.4, we look at the 2D braiding model for t = −2. We clearly see the
same surface states as by using the first method (green lines) but, in addition, we
see in a slightly lighter blue then the background some signatures of the bulk bands
corresponding to positions where the bulk bands are quite narrow.

With these two presented methods we are only able to visualize real surface states. In
real materials and also in theoretical models, it is possible that the surface states start
to hybridize with the bulk states. Sometimes surface states lying in the bulk energy
spectrum strongly hybridize with the delocalized bulk states while keeping an increased
spectral weight at the boundary. This feature we refer to as a surface resonance. The last
method, we present for the non-flattened Hamiltonian, is also able to recognize surface
resonances instead of only clear surface states, provided that the hybridization with the
bulk states is not too strong.

6.4. Inverse participation ratio
To detect the surface resonances (localized over many sites at the boundary), we can

use the inverse participation ratio (IPR)5. In general the IPR is defined as follows:

I
(2n)
ψ =

∑
sites i (

∑
orbitals α |ψαi |2)n∑

sites i
∑

orbitals α |ψαi |2
(6.4.1)

for n ≥ 2, for the analysis of the surface spectrum in Chapter 7 we set n = 2. Different
to the method for the surface spectral function Eq. (6.3.3), we here sum over all sites
i and orbitals α rather than only over those lying at the edges. For normalized wave
functions ψ, the denominator equals 1.
We now compare the value of this IPR for localized vs. not localized states. Without

loss of generality we look at a system with N sites and only one orbital per site.

5These technique was often used for the Anderson localization, e.g. in Ref. [38].

72



In the situation where the states are delocalized, we know from the normalization
that ∑i |ψi|2 = 1. If the state is uniformly distributed over all sites, this implies that
|ψi|2 = 1

N
, therefore |ψi|2n = 1

Nn and we find for the IPR:

I
(2n)
ψ =

∑
i

1
Nn∑
i

1
N

= 1
N (n−1) (6.4.2)

From this formula we conclude that if a state is delocalized the IPR gets very small for
large N and by doubling the number of sites it should get smaller by a factor of 2(n−1).
We now compare this to the situation where a state is localized with a localization

lengths of s sites (in our case at the boundary). If we are in a situation where the
localization length is larger then our system size (s > N), we observe the same as if the
state was delocalized. In contrast, for the situation s < N , we still have ∑i |ψi|2 = 1 but
now we have a weight of 1

s
for the sites over which the state is localized and a weight of

0 for all other sites. Therefore, we find that |ψ|2n = 1
sn , independent on N .

This implies that independent on the number of sites N > s, the value of the IPR will
be approximately:

I
(2n)
ψ =

∑
localization sites i

1
sn∑

i
1
N

= 1
s(n−1) (6.4.3)

We now are able to visualize the states in a graph. For a fixed parameter kz o t and
for each momentum k inside the surface BZ, we diagonalize the Hamiltonian in slab-
geometry (6.1.1) to get the eigenvectors and eigenvalues. We then calculate the IPR
for each eigenstate and plot the eigenvalues εψ on the x-axis and the IPR I

(2n)
ψ on the

y-axis (Figure 6.6a). In this plot we observe the bulk bands with an IPR of 1/N (n−1),
i.e. close to zero, and at a higher IPR the surface states or resonances. A perfect localized
(surface) state, we see at an IPR of 1 and the closer to 1 the IPR of a state gets, the
shorter is its localization length.
A second method to visualize the IPR is to fix kz or t, respectively and then calculate

the IPR for each φ ∈ [−π, π]6. We then plot the surface BZ momentum on the x-axis
and the energy on the y-axis, whereas the IPR is indicated by different colors. Dark blue
represents a value close to 0 and yellow close to 1. This method is shown in Figure 6.6b
and we can clearly see the whole band structure in dark blue and some lines in lighter
blue/yellow indicating the surface states/resonances as well as their localization length.

Now, we have seen three different techniques to visualize surface states for finite sys-
tems. All these methods consider the actual Hamiltonians, as presented in Chapter 5,
which exhibit a large dispersion of the bulk energy bands. Sometimes it is impossible to
find surface states of a system using any of these methods. Therefore, we introduce a last
method where we, instead of the actual band dispersion, use spectrally flattened bands
in the Hamiltonian. This is possible as by flattening the band to some fixed energies we
do not alter the topology of the models.

6We will later also use this method for other paths through the surface BZ.
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a
b

Figure 6.6.: Detect surface states/resonances using the IPR. Panel (a) shows the schemat-
ics of this method. The bulk bands are shown as light blue ellipses. In addition we
show surface resonances (pink) with an IPR of around 0.2 and a single-site localized
surface state (dark blue) with IPR equal 1. Panel (b) shows the method applied on
the 2D braiding model for the system finite along the y-axis for t = −2. In yellow we
can see the same surface states as with the methods presented before.

6.5. Spectral flattening
For this last technique, we want to flatten the bands of the Hamiltonian, similar to

Eq. (4.2.4) and then use the first technique where we compare the periodic vs. open
boundary conditions. In the case of the flattened Hamiltonian the system with peri-
odic boundaries exhibits three flat bands at energies −1, 0 and 1, whereas for the open
boundary conditions, we observe some additional bands occurring between these flat
bands. To find these spectra, we first flatten the Hamiltonian, then Fourier transform
it to a lattice in the slab geometry along some axis to finally determine the eigenvalues
of this one-dimensional Hamiltonian numerically. We use this method only along the
diagonals, therefore, we choose the system to be finite along the (11)-diagonal and can
easily transform the final formula for the system finite along the (11̄)-diagonal.

We start with our tight binding Hamiltonian in the reciprocal space H(kx, ky, kz) (or
in the 2D-system H(kx, ky, t)). First, we flatten this Hamiltonian and then consider a
finite system in slab geometry along the (11)-direction.
To find the flattened Hamiltonian, we diagonalize the Hamiltonian forN discrete values

of kx and ky in the range [−π, π]. The z-direction, we treat as a continuous parameter.
For all of these N2 points, we find three eigenvalues εα and the corresponding eigenstates
|uαkx,ky

〉. To get the Hamiltonian with flat bands, we take the list of eigenvalues ε̃α =
(−1, 0, 1). We then define the flattened Hamiltonian Q(kx, ky, kz) as:

Q(kx, ky, kz) =
∑
α

|uαkx,ky
〉ε̃α〈uαkx,ky

| (6.5.1)
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To construct the Hamiltonian on a finite lattice, we have to take the discrete 2D inverse
Fourier transform7 w.r.t. kx and ky for a fixed kz (for simplicity we write Q(kx, ky, kz)
as Q(kx, ky).

