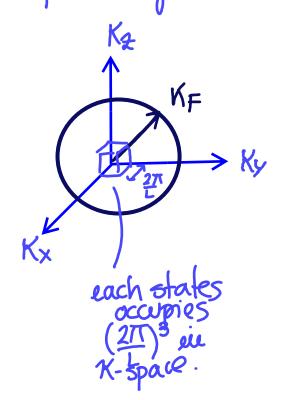
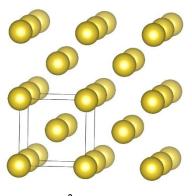
Free electron model

Lecture 2


see, sor instance, Kittel Chapter 6

Record T Free electron model ui 3D "simplest may to represent the electronic structure of a metal" * the valence e- of the atoms become conduction e-i.e a monoraleut crystal with N atoms, there will be N conduction e-* Assumptions of the model: no interactions between e- s and the nuclei dolid seen as 1e- trapped us an oo-well potential (energy-, Kinetic - analogy Kinetic theory of gases) $-\frac{\hbar^2}{2m}\sqrt[3]{\psi(\bar{r})} = \Xi \psi(\bar{r})$ $-V_L$ periodic bandary conditions V(x+L,y,z) = V(x,y,z) $\implies \quad \exists \mathbf{K} = \frac{\hbar^2 \mathbf{K}'}{2m} = \frac{\hbar^2}{2m} \left(\mathbf{K} \mathbf{x}^2 + \mathbf{K} \mathbf{y}^2 + \mathbf{K} \mathbf{z}^2 \right)$ Dispersion relation for e-


the N electrons are accommodated ui the lowest possible states following Pauli exclusion principle.

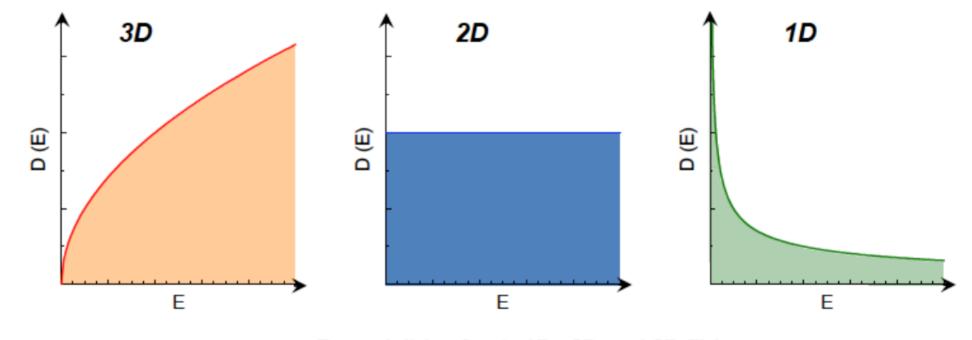
 \Rightarrow thus, all occupied states (orbitals) are inside a sphere of radius KF us K-space.

Ferme level : higheot accupied state Fermi energy : energy of the highest accupied state Remember : Fermi - Dirac distribution function EF

