

GERDA

New results from the GERDA neutrinoless double-beta decay search

Two detector types: **BEGe** and

BEGe detectors offer improved

energy resolution and pulse shape

discrimination power compared to

Coaxial

Coaxials

Laura Baudis, Roman Hiller, Michael Miloradovic, Rizalina Mingazheva, Chloe Ransom Ibaudis@physik.uzh.ch

Searching for 0νββ

Matter/anti-matter asymmetry could be explained by possible Majorana nature of the neutrino

Neutrinoless double-beta decay $(0v\beta\beta)$: hypothetical lepton-number violating process, e.g. 76 Ge $\rightarrow ^{76}$ Se + 2e⁻¹

Process probes nature of neutrino (Dirac/Majorana) and absolute mass scale

Very rare process $\,T_{1/2}^{0\nu}>10^{25}\,{\rm yr}$ [1] requires utmost background suppression

Signature in calorimeters looks like peak at Q_{BB} above continuum of 2νββ

Energy scale and resolution

Energy scale calibrated by exposure to lowneutron ²²⁸Th sources each 7-10 days

Stability monitored via 2.6 MeV ²⁰⁸Tl line between calibrations

Resulting resolution at $Q_{\beta\beta}$ (FWHM):

Coaxial: $3.6(1) \, \mathrm{keV}$ BEGe: $3.0(1) \, \mathrm{keV}$

The GERDA experiment

GERDA (GERmanium Detector Array) searches for $0v\beta\beta$ decay of 76 Ge [2] at LNGS

35 kg germanium diodes isotopically enriched in ⁷⁶Ge act as both source and detector of 0νββ

Multiple layers of active and passive shielding reduce background

Detectors are operated bare in liquid argon (LAr)

LAr veto is intrumented for light-readout to veto background events that cause scintillation

Pulse shape discrimination (PSD) used to reject multi-site background events and α [3]

Energy spectrum

Backgrounds suppressed:

- PSD suppresses multi-site γs, surface events from β , degraded α events
- LAr veto suppresses γ, β

Remaining features: 2νββ, ⁴⁰K, 42 K, 208 Tl and 214 Bi vs, α

Background at Q_{ββ} even contributions of: α , ⁴²K β ⁻, γ from ²³²Th and ²³⁸U chains

Resulting background index at Q_{BB} :

Coaxial: $5.7^{+4.1}_{-2.6} \cdot 10^{-4} \, \text{cts/(keV \cdot kg \cdot yr)}$ $5.6^{+3.4}_{2.4} \cdot 10^{-4} \, \text{cts/(keV \cdot kg \cdot yr)}$ **BEGe:**

Results of 0vββ search

Events in 50 keV region around Q_{BB} are unblinded after analysis fixed

Latest unblinding made in May 2018, with exposure of 58.9 kg yr (35.7 kg yr new)

Statistical analysis shows spectrum is best fitted by no signal

World's best sensitivity for limit-setting on half-life of $0\nu\beta\beta$ decay of 76 Ge:

 $T_{1/2}^{0\nu} > 1.1 \cdot 10^{26} \,\mathrm{yr} \,(90\% \,\mathrm{C.L.})$

[2] Phys. J. C 78 (2018) 388

[3] The European Physical Journal C 73.10 (2013): 2583

The future: LEGEND

Success of GERDA inspires global collaboration: Large Enriched Germanium Experiment for $0v\beta\beta$ decay (LEGEND)

LEGEND wil use Ge detectors of GERDA and MAJORANA and additional new detectors, currently tested in GERDA

Two stage approach with first 200kg, ultimately reaching 1t of enriched Ge

Aims for discovery potential with half-life significantly longer than 10^{27} years