Qn1,n2 = Q
(
−π + n1 ·

2π
N
,−π + n2 ·

2π
N

)
(6.5.2)

Doing the Fourier transform (for each component of the matrix separately), we get the
real Fourier coefficients: qm1,m2 . These can be interpreted as the amplitude of a hopping
by m1 unit cells along the x-direction and m2 along the y-direction.
Using these hopping amplitudes, we can set up the Hamiltonian in the slab geometry

with enlarged unit cells. For simplicity at this point we choose the number of sites of
one enlarged unit cell in the slab geometry to be equal to the number of discrete points,
we choose to perform the flattening, i.e. the number of layers L = N . We then find the
following block Hamiltonian consisting of N ×N blocks of the size 3× 3.

Hslab =



t0 t−1 t−2 t−3 · · ·
t1 t0 t−1 t−2 . . .
t2 t1 t0 t−1 . . .
t3 t2 t1 t0

. . .
... . . . . . . . . . ...


(6.5.3)

where we consider blocks tl for l = −N/2, . . . , 0, . . . , N/2. For perfectly flat bands,
we actually would need to include infinite neighbor hopping, but by the properties of
the Fourier transform the coefficients are periodically and will decrease until N/2 and
then increase again which motivates us to perform the indicated truncation. Using the
hopping amplitudes qm1,m2 , we set up a tight-binding model finite in (11)-direction and
infinite along the (11̄)-diagonal with momentum denoted by k̃. This is done by choosing
the blocks tl as follows:

t±l =
N/2∑

a=−N/2
qa,−(a±l)e

−ik̃a =
N/2∑

a=−N/2
qa,−a∓le

−ik̃a (6.5.4)

where for each block we include all the hopping amplitudes of up to N/2 enlarged unit
cells to the left and the right.
Now we want to do a coordinate transformation to be able to interpret these hopping

amplitudes as Fourier transforms in the first coordinate.

q(x, y)→ r(s, t) (6.5.5)

We take s = x and t = x + y to only have the a in the first coordinate. The inverse
transformation is then x = s and y = t− s. So we can write:

tl =
N/2∑

a=−N/2
ra,−le

−ik̃a = R(k̃,−l) (6.5.6)

7For the definition of the Fourier transform, see Appendix C.
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To get a simple formula, we now want to write out all the Fourier transforms:

R(k̃,−l) = 1
N2

∑
kx

∑
ky

∑
a

Q(kx, ky) exp(ik̃a) exp(ikxa) exp(iky(−a− l)) (6.5.7)

= 1
N2

∑
kx

∑
ky

∑
a

Q(kx, ky) exp(ia(kx − ky − k̃)) exp(−ikyl) (6.5.8)

= 1
N

∑
kx

∑
ky

Q(kx, ky)δky,kx−k̃ exp(−ikyl) (6.5.9)

= 1
N

∑
kx

Q(kx, kx − k̃) exp(−il(kx − k̃)) (6.5.10)

where we have used that the Kronecker delta can be written as δmn = 1/N ∑
k exp(k(n−

m)) to get rid of the summation over a.
Now, we have a simple Fourier-transform-like formula to find the Hamiltonian at each

point k̃ which we then apply to obtain the flattened spectrum of the finite Hamiltonian
in slab geometry. Its implementation requires us to find the flattened Hamiltonian for
discrete points kx and k̃ as Q(kx, kx − k̃). At these discrete points the Hamiltonian is
given by Eq. (6.5.3) with the following blocks:

tl(k̃) = 1
N

∑
kx

Q(kx, kx − k̃) exp(−il(kx − k̃)) (6.5.11)

We are now able to implement the flattened Hamiltonian in slab geometry finite along
the (11)-diagonal in Python depending on the surface BZ momentum k̃ and for fixed
tuning parameters along the z-direction (kz or t). To visualize the surface states, we
diagonalize the 3N × 3N -matrix (Eq. 6.5.3) for some discrete values of k̃ ∈ [−π, π]. We
then plot the the eigenvalues at k̃ vs. the momenta k̃ and end up with the spectrum of
the flattened Hamiltonian.
In the same way we can also get the Hamiltonian finite along the (11̄)-diagonal, and

we then end up with the following formula for the blocks:

tl(k̃) = 1
N

∑
kx

Q(kx, kx − k̃) exp(il(kx − k̃)) (6.5.12)

where only the sign of the exponent in the exponential function is changed.

With this technique it is possible to really visualize the topology of the Hamiltonian
without a possible hybridization of the surface states with the bulk and we should be
able to detect the surface states also for systems, we cannot see them using the three
methods presented above. Figure 6.7 shows an example of this method applied on the
3D unlinked model.
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Figure 6.7.: Example for the method using the spectrally flattened Hamiltonian. Panel
(a) shows the spectrum of the unlinked Hamiltonian finite along one of the diagonals
for kz = 0.85. In panel (b), we see the same system using the spectrally flattened
Hamiltonian. Using the spectral flattening, we see the surface states clearer and over
a larger range of surface BZ momenta φ.
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7. Results on the behavior of the edge
states

In this chapter, we apply the techniques presented in the previous chapter on the two-
dimensional and three-dimensional models from Chapter 5. For all the finite models, we
set the number of sites1 to L = N = 100. Thereby, we concentrate on the open questions
from Section 4.4. First, we want to find a relation between the numerically calculated
quaternion charge and the occurrence of surface states. Further, we compare the linked
and the unlinked model, and try to find a way to differentiate them by looking solely
on their surface spectrum. Last, we check our conjecture on the phase with quaternion
charge −1.

7.1. Correspondence between the surface states and the
quaternion charge

In this section, we establish a correspondence between the quaternion charge in some
region in the topological phase diagram (Figures 5.7 and 5.12) and the occurring surface
states in this region. We have already seen a correspondence in Chapter 3 on the ele-
mentary 1D models for topological insulators with flat bands. There ,we have observed
that charge i leads to one edge state per edge between the upper two bands, charge k
between the lower two bands, and charge j between the highest and lowest bands. For
charge −1 we found three edge states per edge, one of them crossing the middle band.
This crossing, we further establish in the Section 7.3.