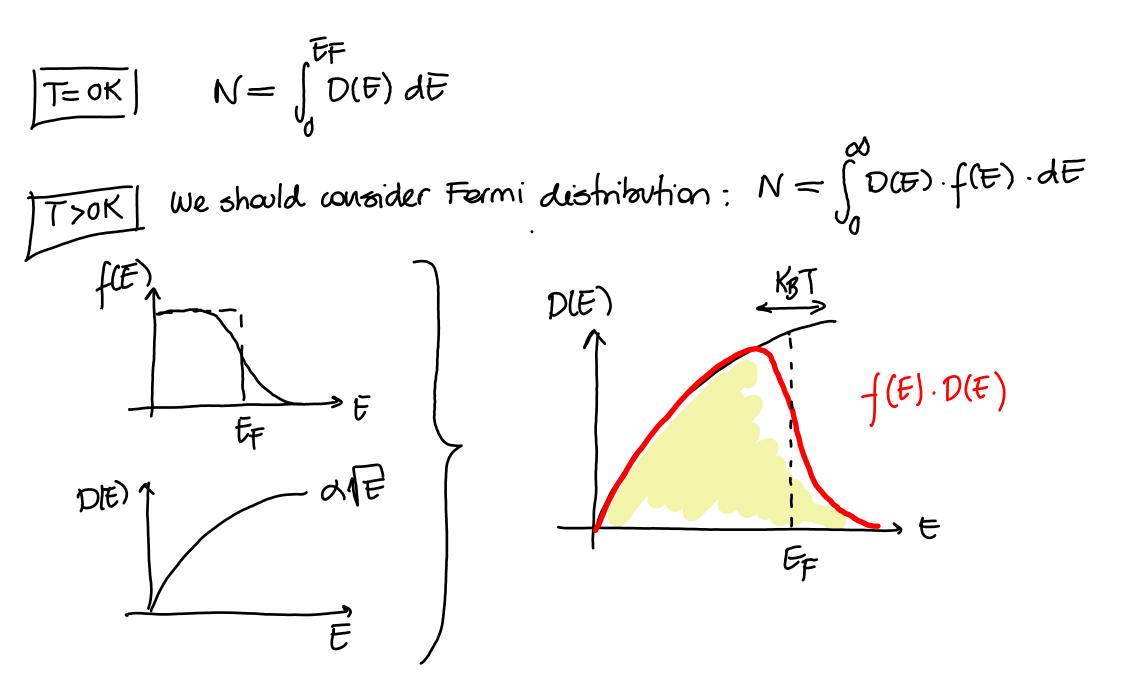
A few estimates for Na

a=4.2 Å

- BCC otherwith Lattice parameter a = 4.2Å -1 valence e-per atom since there are atoms per muit cell: e concentration = $\frac{N}{V} = \frac{2}{(4.2)^2} \simeq 3.10^{22} \text{ cm}^{-3}$ Fermi wave dor $K_F = (3/T_n)^{1/3} \sim 10^8 \text{ m}^{-1} \sim 14^{-1}$ Ferui evergies $E_F = \frac{\hbar^2 K_F^2}{2m} \sim 3.3 eV$ Fermi Temperature TF v 40000K Fermi velocity $J_{\rm F} = 10^8 \, {\rm cm}$

