Phonons: Thermal properties

Kittel Chapter 5

Thermal properties - Goals

- Introduction: Why do we care?
- > Debye's Model for heat capacity
- Einstein's Model for heat capacity
- > Thermal conductivity

Heat capacity

Heat capacity is the measure of how much energy it takes to raise the temperature of a unit of mass of an object a certain amount

at constant volume
$$C_{Y} = \left(\frac{\Im U}{\Im T}\right)_{Y}$$

 $U = energy$
LATTICE HEAT CAPACITY =
contribution of phonons to C
of a crystal
 $C_{Y}(Gitter) prop. T^{3}$
 $T[K]$

Phonons Energy

We cannot determine the number of phonons at given T, but we can know the probability of having n phonons Planck distribution Bose-Einstein distribution $\langle N_{\rm K}p \rangle = \frac{1}{\exp(\frac{kw}{k_{\rm B}T}) - 1}$ (see Kittlel for more details) Ka: Boltzmann constant

Planck distribution

$$\langle n_{K,p} \rangle = \frac{1}{\exp(\frac{\hbar\omega}{k_B T}) - 1}$$

$$usuber of phonons t$$

at fixed frequency:
$$Plot\left[\left\{\frac{1}{Exp[1/x]-1}\right\}, \{x, 0, 3\}, PlotRange \rightarrow \{\{0, 3\}, \{0, 3\}\}, PlotStyle \rightarrow Thick, AxesLabel \rightarrow \left\{ \left\|\frac{T}{\hbar\omega/k_{B}}\right\|, \left\|\langle n \rangle \right\|\right\}, LabelStyle \rightarrow Medium\right]$$

Planck distribution

$$\langle n_{K,p} \rangle = \frac{1}{\exp(\frac{\hbar\omega}{k_BT}) - 1}$$

at fixed temperature:

$$\begin{split} & \operatorname{Plot}\Big[\Big\{\frac{1}{\operatorname{Exp}\,[\mathbf{x}]\,-\,1}\Big\},\,\,\{\mathbf{x},\,0,\,3\},\,\,\operatorname{PlotRange}\,\rightarrow\,\{\{0,\,3\},\,\,\{0,\,10\}\},\\ & \operatorname{PlotStyle}\,\rightarrow\,\operatorname{Thick},\,\operatorname{AxesLabel}\,\rightarrow\,\Big\{"\,\,\frac{\omega}{k_{\scriptscriptstyle B}\,T\,/\,\hbar}",\,\,"\langle n\rangle\,"\Big\},\,\,\operatorname{LabelStyle}\,\rightarrow\,\operatorname{Medium}\Big] \end{split}$$

at very low T, we mainly need to consider acoustic modes

Phonons Energy

$$\begin{split} \mathcal{U} &= \overline{\zeta_{K}} \underset{P}{\neq} \langle \mathcal{M}_{K} p \rangle \stackrel{\text{truck}}{\to} p = \overline{\zeta_{K}} \underset{P}{\neq} \frac{f_{k} \mathcal{M}_{K} p}{e_{x} p} \frac{f_{k} \mathcal{M}_{K} p}{e_{x} p} \frac{f_{k} \mathcal{M}_{K} p}{e_{x} p} \frac{f_{k} \mathcal{M}_{K} p}{f_{K} p} - 1 \end{split}$$

$$\begin{aligned} \mathcal{U} &= \overline{\zeta_{K}} \int d\omega \ D_{p}(\omega) \frac{f_{k} \omega}{e_{x} p} \frac{f_{k} \mathcal{M}_{K}}{f_{K} p} - 1} \\ \text{number of modes per unit fequency range} \\ (Debroitly of modes; denoitly of states) \end{aligned}$$

$$\begin{aligned} \mathcal{C} &= \frac{2 \mathcal{U}}{2 T} \bigg|_{v} \implies C_{k} \pi = K_{B} \underset{P}{\neq} \int d\omega \ D_{p}(\omega) \frac{x^{2} e_{x} p x}{(e_{x} p x - 1)^{2}} \quad \text{with } x = \frac{f_{k} \omega}{K_{B} T} \end{split}$$