To check the correspondence, we look at the surface states along different paths γ(φ, t)
in the surface BZ of the 2D model, where t is the tuning parameter of the model and
φ the well defined momentum in the slab geometry. We consider one path for each
termination to cover all the possible topological phases. For the system that is finite
along the y-axis (which has a spectrum equivalent to that of the system finite along the
x-axis), we take a path at t = 0 over the range of φ from −π to π. In the model that
is finite along the (11)-diagonal, we take again the path along φ for t = 0. For the last
termination (finite along the diagonal (11̄), we take a path along t from −10 to 10 for a
fixed value of φ = π/2. The paths are indicated by white lines in Figure 7.1.

1This choice is justified in Appendix D.
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Figure 7.1.: Topological phase diagrams of the 2D model with indicated paths used to
analyze the topological bulk-boundary correspondence and to check our conjecture
on the phase with charge −1. Panel (a) shows the topological phase diagram with
indicated paths for the system finite along the y-axis, (b) for the system finite along
the (11)-diagonal and (c) along the (11̄)-diagonal. The white paths are used to find the
correspondence between the surface states and the quaternion charge in this section,
the black paths and the closed orange and pink paths are used as examples for our
conjecture on the phase with topological charge −1 in Section 7.3

We now use all four techniques2 presented in the previous chapter to analyze the
surface states along these paths, starting with the system finite along the y-axis. For
all the models studied in slab geometry, there is a left-right symmetry for the edges,
i.e. the surface spectrum at both edges are identical. Therefore, when counting the
surface states, we focus only on the states localized near one edge, ignoring the other
edge.
In Figure 7.1a, we again find the topological phase diagram with the indicated path

along φ for t = 0. Staring from φ = −π going to φ = π, we find the following regions:

k (violet)→ j (orange)→ i (green)→ j (orange)→ k (violet) (7.1.1)

Figure 7.2 shows the surface states for the chosen path through the phase diagram.
By comparing the open vs. the periodic boundary conditions, we find a surface state in
the lower band gap (red lines) for φ in the ranges [−π,−1.2] and [1.2, π]. In addition,
we observe one surface state in the upper band gap for φ approximately in the range
[−2.1, 2.1]. If we compare this to the charges inside the surface BZ along this path, we

2The spectral flattening we only apply for the two diagonals, as for the system finite along the y-axis,
we can clearly see the surface states with the other methods.
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conclude that in the violet region (charge k), we find a surface state in the lower band
gap, in the green region (charge i), we find one in the upper band gap and in the orange
region, we observe one in each band gap. So the observed bulk-boundary correspondence
matches our expectations from the observations on the 1D-model, except for the phase
with charge j, which we further elaborate using the linked and unlinked model towards
the end of the section. Also by looking at the spectral function and the IPR, we can
clearly find the same surface states as yellow regions in the plots.
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Figure 7.2.: Surface states in the 2D model for a finite system along the y-axis and for
a fixed value of the tuning parameter t = 0. Panel (a) and (b) represent the first
method, where we compare open and periodic boundary conditions, (a) shows the
projection along the y-axis (periodic) and (b) shows the finite system. The red (blue)
lines indicate the bands N ,(N + 1) (2N ,(2N + 1)) when numbered from lowest to
highest energy, i.e. the states around the filling fraction of 1/3 (2/3). Panel (c) shows
the spectral function with values in arbitrary units, and panel (d) shows the IPR of
each state.

For the system that is finite along the (11)-diagonal the path through the phase dia-
gram is indicated in Figure 7.1b. Again, we go along φ for the value t = 0. Along this
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path, we find the following topological charges:

−1 (yellow)→ j (orange)→ −1 (yellow) (7.1.2)

The surface states for this path are shown in Figure 7.3.
Here, we observe one surface state in the lower band gap and one in the upper band gap

both for φ approximately in the range [−π,−2.2] and [2.2, π] by comparing the open and
periodic boundaries. When looking at the surface spectral function, we observe these
surface states only in light green, but we see an additional one (actually there are two
on top of each other, one per end of the system) at zero energy over the whole range
of momenta φ. This is also confirmed by looking at the IPR plot. We clearly see the
surface states at energy zero with an IPR of 1, i.e. perfectly localized. In the flattened
spectrum (panel e), we cannot see these surface states because they lie completely inside
the middle bulk bands. So in the yellow region, we find three surface states one in each
band gap and one in the center of the middle band. In the orange region, we only observe
the surface state lying inside the bulk band.

The correspondence in this termination perfectly agrees with the observation in the
1D-model where we also observed one edge state in the middle between the lowest and
the uppermost band for the charge j and three edge states for the charge −1. However,
by comparing the regions with charge j in this termination vs. in the system that is finite
along the y-axis, we do not observe the same correspondence, and will further study this
mismatch using the linked and unlinked models in 3D.

The spectrum of this system in the slab geometry (finite along the (11)-diagonal for
t = 0) suggests a particle hole symmetry, i.e. a symmetry that relates the state at
E(φ, kp) to a second state at −E(φ,−kp). By φ we denote the surface BZ momentum
indicated in the plots and by kp the momentum along the projected diagonal (compare
Figure 6.3). To find the symmetry, we first need the Hamiltonian in these coordinates.
Therefore we use the following coordinate transformation (re-scaled such that both φ
and kp are in the range [−π, pi])3:

φ = kx − ky and kp = 1
2(kx + ky − π) (7.1.3)

from this we get the inverse transformation:

kx = 1
2(2kp + π + φ) and ky = 1

2(2kp + π − φ) (7.1.4)

3The spectrum of the Hamiltonian H2D at t = 0 is actually not antisymmetric around (kx, ky) =
(0, 0) but around (π/2, π/2). This we correct by shifting the origin in the transformation below.
Nevertheless we therefore do not really have a particle-hole symmetry but only a particle-hole-like
symmetry.
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Figure 7.3.: Surface states in the 2D model for a finite system along the (11)-diagonal
and for a fixed value of the tuning parameter t = 0. Panels (a)-(d) show the same
methods as in Figure 7.2 with a small difference that this time the red (blue) lines
correspond to the bands (N − 1),N ((2N + 1),(2N + 2)), i.e. the states just below
(above) the filling fraction of 1/3 (2/3). In addition, we have the flattened spectrum
of the Hamiltonian in panel (e) with the same color scheme as in (b). The color bar
at the bottom indicates the quaternion charge of the region we are in.