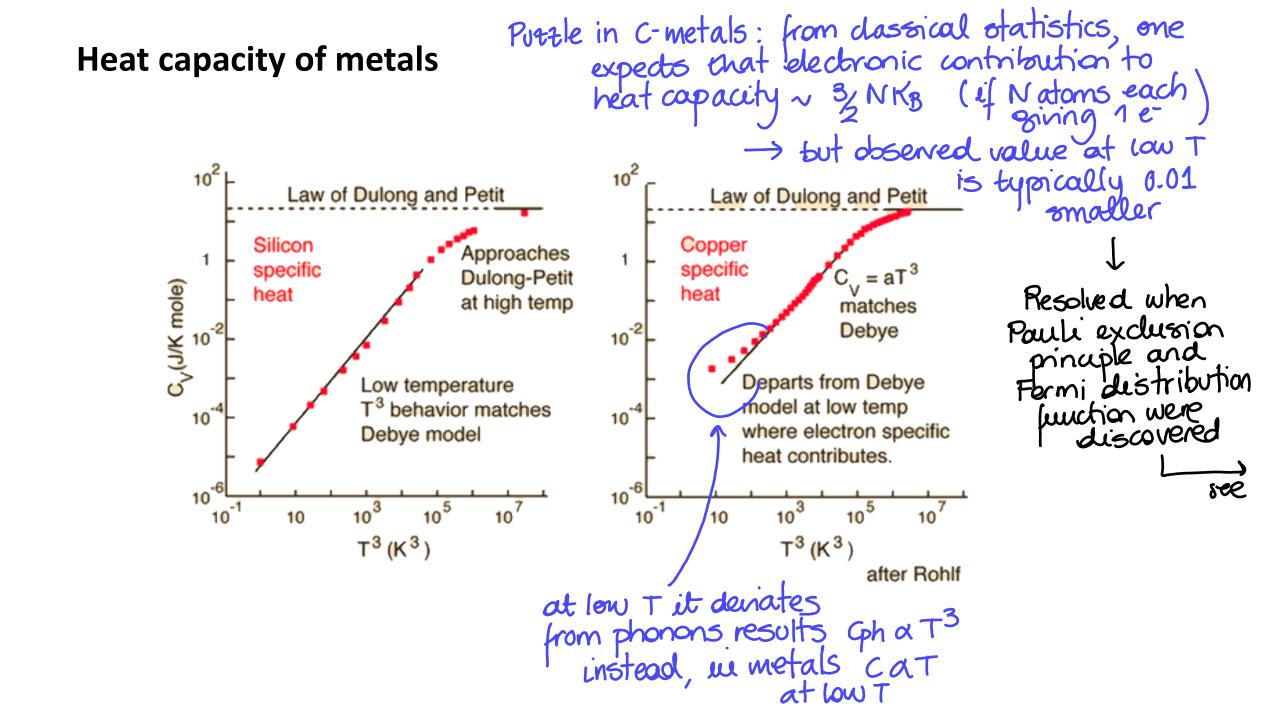

Wertigkeit	Metall	Elektronen- konzentration in cm ⁻³	Radius- parameter ^a r _s	Fermi- Wellenvektor in cm ⁻¹	Fermi- geschwindigkeit in cm s ⁻¹	Fermi- energie in eV	Fermitemperatur $T_F = \varepsilon_F / k_B$ in K
1	Li	$4,70 \times 10^{22}$	3,25	$1,11 \times 10^{8}$	$1,29 \times 10^{8}$	4,72	$5,48 \times 10^{4}$
	Na	2,65	3,93	0,92	1,07	3,23	3,75
	K	1,40	4,86	0,75	0,86	2,12	2,46
	Rb	1,15	5,20	0,70	0,81	1,85	2,15
	Cs	0,91	5,63	0,64	0,75	1,58	1,83
	Cu	8,45	2,67	1,36	1,57	7,00	8,12
	Ag	5,85	3,02	1,20	1,39	5,48	6,36
	Au	5,90	3,01	1,20	1,39	5,51	6,39
2	Be	24,2	1,88	1,93	2,23	14,14	16,41
	Mg	8,60	2,65	1,37	1,58	7,13	8,27
	Ca	4,60	3,27	1,11	1,28	4,68	5,43
	Sr	3,56	3,56	1,02	1,18	3,95	4,58
	Ba	3,20	3,69	0,98	1,13	3,65	4,24
	Zn	13,10	2,31	1,57	1,82	9,39	10,90
	Cd	9,28	2,59	1,40	1,62	7,46	8,66
3	Al	18,06	2,07	1,75	2,02	11,63	13,49
	Ga	15,30	2,19	1,65	1,91	10,35	12,01
	In	11,49	2,41	1,50	1,74	8,60	9,98
4	Pb	13,20	2,30	1,57	1,82	9,37	10,87
	$\operatorname{Sn}(\omega)$	14,48	2,23	1,62	1,88	10,03	11,64

