Achievements

VESTA plotting of crystal structures

How to describe a crystal structure

- -- Crystal lattice
- -- Basis

How to resolve crystal structures

- -- Reciprocal space
- -- Scattering theory (Form and Structure Factor)
- -- Resolving the crystal structure of a superconductor

Lecture 5: How crystals bind together

--

- --
- --

Tasks for Next week

(1) Read chapter 3: Crystal Binding (less than 20 pages)

Crystals of Inert Gases Van der Waals-London Interaction Repulsive Interaction Equilibrium Lattice Constants Cohesive Energy Ionic Crystals Electrostatic or Madelung Energy + Evaluation of Madelung Constant Covalent Crystals Metals Atomic Radii + Ionic Crystal Radii

(2) Start Reading chapter 4: Phonons / Lattice Vibrations

(3) Solve next exercise sheets

(4) Summary:

Exercise 1 Binding energy

a) Show that for a potential of the form $U(R) = -\frac{A}{R^m} + \frac{B}{R^n}$ an equilibrium can only be reached if n > m.

b) For a pure van der Waals attraction the potential is often written as

$$U(R) = 4\epsilon \left[\left(\frac{\sigma}{R}\right)^{12} - \left(\frac{\sigma}{R}\right)^6 \right].$$

Calculate the binding energy (cohesive energy) E_B and the equilibrium distance R_0 .

c) Calculate the effect of thermal expansion, $\Delta R_0(T)/R_0$, on a linear chain of atoms with the potential of part b. Assume that the thermal energy $k_BT \ll E_B$ allows motion of the atoms around the equilibrium position. Think about in what boundaries the atoms can move. From this deduce the average position and compare the result with R_0 .

Hint: Use the expansion $1/(1 \pm \epsilon) \approx 1 \mp \epsilon + \epsilon^2 + \ldots$ up to the second order and $\sqrt[n]{1+\epsilon} = 1 + \epsilon/n + \ldots$ for $\epsilon \to 0$.

Exercise 2 Madelung constant

Calculate the Madelung constant for an infinitely long, evenly spaced, linear chain of ions with alternating anions and cations of charge $\pm e$.

Exercise 3 Linear ionic crystal

Consider a line of 2N ions of alternating charge $\pm q$ with a repulsive potential energy A/R^n between nearest neighbours.

a) Show that the expression for the potential energy can be approximated by

$$U(R) = N\left[\frac{2A}{R^n} - \frac{2\ln 2q^2}{4\pi\epsilon_0 R}\right].$$

b) Show that at the equilibrium separation

$$U(R_0) = -\frac{2Nq^2\ln 2}{4\pi\epsilon_0 R_0} \cdot \left(1 - \frac{1}{n}\right).$$

c) Let the crystal be compressed so that $R_0 \to R_0(1-\delta)$. Show that the work done in compressing a unit length of the crystal has the leading term $\frac{1}{2}C\delta^2$, where

$$C = \frac{(n-1)q^2\ln 2}{4\pi\epsilon_0 R_0}.$$

Note: Use the complete expression for U(R) instead of $U(R_0)$.

Crystal bindings

Total crystal potential: $U(R) = U_{REP} + U_{ATT}$

Today's lecture

Periodic Table

© 2015 Todd Helmenstine sciencenotes.org

http://sciencenotes.org/periodic-table-showing-shells/

See also table 3 in Kittel.

Phase diagrams:

ARGON

Phase diagram of Helium

Inert gasses

Questions:

- (1) Why are these gasses solidifying in FCC rather than BCC?
- (2) What are the "glue" that binds these atoms together in the solid form?
- (3) Why are the melting point rather low?
- (4) Why are the inert gasses having different melting points?

Van der Waals bonds

Van der Waals bonds used Gecko's