Indeed, we see that for t = 0 the Hamiltonian (Eq. 5.1.1) simplifies as the functions
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f(t) and h0(t) vanish. This means that we only have nearest neighbor hopping but no
on site potential or on site hoppings. In the above diagonal coordinates, we then find
the Hamiltonian as:

Ht=0(φ, kp) =


0 2i sin

(
φ
2

)
e−ikp −2i sin

(
φ
2

)
eikp

−2i sin
(
φ
2

)
eikp 0 4i cos

(
φ
2

)
eikp

2i sin
(
φ
2

)
e−ikp −4i cos

(
φ
2

)
e−ikp 0

 (7.1.5)

To get the desired particle-hole-like symmetry of the spectrum, we need the following
transformation of the Hamiltonian to hold:

PHt=0(φ, kp)P−1 = Ht=0(φ,−kp) (7.1.6)

The corresponding symmetry operator can then be found as:

P =

1 0 0
0 1 0
0 0 1

 · K (7.1.7)

where K represents the complex conjugation operator.
Using this particle-hole-like symmetry, we see that the additional surface state inside

the middle bulk band needs to lie exactly at zero energy throughout the whole surface
BZ. If it was not at energy zero but at a finite value of ε there must be a second state
at energy −ε, as it is the case for the other surface states with energy approximately 2.

The last termination for the 2D-model we look at is finite along the (11̄)-diagonal.
Here, we analyze the spectrum along a path from t = −10 to t = 10 for the value of
φ = π/2 (indicated in Figure 7.1c). Starting at −10 along this path, we observe the
following phases:

1 (blue)→ k (violet)→ −1 (yellow)→ i (green)→ 1 (blue) (7.1.8)

Figure 7.4 shows the surface states for this path using the different methods. Com-
paring the open vs. periodic boundary conditions, we can only suggest that there is
a surface state in the lower as well as the upper band gap for t approximately in the
range [−3, 3]. The same two surface states, we also observe in the IPR plot. Look-
ing at the spectrally flattened Hamiltonian, the surface states become easier to detect.
For t in the range [−6,−2.5], we find one surface states in the lower band gap. Then
for t ∈ [−2.5, 2.5], we can see three surface states, one of them crossing the middle
band, in agreement with our conjecture about the phase with charge −14. Finally for
t approximately in [2.5, 6], we see one surface states in the upper band gap. Knowing
that these states should exist, we can also observe them in the spectral function (panel c).

4Here, in contrast to the 1D-model it is not really one surface state passing through the middle band
but a more complicated situation where one surface state merges into the middle band after another
surface state has been ejected from the middle band to the other band gap.
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Figure 7.4.: Surface states in the 2D model for a finite system along the (11̄)-diagonal
and for a fixed value of the momentum φ = π/2. Panels (a)-(e) show the same methods
as in Figure 7.3 but the colors in (b) and (e) are again taken as in Figure 7.2

Again these observations are in a good agreement with the correspondence found in
the 1D-model. The trivial phase of charge 1 leads to no surface states, the phase of
charge k (i) is manifested by a surface state in the lower (upper) band gap and in the
region of charge −1, we can observe three surface states, namely one in each band gap
and one of them crossing the middle band, i.e. changing from one band gap to the other.
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What is left now is to further establish the expected surface states for the phase of
charge j. Therefore, we consider the linked and unlinked models. In these models, we
find the charge j by fixing φ = 0 and taking a path along kz ∈ [−π, π] (see Figure 7.6).
Looking at the spectrally flattened Hamiltonian for this path in the two models, we
suggest that in most of the cases the region with charge j exhibits one surface states in
the upper and one of them in the lower band gap (Figure 7.5).

a

−3 −2 −1 0 1 2 3
Momentum kz

−1.5

−1.0

−0.5

0.0

0.5

1.0

En
er
gy

 E

Linked model ϕ=0

b

−3 −2 −1 0 1 2 3
Momentum kz

−1.5

−1.0

−0.5

0.0

0.5

1.0

En
er
gy

 E

Unlinked model ϕ=0

Figure 7.5.: Surface states in the 3D models finite along one of the diagonals for a fixed
value of the momentum φ = 0. Panel (a) shows the results for the linked model
and panel (b) for the unlinked one. The surface states are compatible with the bulk-
boundary correspondence deduced from studying the 1D and 2D-models.

Using the above results, we conclude with the following correspondence generalized
from the one-dimensional model to higher dimensions:

• charge 1 (blue): no surface states

• charge i (green): one surface state in the upper band gap

• charge k (violet): one surface state in the lower band gap

• charge j (orange): either one surface state in each band gap or one surface state
inside the middle band

• charge −1 (yellow): three surface states and at least one in each band gap

The ambiguity of the surface states for charge j can be understood from the two possible
interpretations of the phase with charge j. We can either interpret the charge j as k · i,
i.e. a superposition of the charges i and k leading to one surface state in each band gap,
or we interpret it as the phase with a π Berry phase for the uppermost and lowest band
(as we did in the one-dimensional model), leading to one surface state between these
two bands.
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Having established a simple bulk-boundary correspondence between the non-Abelian
topological charge and the surface states mainly using the 2D braiding model, we now
have a closer look at the linked and unlinked models in 3D.

7.2. Linked versus unlinked model
In this section, we try to find a difference between the surface spectrum5 of the linked

and the unlinked model. Therefore, we again consider different closed paths in the
surface BZ of the models (Figure 7.6). For both models, we take comparable paths to
be able to investigate a difference between the models. These paths are chosen in a way
that they enclose one or two overlays of nodal lines6 and such that by going along the
paths, we observe the same topological phases in the same order in both models.
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Figure 7.6.: Topological phase diagrams of the 3D model with indicated paths used for
the analysis. Panel (a) shows the topological phase diagram and the chosen paths
for the linked model, panel (b) for the unlinked model. The white line indicates the
path chosen in Section 7.1 to determine the bulk-boundary correspondence for the
topological charge j. The pink circle and ellipse show the paths we take to compare
the models. Indicated by the black dots are the overlays of two nodal lines that are
enclosed by the paths.

Before analyzing the surface states along these chosen paths, we have a look on how
the different methods work in this more complicated models. Therefore we take a path
along φ ∈ [−π, π] for the fixed value of kz = 1.5. From the established bulk-boundary
correspondence for this non-Abelian charge, we expect one surface states in each band

5The method used in experimental physics to probe the band structure, the angle-resolved photoe-
mission spectroscopy (ARPES) is essentially a surface probe, in which injected photons enter the
materials to a depth of only few atomic layers. It is therefore easier to detect the materials surface
states rather then the true bulk spectrum and a correspondence between the linking, and the surface
spectrum would be helpful to detect materials with linked nodal lines.