ω

Density of states in 1D

$$D_{1}(w) \qquad \text{Nowber of modes per nuit frequency range for a given polarization} \\ D_{1}(w) = \frac{\text{number of modes}}{\Delta w} \\ D_{1}(w) = \frac{\text{number of modes}}{\Delta w} \\ \# \text{ of modes} = 2 \frac{\Delta K}{2\pi V_{L}} = 2 \frac{\frac{dK}{dw}}{2\pi V_{L}} \\ \Rightarrow D_{1}(w) = \frac{L}{\pi} \frac{1}{\frac{dw}{dK}} \quad \text{in 1D} \\ \frac{dK}{dK} \quad \text{group velocity can be obtained from w(K)} \\ (! singularities at vg=0) \end{aligned}$$

Density of states in 3D

Density of states in SD
N³ primitive number cells within cube of side L
Periodic boundary conditions
$$\Rightarrow \vec{K}$$
 is
determined by the condition:
 $\exp(i(Kxx + Kyy + K_{2}z)) = \exp(i(Kx(x+L) + Ky(y+L) + K_{2}(z+L))^{kx})$
as before, it requires : $K_{X}, K_{Y}, K_{2} = 0, \pm 2\vec{T}, 4\vec{T} \dots NT$
there is one allowed K value per $(2\vec{T}, 3)$ in K space
 $(\frac{L}{2\pi})^{3} = \frac{V}{2\pi}$ allowed values of \vec{K} per number K -space
for each polarization and for each branch
 $V = \frac{43\pi 1K^{3}}{(2\pi V_{L})^{3}} = \frac{V}{2\pi} \frac{K^{3}}{3} \Rightarrow \int D_{3}(w) = \frac{dN}{dw} = \frac{V}{2\pi}K^{2}\frac{dK}{dw}$

Debye model
In this approx. Itsound = ct for each polarization type
(as it would be for a description
bioperoion relation
$$\omega = VK \longrightarrow K = \frac{W}{V}$$

welloadly
 $\Delta = 0$ there is a cotteoff frequency given by the max. occupied K
 $M = \frac{V}{2T_1^2} \frac{K^3}{3} = \frac{V}{6T_1^2} (\frac{W^3}{V}) \implies M_D^3 = 6T_1^2 \frac{N}{V} t^3$
to their work is a cotteoff more sponds a cotteoff wavevector $\overline{K} \implies K_D = K = 6T_1^2 \frac{N}{V} \frac{V^3}{V}$
 $D(w) = \frac{dN}{dW} = \frac{V}{6T_1^2} \frac{W^2}{V^3}$
 $D(w) = \frac{dN}{dW} = \frac{V}{6T_1^2} \frac{W^2}{V^3}$
 $D(w) = \frac{dN}{dW} = \frac{V}{6T_1^2} \frac{W^2}{V^3}$

S

thermal every:
$$\mathcal{U} = \sum_{K} \int dw D(w) \langle h_{WR} h_{W} = \sum_{K} \int_{0}^{N_{D}} dw \left(\frac{\sqrt{W^{2}}}{27^{2}v^{3}} \right) \frac{hw}{e^{h_{WT}} - 1}$$

assuming phonon velocity independent of polarization
 \Rightarrow we multiply $\times \mathfrak{S}$ (LA, TA $\times 2$)
 $\mathcal{U} = \frac{3\sqrt{h}}{27^{2}v^{3}} \int_{0}^{W_{D}} dw \frac{w^{3}}{e^{h_{WT}} - 1} = \frac{3\sqrt{K_{B}}T^{4}}{27^{2}v^{5}h^{3}} \int_{0}^{N_{D}} dx \frac{x^{3}}{e^{x} - 1}$
 $x = hW_{T}$; $x_{D} = \frac{hw_{D}}{k_{B}T} = \frac{\mathfrak{S}}{T}$
Definition: Debye Temperature: $\mathfrak{O} \longrightarrow \mathfrak{O} = \frac{hw}{K_{B}} \cdot \left(\frac{e\pi^{2}N}{V}\right)^{1/3}$
total phonon energy: $\mathcal{U} = 9NK_{B}T \left(\frac{T}{\Theta}\right)^{3} \int_{0}^{N_{D}} \frac{x^{3}}{e^{x} - 1} dx$
Heat Capacity: $C = \frac{3Vh^{2}}{2T^{2}v^{3}K_{B}T^{2}} \int_{0}^{W_{D}} \frac{w}{e^{h_{WT}} - 1}^{2} = 9NK_{B} \left(\frac{T}{\Theta}\right)^{3} \int_{0}^{N_{D}} \frac{dx}{e^{x} - 1}^{2}$

