Phonons: Thermal properties

Lecture 2

Thermal properties - Goals recap

- Introduction: Why do we care?
- Debye's Model for heat capacity
- Einstein's Model for heat capacity
- > Thermal conductivity

Anharmonic crystal interactions

Limitations Harmonic approximation:

- There is no thermal expansion
- Two lattice waves do not interact
- The heat capacity becomes constant at high temperatures
- Adiabatic and isothermal elastic constants are equal
- The elastic constants are independent of pressure and temperature

Lattice parameters of sapphire

J. Appl. Cryst. 36, part 4, 1075-1081 (2003)

Thermal expansion in anharmonic potential

Thermal expansion in anharmonic potential

Scattering by other phonons

• at high
$$T$$
, $l \propto 1/T$

· due to anharmonic interactions between phonons

Let's assume 2 phonons
$$\overline{K_1}$$
 and $\overline{K_2}$ that colleide and produce a
phonon of vector $\overline{K_3}$
Momentum must be conserved \Rightarrow $\overline{K_1} + \overline{K_2} = \overline{K_3}$
it can be method in 1rol B.Z.
or not
if yes:
NORMAL UMKLAPP
PROCESS PROCESS

Recap thr

thermal conductivity
$$\mathcal{K}$$
 vs \mathcal{T}
at low \mathcal{T} : $\mathcal{K} = \frac{4}{3} C \mathcal{U} \mathcal{L} \longrightarrow \mathcal{K} \alpha \mathcal{T}^{3}$
 $\int \int \sqrt{nize}_{crystal} = ct$
 $\alpha \mathcal{T}^{3}$ irelocity

at high T: $K \propto 1/T$ (dependence due to l)

Thermal properties - key points

- > Much of the heat capacity of materials is due to atomic vibrations
- > Debye's Model:
 - \blacktriangleright oscillations are treated as sound waves, $\omega = v|k|$
 - > maximum cuttoff frequency (needed so there are a total of only 3N degrees of freedom)
 - > Obtains Dulong-Petit at high T and the (expected) $C \sim T^3$ at low T.

Einstein's Model:

- \blacktriangleright N independent oscillators with frequency ω_o
- Einstein frequency is a fitting parameter
- Obtains Dulong-Petit at high T, and heat capacity drops exponentially at low T
- Thermal conductivity K
 - Analogy: "Phonon Gas"
 - > At high T, phonon-phonon scattering: Umklapp process vs Normal Process
 - > At low T, size effects