6By overlay, we mean that one nodal line lies on top of the other nodal line such that one of them
changes its charge from ±i (±k) to ∓i (∓k).
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gap in the linked model for φ ∈ [−2.2, 2.2] and one surface states in the upper band gap
for φ ∈ [−2.4, 2.4] for the unlinked model. Figure 7.7 shows all presented techniques
applied to the linked model and Figure 7.8 applied to the unlinked model.
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Figure 7.7.: All techniques applied to the linked model, finite along one of the diagonals
and for a fixed value of kz = 1.5. Panels (a)-(e) show the same methods as Figure 7.3.
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Figure 7.8.: All techniques applied to the unlinked model, finite along one of the diagonals
and for a fixed value of kz = 1.5. Panel (a)-(e) show the same methods as Figure 7.3.

For the linked model all methods except the spectral flattening completely fail to
show any signature of surface states. However this is a feature of our specific model
with linked nodal lines where the dispersion of the bulk bands prevents the existence
of well-formed energy gaps and not a general signature of the linking of nodal lines.
Indeed, after applying the spectral flattening, we find the surface states we expect from
the formulated bulk-boundary correspondence. In the case of the unlinked model, we are
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able to detect two surface states using the comparison of the open vs. periodic boundary
conditions, the IPR method and the spectral function. Nevertheless it is not completely
clear between which values of φ these states occur. Again the spectral flattening reveals
exactly the expected behavior of the surface states.

To analyze the surface states along the paths shown in Figure 7.6, we first need a good
representation of these paths. The path enclosing only one overlay we take as a circle,
and to enclose the two overlays we use an ellipse. Like this we can easily parameterize
these paths with a cyclic parameter t ∈ [0, 2π]. For the circle in both models, we find
the following representation of the paths as two component vectors, both starting in the
trivial region (blue).

γ1,linked =
(

1.2 + 0.5 · cos(t− 5
8π)

1 + 0.5 · sin(t− 5
8π)

)
γ1,unlinked =

(
0.9 + 0.5 · cos(t)
0.9 + 0.5 · sin(t)

)
(7.2.1)

where the first component is the surface BZ momentum φ and the second component is
the third momentum kz, i.e. the two component vectors encode points (φ, kz) in the 2D
surface BZ.
For the ellipses, we take the simple parameterization using the two semi-axes instead

of the radius, but we in addition have to rotate the ellipses by an angle of α = π/4.
We then find the following parameterization, taking the starting point inside the green
region:

γ2,linked =
(

cos(α) − sin(α)
sin(α) cos(α)

)
·
(

1.9 · cos(t− 3
16π)

1 · sin(t− 3
16π)

)
(7.2.2)

γ2,unlinked =
(

cos(α) − sin(α)
sin(α) cos(α)

)
·
(

1.6 · cos(t+ 1
8π)

0.9 · sin(t+ 1
8π)

)
(7.2.3)
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Figure 7.9.: Comparison of the linked and the unlinked model along a path enclosing
one node. Panel (a) shows the surface states in the linked model and panel (b) in the
unlinked model.
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Having defined the paths, we are now able to analyze the surface states along them.
Figure 7.9 shows the spectrally flattened finite system along the circular path enclosing
a single overlay. From the topological phase diagram, we find the following charges:

1 (blue)→ i (green)→ j (orange)→ k (violet)→ 1 (blue) (7.2.4)

Looking at the surface states, we do not see any qualitative difference between the
two models along this path. Only the linked model has a bit more noise in it, probably
because this model has a more complicated band dispersion. Furthermore, we can see
that for the linked model as it is also the case in the 2D model, the surface states do
not lie exactly at energy ±0.5, whereas for the unlinked model they do.

Similarly by looking at the surface states along the elliptical path, we cannot find any
difference between the models. The sequence of colors here is:

i (green)→ j (orange)→ k (violet)→ 1 (blue)→ i (green)
→ j (orange)→ k (violet)→ 1 (blue)→ i (green)

(7.2.5)

Again we have a bit more noise and the surface states not at ±0.5 in the linked model,
but the occurring surface states are the expected ones from the topological phases and
the bulk-boundary correspondence.
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Figure 7.10.: Comparison of the linked and the unlinked model along a path enclosing
two overlays. Panel (a) shows the surface states in the linked model and panel (b) in
the unlinked model.

So we conclude, that we unfortunately cannot find any difference in the edge spectrum
between the linked and the unlinked model as already expected from the similarity of the
topological phase diagram combined with the presented bulk-boundary correspondence
(see Section 5.2.4).
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7.3. Region of charge −1
Last, we want to check our conjecture on the phase with non-Abelian topological

charge −1. The conjecture is stated as follows:

Conjecture. Whenever we have a region in the surface BZ with topological charge −1
(yellow) bounded by charge i (green) on one side and charge k (violet) on the other side,
and we take a path starting in the region i (k), passing through the region −1 and ending
up in the region k (i), we find one edge state passing through the middle band.

We now choose several paths going through the region −1, some of them fulfilling
the condition that they go from i to k or vice versa, and some of them violating the
condition. Unfortunately, we only find the region of charge −1 in the two-dimensional
model along the two diagonals. Therefore, we choose several paths in these two finite
models (indicated in Figure 7.1b,c).

First, we check the conjecture for paths along t ∈ [−10, 10] for some fixed values of φ.
All of them fulfill the condition of the conjecture. For the model finite along the diagonal
(11), we take the values φ = π, π − 0.25, π − 0.5. For the one finite along (11̄), we have
already seen the case of φ = π/2, and in addition consider φ = π, 3π/4, 0. Figure 7.11
shows the surface states along these paths.
In the case of the system finite along the (11)-diagonal all the crossings are quite clear,

whereas for the other termination (finite along (11̄)-diagonal) we only observe a clear
crossing for the case φ = π. For all other cases where φ 6= π (Figure 7.11d and 7.4e) it
seems more as if one states merges the middle band and a bit earlier a different state is
ejected from the middle band. However, still we have one surface state pumped across
the band gap. Finally, for the case of φ = 0, we observe a lot of noise and cannot tell
anything about the surface states in the phase −1 as both band gaps are closed.
The many lines inside the band gaps in Figure 7.11f arise from the fact that we do