Debye approximation

$$C_{\nu} = 9Nk_B \left(\frac{T}{\theta}\right)^3 \int_0^{x_D} dx \frac{x^4 e^x}{(e^x - 1)^2}$$

Heat capacity for different elements

High and low temperature limits of Debye heat capacity

1

$$U = 9Nk_{B}T \left(\frac{T}{\theta}\right)^{3} \int_{0}^{x_{D}} dx \frac{x^{3}}{e^{x} - 1} \qquad C_{v} = 9Nk_{B} \left(\frac{T}{\theta}\right)^{3} \int_{0}^{x_{D}} dx \frac{x^{4}e^{x}}{(e^{x} - 1)^{2}} \qquad \text{with } \theta = \frac{hv}{k_{B}} \left(\frac{6\pi^{2}N}{v}\right)^{1/3} \text{ and } x = \frac{hw}{k_{B}T}$$

$$at \text{ high } T \qquad x = \frac{\Theta}{T} \quad \text{is very small} : e^{x} \simeq 1 + x$$

$$\Rightarrow C_{v} = \dots = 3NK_{B} \qquad \text{Cassoical result}$$

$$at \text{ low } T \qquad x = \frac{\Theta}{T} \rightarrow \infty \qquad : \qquad \int dx \frac{x^{3}}{e^{x} - 1} = \frac{\pi^{4}}{15}$$

$$U = \frac{3}{5} \pi^{4} NK_{B} \frac{T^{4}}{\Theta^{3}} \quad \text{for } T \ll \Theta$$

$$C = \frac{12\pi^{4}}{5} NK_{B} \left(\frac{T}{\Theta}\right)^{3} \implies \int C \propto T^{3} \int T^{4} \text{ is a good approx. at low } T$$

Debye approximation

$$\theta = \frac{\hbar v}{k_B} \left(\frac{6\pi^2 N}{V}\right)^{1/3}$$

	$\Theta_D(K)$		$\Theta_D(K)$
Li	344	Cu	343
Na	158	Ag	225
Rb	56	Au	165
Be	1440	Fe	470
Ca	230	LiF	620
Al	428	NaCl	280
Diamant	2230	KCl	230
Si	645	KBr	175
Pb	105	RbBr	130

Einstein model

F

$$\frac{10}{10}$$
Density of states: $D(w) = N \ \delta(w - w_0)$

$$\frac{1}{10}$$
Density of states: $D(w) = N \ \delta(w - w_0)$

$$\frac{1}{10}$$
Thermal energy: $U = N < n > tw = \frac{N \ tw}{e^{t_1 w_1} - 1}$
Heat (apacity $Cr = \frac{2U}{2T} = N \ K_B \left(\frac{tw}{K_BT}\right)^2 \frac{e^{tw} \ K_BT}{(e^{t_1 w_1} - 1)^2}$

$$\frac{10}{20} \Rightarrow 3N \ oscillators$$

optical Branch phonon baud is often very flat U W~rct.

W

Real solid

Anharmonic crystal interactions

Limitations Harmonic approximation:

- There is no thermal expansion
- Two lattice waves do not interact
- The heat capacity becomes constant at high temperatures
- Adiabatic and isothermal elastic constants are equal
- The elastic constants are independent of pressure and temperature

Lattice parameters of sapphire

J. Appl. Cryst. 36, part 4, 1075-1081 (2003)