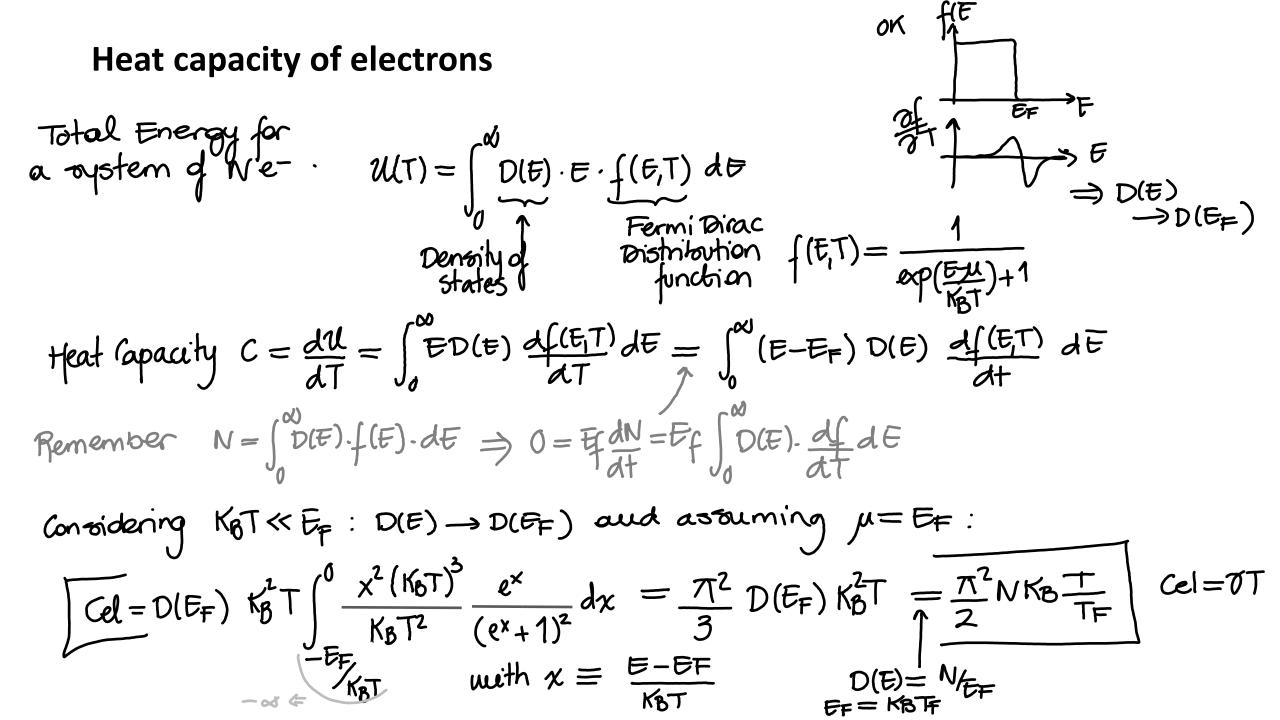
^a Der dimensionslose Radiusparameter ist definiert als $r_s = r_0/a_H$; dabei ist a_H der erste Bohrsche Radius und r_0 der Radius einer Kugel, die ein Elektron enthält.


Density of states = number of states per unit energy range

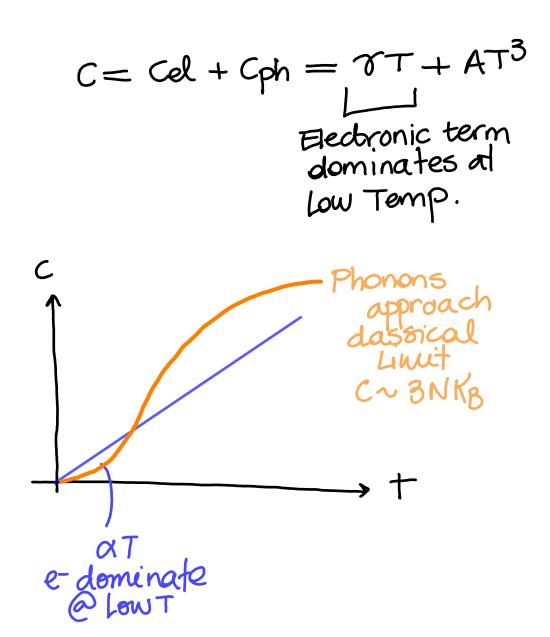
 k_z $N(E) = \frac{\sqrt{37^2}}{37^2} K^3 = \frac{\sqrt{37^2}}{\sqrt{37^2}} \left(\frac{2ME}{K^2}\right)^{3/2}$ $\cdot E = \frac{K^2 K^2}{2m}$ $+k_{v}$ Density of states: $D(E) = \frac{dN}{dE} = \frac{\sqrt{3}}{3\pi^2} \frac{3}{2} \left(\frac{2m}{m^2}\right)^3 = \frac{1}{2}$ k_x $\Rightarrow D(F) = \frac{3}{2} \frac{N}{F}$ D(E) Ef