not have a gap. By looking at the topological phase diagram in Figure 5.7 with the
indicated paths of the nodal points, we see that we have a gap closing of the upper band
gap for t ∈ [−9, 2.5] and in the lower band gap for t ∈ [−2.5, 9]. In the case of such
gap closing we actually cannot do the spectral flattening properly and therefore we ob-
serve a lot of additional lines inside the band gaps and not only the actual surface states.
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Figure 7.11.: Surface state crossing the middle band along paths at constant φ for both
diagonal terminations of the 2D braiding model. Panels (a),(c) and (e) show two
surface states for the finite system along the (11)-diagonal. Along these paths, we can
even observe two surface states crossing the middle band but probably only one of
them is topological. The surface states of the system finite along the (11̄)-diagonal are
shown in panels (b), (d) and (f). Looking at panels (a) and (b), we can see that even
if we enter the phase of charge −1 from the trivial phase, we still find a surface state
passing through the middle band.
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Figure 7.12.: Surface states for some closed paths passing through the region of charge
−1 in the 2D model. Panel (a) and (b) show the paths that violate the condition
of the conjecture and we clearly see no state passing through the middle band. For
both terminations (finite along (11) in (a) and finite along (11̄) in (b)), we only find
surface states in either the upper or the lower band gap throughout the whole process.
Panel (c) shows the surface state for the path fulfilling the condition and we can find
a surface state passing the middle band.

As a second step, we now also look at some paths where the condition in the conjecture
is violated. Therefore, we take the closed paths shown in Figure 7.1. For the two paths
in (orange) we enter and leave the yellow region (charge −1) from the same region either
of charge k or i. On the other hand for the third path (pink), we enter the yellow region
from the green one and leave it into the violet one. We again parameterize the paths as
ellipses in the following way:

γ1,(11) =
(
π + 0.3 · cos(t+ π/2)
1.5 + 1 · sin(t+ π/2)

)
γ1,(11) =

(
π + 0.5 · cos(t+ π/2)
4.5 + 1 · sin(t+ π/2)

)
(7.3.1)

γ1,(11) =
(

2.4 + 0.3 · cos(t+ π/2)
0 + 1 · sin(t+ π/2)

)
(7.3.2)

Figure 7.12 shows the surface states along these paths. As expected, we do not find a
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surface state passing the middle band in the first two cases, but we can find a crossing
approximately at t = 4.6 for the last case (panel (c)).

In this chapter, we were able to more precisely specify the bulk-boundary correspon-
dence deduced in Chapter 3 by studying 1D elementary models. The only relevant
modification corresponds to charge j, where we do not always observe one surface state
between the uppermost and the lowest band but sometimes one surface state in each
band gap. Further, we specified the behavior of the surface states in the phase of charge
−1 depending on the charges surrounding the phase. Unfortunately, in the second part,
we were not able to find any difference between the linked and the unlinked model. Fi-
nally, we could find some evidence using the two-dimensional model, that our conjecture
on the topological phase with charge −1 holds in general.
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8. Conclusion and Outlook

8.1. Conclusion
In this work we attempted to better understand the non-Abelian topological charge.

Therefore, we studied different models in various dimensions and with varying number
of bands.
We started with elementary one-dimensional models consisting of three flat bands.

By performing different rotations of the three eigenstates throughout the BZ, we were
able to realize the different topological charges and found the corresponding edge states
(some of this analysis was already done by Ref. [3] in the Supplementary material).
Then, we generalized these models to N flat bands and had a closer look at different
filling fractions for the N -band model. We further found some evidence that in the
topological phase with charge −1 it is possible to pump one edge state across all the
middle bands from the uppermost to the lowest band gap. In the elementary three band
model we could even find an analytic solution for this pumped edge state and found that
it is perfectly localized on the outermost site.
After this simple one-dimensional model, we had a closer look at the two-dimensional

model presented by Ref. [29]. This model exhibits nodal points that perform a braiding
along a tuning parameter t. We then calculated the topological phase diagrams for
different terminations of the model. Interesting about this model is, that along both
diagonal projections, we find the topological phase with charge −1.
Last, we considered two original 3D models. We constructed these models in a way

that their nodal lines look similar along the diagonal projection but in one case the
nodal lines are linked and in the other case they are unlinked. Also for this model, we
calculated the quaternion charge but they do not show the topological phase of charge
−1.

We then studied the surface states of the presented two- and three-dimensional models
in the slab geometry, finite along different directions. Therefore, we used several tech-
niques that either use the actual band dispersion of the models or use a Hamiltonian
with flattened bands.
First, we used different paths through the BZ of the models in slab geometry and were

able to find a bulk-boundary correspondence for the surface states and the topological
charge in the phase diagram.
Our second goal was to find a difference in the surface spectrum of the linked and the

unlinked model. Therefore, we took two paths in the linked and the unlinked model
enclosing one and two overlays of nodal lines, respectively, but unfortunately, we could
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not find any difference in the surface spectrum. The absence of a clear-cut difference,
we could already guess from the similarity of the topological phase diagram and the
established bulk-boundary correspondence between the surface states and the quaternion
charge.
The last thing we studied, was the behavior of the surface states in the topological

phase with charge −1. We formulated the conjecture that under some constraint in
the phase −1, there is always a surface state passing through the middle band. Taking
different paths in the topological phase diagram of the two-dimensional braiding model,
we were able to support our conjecture.

8.2. Outlook
Although we could gain some insight into this non-Abelian topological charge, there

are still some open questions, we did not address to but that are definitely worth further
research.
Looking at the spectrum of the flattened Hamiltonian of the different models, we

observe that the surface states are not always at the same energy. Often they have
energy close to the middle of the band gap, i.e. ±0.5 but not always. Especially in the
linked modal in 3D as well as in the braiding model, we often observe the surface states at
arbitrary energies, e.g. Figures 7.9a and 7.3e. An interesting related question is whether
it is possible to determine the energy the surface state has in the flattened Hamiltonian.
Perhaps it could even be possible to differentiate the linked and the unlinked model
using this different energies of the surface states in the spectrally flattened Hamiltonian.
For the linked model it seems as if the surface states attract each other in energy if at
the same position there is one in each band gap, e.g. 7.9 where we clearly see a small
dropping of the energy of the surface state in the upper band gap at t ≈ 2.2.
A second interesting aspect also observed in the flattened Hamiltonian, we see for

example in Figure 7.11a where we look at the 2D braiding modal, finite along the (11)
diagonal at a path along t for the value φ = π. In this case, from the topological phase
diagram we know that we enter the phase with charge −1 directly from the phase with
charge 1. Concerning the surface states, we would expect non of them in the trivial phase
and two of them for the charge −1. Looking at the Figure, we can actually observe al-
ready some trivial surface state in the phase with charge 1 that turn into topological
ones when entering the phase of charge −1. Further we also observe too many surface
states in the phase of charge −1 of which it would be interesting to know which ones
are topological. So the interesting question here is, how can we distinguish between a
trivial and a topological surface state. One possibility could be to use the slope of the
state when approaching the boundary of the topological phase. Looking for example at
Figure7.11a, we suggest that probably the slope of the topological state diverges when
approaching the topological phase transition (e.g. in the upper band gap for φ ≈ 2).

