# Kern- und Teilchenphysik II <br> Spring Term 2016 

## Exercise Sheet 3

Lecturers: Prof. F. Canelli, Prof. N. Serra
Assistant: Dr. A.de Cosa

## 1. Electron muon scattering

Consider the electron muon scattering:
a) Draw the allowed QED Feynman diagram/s for this process.

## 1 pt

b) Use the Feynman rules for QED to calculate the lowest-order matrix element for this process, where the $p_{1}$ and $p_{3}$ are the four-momenta of the initial and final state electron, and $p_{2}$ and $p_{4}$ are the four-momenta of the initial and final state muon.

## 1 pt

c) Working in the centre of mass frame, and writing the four-momenta of the initial and final state electron as $p_{1}=\left(E_{1}, 0,0, p\right)$ and $p_{3}=\left(E_{1}, p \sin \theta, 0, p \cos \theta\right)$ respectively, show that the electron currents for the four possible helicity combinations are:

$$
\begin{align*}
& \bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\mu} u_{\downarrow}\left(p_{1}\right)=2\left(\mathrm{E}_{1} \mathrm{c}, \mathrm{ps},-i \mathrm{ps}, \mathrm{pc}\right),  \tag{1}\\
& \bar{u}_{\uparrow}\left(p_{3}\right) \gamma^{\mu} u_{\downarrow}\left(p_{1}\right)=2(\mathrm{~ms}, 0,0,0),  \tag{2}\\
& \bar{u}_{\uparrow}\left(p_{3}\right) \gamma^{\mu} u_{\uparrow}\left(p_{1}\right)=2\left(\mathrm{E}_{1} \mathrm{c}, \mathrm{ps}, i p s, \mathrm{pc}\right),  \tag{3}\\
& \bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\mu} u_{\uparrow}\left(p_{1}\right)=-2(\mathrm{~ms}, 0,0,0), \tag{4}
\end{align*}
$$

where m is the mass of the electron, $\mathrm{s}=\sin (\theta / 2)$ and $\mathrm{c}=\cos (\theta / 2)$.

$$
4 \mathrm{pt}
$$

d) Show that the muon currents for the four helicity combinations are:

$$
\begin{align*}
& \bar{u}_{\downarrow}\left(p_{4}\right) \gamma^{\mu} u_{\downarrow}\left(p_{2}\right)=2\left(\mathrm{E}_{2} \mathrm{c},-\mathrm{ps},-i \mathrm{ps},-\mathrm{pc}\right),  \tag{6}\\
& \bar{u}_{\uparrow}\left(p_{4}\right) \gamma^{\mu} u_{\downarrow}\left(p_{2}\right)=2(\mathrm{Ms}, 0,0,0),  \tag{7}\\
& \bar{u}_{\uparrow}\left(p_{4}\right) \gamma^{\mu} u_{\uparrow}\left(p_{2}\right)=2\left(\mathrm{E}_{2} \mathrm{c},-\mathrm{ps}, i p s,-\mathrm{pc}\right),  \tag{8}\\
& \bar{u}_{\downarrow}\left(p_{4}\right) \gamma^{\mu} u_{\uparrow}\left(p_{2}\right)=-2(\mathrm{Ms}, 0,0,0), \tag{9}
\end{align*}
$$

where $M$ is the mass of the muon.
e) Verify that, in the relativistic limit $(\mathrm{E} \gg \mathrm{M})$, the matrix element squared for the case where the incoming electron and muon are left-handed is:

$$
\left|\mathcal{M}_{L L}\right|^{2}=\frac{4 e^{4} s^{2}}{\left(p_{1}-p_{3}\right)^{4}}
$$

where s $=\left(p_{1}+p_{2}\right)^{2}$

$$
2 \mathrm{pt}
$$

f) Find the corresponding expressions for $\left|\mathcal{M}_{\mathcal{R} \mathcal{L}}\right|^{2},\left|\mathcal{M}_{\mathcal{R} \mathcal{R}}\right|^{2}$ and $\left|\mathcal{M}_{\mathcal{L R}}\right|^{2}$
g) In this limit, show that the differential cross section for unpolarised $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$scattering in the centre-of-mass frame is:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{2 \alpha^{2}}{s} \cdot \frac{1+\frac{1}{4}(1+\cos \theta)^{2}}{(1-\cos \theta)^{2}}
$$

## 2. Electron proton scattering

Consider the electron proton scattering in the limit of low-energy scattering and in the approximation of point-like proton. The left-handed and right-handed helicity spinors are:

$$
\begin{aligned}
& u_{\uparrow}=\sqrt{E+m}\left(\begin{array}{c}
c \\
s e^{i \phi} \\
\frac{p}{E+m} c \\
\frac{p}{E+m} s e^{i} \phi
\end{array}\right) \\
& u_{\downarrow}=\sqrt{E+m}\left(\begin{array}{c}
-s \\
c e^{i \phi} \\
\frac{p}{E+m} s \\
-\frac{p}{E+m} c e^{i} \phi
\end{array}\right)
\end{aligned}
$$

where $\mathrm{s}=\sin (\theta / 2)$ and $\mathrm{c}=\cos (\theta / 2)$.
a) Draw the allowed QED Feynman diagram for this process.

1 pt
b) Write the initial- and final-state spinors for the electron, considering that it is scattered by an angle $\theta$ and taking the azimuthal angle $\phi=0$. [Hint: assume that the proton recoil is small, hence its kinetic energy is small and electron energy does not change in the scattering process].
c) Write the electron current for the four possible helicity combinations. What does it happen in the relativistic limit?
d) In the limit of small proton recoil (low velocity of recoiling proton) and taking $\theta=\eta$ and $\phi=\pi$ as angular direction of the recoiling proton, write the intial- and final-state spinors for the proton. [Hint: $\frac{p}{E+m} \equiv \frac{\beta \gamma}{\gamma+1}$ ].
e) Write the proton four-vector currents for the four possible helicity combinations.

## 3. Feynman diagrams

Draw Feynman diagrams for the following processes, labelling each quark, lepton and boson, indicating clearly the propagator.
a) $e^{+}+e^{-} \rightarrow \mu^{+}+\mu^{-}$
b) $\tau^{-} \rightarrow \nu_{\tau}+\pi^{-}$
c) $\Delta^{++} \rightarrow p+\pi^{+}$
d) $B^{+} \rightarrow \overline{D^{0}}+\pi^{+}$