OK

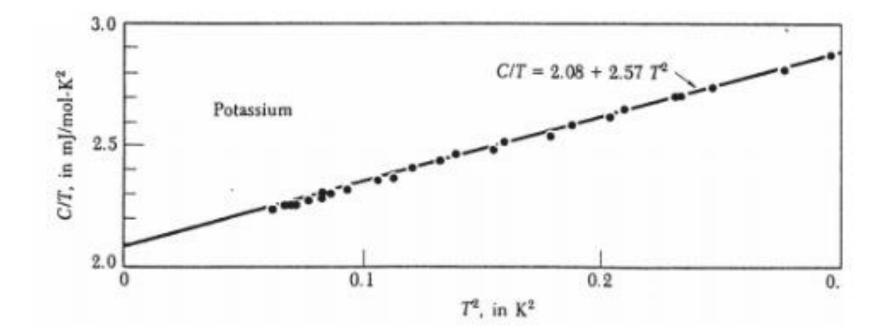

Zustandsdichte für ein 1D-, 2D- und 3D-Elektronengas.


Typical values for free electrons

Metal	Valence	Fermi energy E _F	Fermi Temperature T _F =E _F /k _B
Li	1	4.72 eV	5.5 x 10 ⁴ K
Na	1	3.23 eV	3.75 x 10 ⁴ K
AI	3	11.63 eV	13.5 x 10 ⁴ K

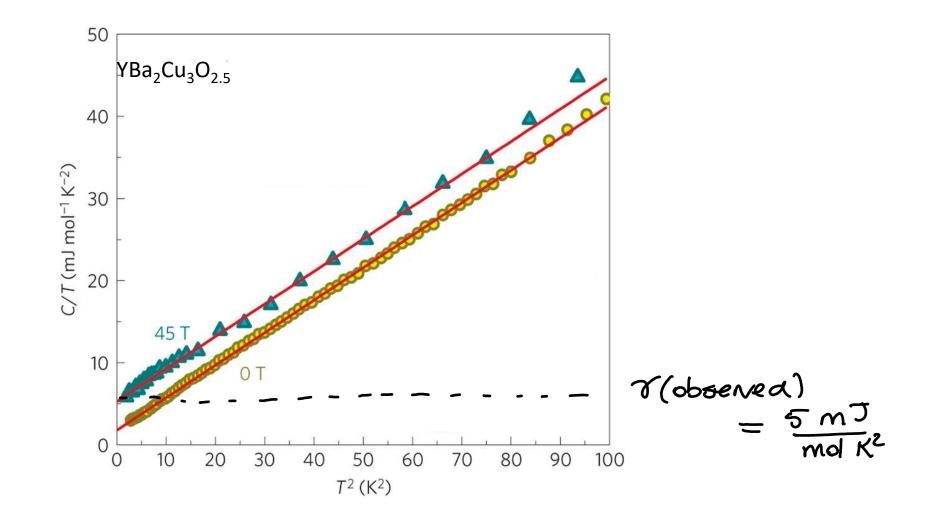

For typical metals, the Fermi energy temperature is much greater than ordinary temperatures Transition from f(E)=1 to f(E)=0 is rather sharp at room temperature

Heat capacity of electrons Not every electron gains an energy ~ KBT as expected dassically but only those , Kế I D(E) which have the evergy within a range KBT from the Fermi level and excited can thise-cannot EF k_₽ verboten erlaubt k, N: total number of electrons only fraction KBT of e- can be excited at T EF $k_{\rm B}T \ll E_{\rm F}$ $\Rightarrow \mathcal{Y} = N\left(\frac{K_{B}T}{E_{F}}\right) K_{B}T$ energy e-Only electron states near E_F participate in excitation processes $\implies Cel = \frac{d\mathcal{U}}{dT} \sim NK_{B}\left(\frac{K_{B}T}{EE}\right)$ ► | Cel a T | ui agreement with experiment at RT, Cel is smaller than classical value ~ Kot by a factor of 0.01 (in agreement with experiment)



Heat capacity of metals

constants T and A can be obtained from experimental fitting. Note that from T one can calculate D(EF) for metals