Another possibility to do further research could be to choose different model. On one
hand, one could try to add the additional lines proposed in Section 5.2.4 to the unlinked
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model, to arrive at two models that look even more similar than they do at the moment.
Then one could study the surface states again to check if there is really no difference in
the surface spectrum of the linked and the unlinked model.
On the other hand, one could set up some different models. One idea would be to

change the positions of the orbitals inside the unit cell. Instead of centering all of
them, they could be placed at different positions. Studying the surface states it could
be interesting to check the behavior of the surface states depending on the topological
charge also in this case.
Another possibility to change the models would be to study models with more then

three bands1 and then looking at the generalized quaternions. An interesting question
would be if also for more bands, we still observe a surface state crossing the middle
bands in the phase of charge −1 or if the state only crosses some of the middle bands
depending on the charge on the boundary of the phase with charge −1. In general it
would be interesting to find a correspondence between the surface states and the topo-
logical charge also for more than three bands.

However, besides these further ideas concerning the two- and three-dimensional semimet-
als, there remain also open questions concerning the one-dimensional model.
In the trivialization of the 4π-rotation, we observed a degeneracy around m ≈ 17 in

Figure 3.7. The question here is whether this degeneracy is a purely accidental feature
of our specific model or if there is a topological reason behind this and it would also
occur for other trivializations of a 4π-rotation, thereby being topological stable.
Furthermore, in the one-dimensional N -band model, we have seen that we can pump

one edge state from the uppermost to the lowest band gap. The question that remains
is whether we are able to define a periodically driven system (Floquet system) to pump
this edge state up to the highest band gap again to end up with a closed cycle in energy.

1We did this in the case of the 1D-system but not for higher dimensions.
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A. Topology
Here, we give a short overview on some topological concepts used in the main text

(mainly in Section 2.2). We start with the different properties of topological spaces (con-
nected, path connected, simply connected), then define homotopy groups and covering
spaces. Finally, we give some simplifications for spaces that are usually encountered in
physics.

A.1. Topological spaces
A topological space S is connected if the only subsets M ⊂ S which are closed and

open at the same time are S itself and the empty set ∅. This is equivalent to stating
that a space is connected if it is not the union of two non-empty disjoint sets.
Path connected is a slightly stronger property that implies connected. If for each

two points a, b ∈ S there exists a path α : [0, 1] → S with α(0) = a and α(1) = b the
topological space S is called path-connected. There exist some spaces that are connected
but not path-connected. Last, we want to define simply connectedness which is the
strongest property. A topological space S is simply connected if it is path-connected
and every path between the end points a, b can be continuously deformed to any other
path between the same end points. Equivalently (by taking a = b, this means that every
closed path in the space is contractible [39, 40].
An equivalent definition for simply connected is that it is path-connected and the first

homotopy group, also called the fundamental group, is trivial. Therefore, we want to
define the fundamental group.

A.2. Homotopy groups
First, we need to define what a homotopy is. Consider a family of paths γt : I → X

with X a topological space, I the interval [0, 1] and 0 ≤ t ≤ 1. This family is called a
homotopy of paths if i) the end points are independent of t, i.e. γt(0) = x0 and γt(1) = x1,
and ii) the map F : I × I → X defined as F (s, t) = γt(s) is continuous. We say that
two paths γ0 and γ1 are homotopic if they are connected by such a homotopy of paths
γt and we write γ0 ' γ1. For fixed end points, this is an equivalence relation and we can
define equivalence classes.
Using this, we are now able to define the fundamental group Π1(X, x0) of the topolog-

ical space X for a base point x0. It is the quotient group of all paths γ with base point
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(start and end point) x0, modulo the homotopy of paths. So in formula we write:

Π1(X, x0) = {set of all closed paths γ with base point x0}/{homotopy of paths}
(A.2.1)

In path-connected spaces the fundamental group is independent of the base point and
we simply call it Π1(X).
An example for a space with non-trivial fundamental group is a torus T 2 whose fun-

damental group is Z × Z. Conversely, a ball or the sphere S2 are examples of spaces
with trivial fundamental groups. In a similar way, we can also define the nth homotopy
group. Therefore, we generalize the interval I = [0, 1] to In with the boundary ∂In, the
subspace where at least one coordinate is equal to 0 or 1. Then, we can define the nth
homotopy group (n ≥ 2) of the space X with base point x0 denoted by Πn(X, x0) to
be the homotopy class of maps f : (In, ∂In) → (X, x0). The family of paths ft need to
satisfy the condition ft(∂In) = x0. In the case of n = 1 this is exactly the definition
of the fundamental group. We can further extend the definition to n = 0 where I0 is
a point and its boundary is the empty set. So the zeroth homotopy group Π0(X, x0) is
just the set of path-connected components of X. Similar to the case of the fundamental
group, the higher homotopy groups for path-connected spaces are independent on the
choice of the base point, and we can write Πn(X). A special property of the homotopy
groups is that for n ≥ 2 the groups Πn(X) are Abelian [40].

A.3. Covering spaces
Finally, we want to consider covering spaces of topological spaces. A covering space

of a topological space X is a space X̃ with a map p : X̃ → X with the property that for
each point x ∈ X there exists a neighborhood U such that p−1(U) is a union of disjoint
open sets mapped homeomorphically on U by the map p.
For each connected space which is locally path-connected and semilocally simply con-
nected there exists a simply connected covering space, called the universal cover. It is
locally the same as the original space but has now a fundamental group which is trivial.
Simply connected spaces are their own universal covers [40].