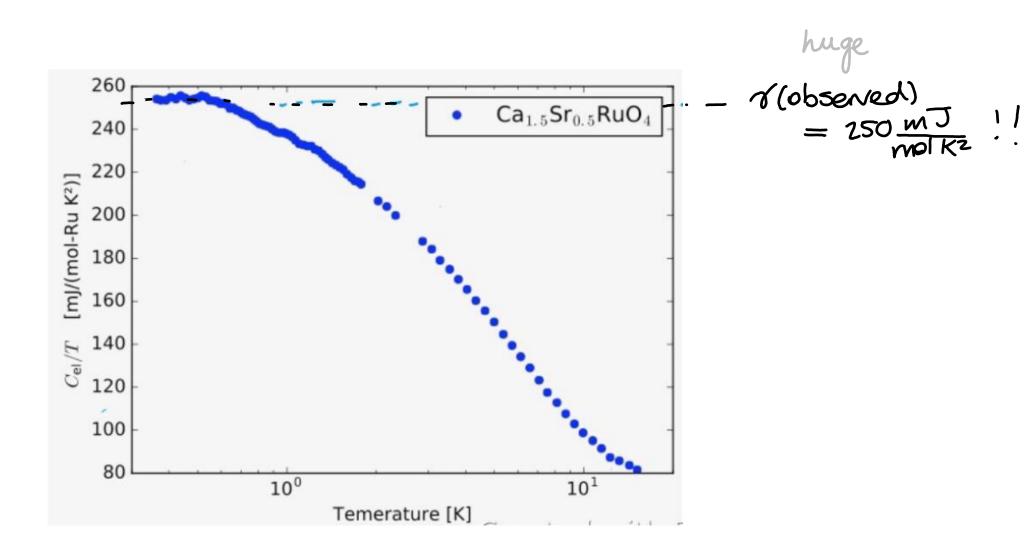
47

T2

Experimental heat capacitance

S. Riggs et al., Nature Physics 7, 332 (2011)

Low temperature heat capacity coefficient for some metals


in units of 10⁻⁴ J/(mol-K)

Material	Yexp	Υ _{th}
Li	18	7.4
Na	15	11
К	20	17
Cu	7	5.0
Ag	7	6.4
Ве	2	2.5
Bi	1	5.0
Mn	170	5.2

thermal effective mass $\frac{M_{\text{th}}}{M} = \frac{\mathcal{T}(\text{observed})}{\mathcal{T}(\text{free e}^{-})}$

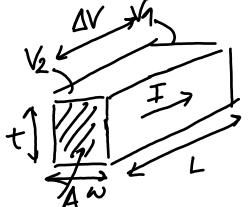
(because uiteraction of conduction e-with phonons, with other e-,... has not been considered)

Heavy fermions

Electronic transport - Drude model

4 major assumptions

> Electrons are treated as classical particles within free electron model approximation.


> Electrons move freely only between collisions with scattering centers.

> An electron experience a collision with a probability $1/\tau$.

 τ =relaxation time (collision time), i.e. average time between two consecutive scattering events

> Electrons achieve thermal equilibrium with their surroundings only through collisions.

Drude model for electrical conductivity

Ohm's law
$$V = IR$$
, Resistance (depends
(unrent density: $\overline{J: \nabla \overline{E}}$) $\nabla = conductivity$
 $J = \overline{A}$ $I = \overline{\nabla V} \Rightarrow R = \frac{L}{\nabla A} = P \frac{L}{N} = P \frac{L}{N+1}$
 $V = \overline{E} \cdot L$) $R = \overline{C} \cdot \frac{V}{L} \Rightarrow R = \frac{L}{\nabla A} = \frac{1}{\nabla A} = \frac{1}{\nabla$

"The unicroscopic quantifies"

$$N: e^{-} per unit volume$$

 $v: velocity of e^{-} \Rightarrow current density will be 11 v$
 $N(v.dt) A : number of e^{-} that unill
 $vross area A \perp to the flow$
 $-e: charge of e^{-}$
Current density: $\mathbf{j} = -ne \mathbf{r}$
 $(charge crossing A in time diff)$
 $v \in = 0 \Rightarrow < v > = 0 \Rightarrow \mathbf{j} = 0$
 $v \in \neq 0 \Rightarrow drift velocity will opposite to The field$$