A.4. Application in physics
In physics most connected spaces are also path-connected and we therefore define the

homotopy groups independent of the base points. Indeed most spaces in physics are
manifolds M and each connected manifold has a universal cover. To see this, we use
the fact that each manifold is locally contractible. This is the case because each point
in a manifold has a neighborhood which is homeomorphic to an Euclidean space that
is clearly contractible. Locally contractible then implies locally connected, locally path-
connected and locally simply connected. So if we further assume that the manifold is
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connected, we see that it fulfills all the conditions to have a universal cover. In addition,
the universal cover of a manifold is a manifold as well [40].
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B. Real-space version of the
3D-models

Using the same technique as in Section 6.1 to sketch the situation with L layers, we
can find the blocks in the Hamiltonian (Eq. 6.1.1) for the linked and the unlinked model
(Eq.’s 5.2.3 and 5.2.10). For the linked model we construct the system that is finite along
the x-axis as well as the one finite along the (110)-diagonal, whereas for the unlinked
model we only take the system finite along (110). This time, we also need to include
the blocks t±2 and for the linked case also t±3. Similar to the treatment of the tuning
parameter t in the 2D model, also for the 3D model we fixe the values of kz and look at
one-dimensional models in the (kx, ky)-plane. The blocks then look as follows: For the
linked model, finite along x and quantum number k = ky:

t0 =

9− 3 · cos(k) + 4 · cos(2kz) 0 i · sin(k)
0 6.25− 2.5 · cos(k) + 4 · cos(2kz) 0

−i · sin(k) 0 1− 1 · cos(2kz)



t1 =

 −1.5 −i · sin(k) 0
−i · sin(k) −1.5 0.5

0 −0.5 0

 t−1 = t1†

t2 =

0 0 0
0 −0.75− 0.5 · cos(k) 0
0 0 −1

 t−2 = t2†

(B.0.1)
finite along the diagonal (110) with quantum number k = k− = 1√

2 (kx − ky):

t0 =

9 + 4 · cos(2kz) 1 · cos(k) 0
1 · cos(k) 6.25 + 4 · cos(2kz) 0

0 0 1− 1 · cos(2kz)



t1 =

−1.5 ·
(
1 + eik

)
0 0.5

0 −1.25− 1.5 · eik − 0.25 · e2ik 0.5 · eik

−0.5 −0.5 · eik 0

 t−1 = t1†

t2 =

 0 −0.5 · eik 0
−0.5 · eik −0.75 · e2ik 0

0 0 −e2ik

 t−2 = t2†

t3 =

0 0 0
0 −0.25 · e2ik 0
0 0 0

 t−3 = t3†

(B.0.2)
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For the unlinked model finite along the (110)-diagonal and quantum number k = k− =
1√
2 (kx − ky):

t0 =

−6.6 + 3 · cos(2kz) 1 · cos(k) 0
1 · cos(k) 2 + 3 · cos(2kz) 0

0 0 −3.5



t1 =

 1 0 0.5
0 1 + eik 0.5 · eik

−0.5 −0.5 · eik −eik

 t−1 = t1†

t2 =

 0 −0.5 · eik 0
−0.5 · eik 0 0

0 0 0

 t−2 = t2†

(B.0.3)

These blocks for the finite models could also be found by a Fourier transform, which
in the case of many hopping (as in our 3D models) is less prone to mistakes. Again we
only consider cuts at different values of kz. We then have an effective 2D Hamiltonian
Heff(kx, ky) represented as a 3×3-matrix. For such Hamiltonians, we can find the hopping
blocks directly by taking the Fourier transform along the finite axis. Considering the
Hamiltonian to be finite along the x-direction (good quantum number ky), we have the
following formula for the blocks:

(tn(ky))αβ = 1
2π

∫ π

−π
einkx (Heff(kx, ky))αβ dkx (B.0.4)

This integral can either be evaluated analytically with the help of Mathematica or we
can do it numerically using Python. For the diagonal termination of the models, we
need to express them using the momenta k+, k− and then do the same Fourier transform
as we did above for kx, ky.
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C. Convention for the discrete Fourier
transform

Consider a function f(x) in real space at N discrete values xi. We find the coefficients
F (k) of the Fourier transform by the following formula: For one dimensional functions:

Fn =
N∑
m=1

fm exp
(
−i2π

N
nm

)
(C.0.1)

and the inverse Fourier transform as:

fm = 1
N

N∑
n=1

Fn exp
(
i
2π
N
nm

)
(C.0.2)

In two dimensions we have:

Fn1,n2 =
N∑

m1=1

N∑
m2=1

fm1,m2 exp
(
−i2π

N
(n1m1 + n2m2)

)
(C.0.3)

as well as the inverse transformation:

fm1,m2 = 1
N2

N∑
n1=1

N∑
n2=1

Fn1,n2 exp
(
i
2π
N

(n1m1 + n2m2)
)

(C.0.4)
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D. Number of sites for finite systems
We justify our choice of N = L = 100 used in Chapter 7. Therefore, we first look at the

2D braiding model for a system finite along the y-axis and t = 0. We compare the spec-
trum with open boundary conditions for different number of layers L. Second, we look
at the linked system along the path γ1,linked in Equation (7.2.1) and check the behavior of
the flattened model depending on the number of sites N . For both systems we compare
the results for the following number of sites/layers: 10, 20, 50, 80, 100, 150, 200, 300.
Figure D.1 shows the spectrum with open boundary conditions for the different number

of layers. Already for L = 10, we can see the surface states, but we see only few single
lines for the bulk states. Starting from L = 50, we see the bulk bands much clearer
but we still see single lines. For L ≥ 100 and the presented data resolution, we do not
see lines anymore for the bulk bands but really one area covering the range of the bulk
bands. Therefore in this case L = 100 seems to be a good choice because by choosing L
even larger it does not provide further improvements of the presented data (except the
time needed for the computation grows rapidly).
The same is shown for the linked model and the technique of the spectral flattening

in Figure D.2. Again, we can already see the surface states for N = 10. However, the
bulk bands seem to have some dispersion. For N = 50 the surface states get quite clear
and most of the bulk dispersion is gone. The changes by further increasing N are quite
small but the spectrum gets sharper each time until N = 200. Between N = 200 and
N = 300 the spectrum does not change anymore within the naked eye resolution. In
this case N = 100 is a good choice as the spectrum is sharp enough and does not change
much by further increasing N , while the computation time is still quite short.
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Figure D.1.: Effect of the choice layers L on the spectrum of a lD-system with open
boundary conditions. For an illustration, we look at the 2D braiding model finite
along the y-axis for the value t = 0
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Figure D.2.: Effect of the choice of N (number of sites) on the spectrum of a spectrally
flattened lD-system with open boundary conditions. For an illustration, we look at
the unlinked model along the circular path in Equation 7.2.1.
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