Today's Goals

Consolidate our knowledge from previous lectures

Example of graphene

Resolved the crystal structure of a new 200 K superconductor

Structure factor analysis

Discuss different scattering techniques

Instrumentation & Facilities

8 NOBEL PRICES ON SUPERCONDUCTIVITY AND SUPERFLUIDITY

In 1913, Heike Kamerlingh Onnes received the Nobel Prize in Physics "for his investigations on the properties of matter at low temperatures, which led, inter alia, to the production of liquid He4", and the discovery of superconductivity.

In 1962, Lev Davidovich Landau received the Nobel Prize in Physics "for his pioneering theories for condensed matter, specially liquid helium."

In 1972, John Bardeen, Leon N. Cooper and J. Robert Schrieffer received the Nobel Prize in Physics "for the jointly developed theory of superconductivity, usually called the BCS theory."

In 1973, Brian David Josephson received one half of the Nobel Prize in Physics "for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson Effects.

In 1978, Pyotr Leonidovich Kapitsa received one half of the Nobel Prize in Physics "for his basic inventions and discoveries in the area of low temperature physics," which included the discovery of superfluidity in He.

In 1987, J. Georg Bednorz and K. Alexander Müller received the Nobel Prize in Physics "for their important breakthrough in the discovery of superconductivity in ceramic materials."

In 1996, David M. Lee, Douglas D. Osheroff and Robert C. Richardson received the Nobel Prize in Physics "for their discovery of superfluidity in helium-3."

In 2003, Alexei A. Abrikosov, Vitaly L. Ginsburg and Anthony J. Leggett received the Nobel Prize in Physics "for pioneering contributions to the theory of superconductors and superfluids.

2015 – BREAKTHROUGH

Superconductivity above 200 K

Nature **525**, 73–76 (03 September 2015)

2015 – BREAKTHROUGH

What is the crystal structure????

http://arxiv.org/abs/1509.03156

TABLE OF PERIODIC PROPERTIES OF THE ELEMENTS

http://infohost.nmt.edu/~burleigh/MATE235.htm

COMMON CRYSTAL STRUCTURES

BCC - Structure

Name	Sym	#
<u>Barium</u>	Ba	56
Cesium	Cs	55
<u>Chromium</u>	Cr	24
Europium	Eu	63
Francium	Fr	87
Iron	Fe	26
<u>Lithium</u>	Li	3
Manganese	Mn	25
Molybdenum	Мо	42
Niobium	Nb	41
Potassium	K	19
Radium	Ra	88
Rubidium	Rb	37
<u>Sodium</u>	Na	11
<u>Tantalum</u>	Та	73
Tungsten	W	74
Vanadium	V	23

FCC - Structure Name Sym # Actinium Ac 89 Aluminum A 13 Argon Ar 18 CalciumCa 20 Cerium Ce 58 Copper Cu 29 Einsteinium Es 99 Germanium Ge 32 Gold Au 79 Iridium Ir 77 KryptonKr 36 Lead Pb 82 Ne 10 Neon Nickel Ni 28 Pd 46 Palladium Pt 78 Platinum Radon Rn 86 Rhodium Rh 45

DIFFRACTION METHODS

Powder diffraction:

Powder sample, monochromatic light, variable scattering angle detection

Single crystal diffraction:

Single crystal sample, monochromatic light, variable scattering angle detection + sample rotation

Laue diffraction:

Single crystal sample, polychromatic light (white beam)

Scattering facilities around Zurich

Paul Scherrer Institute

POWDER DIFFRACTION

http://pd.chem.ucl.ac.uk/pdnn/diff2/kinemat2.htm

http://www.diamond.ac.uk/Beamlines/Engineering-and-Environment/I12/applications/diffraction.html

POWDER DIFFRACTION

Bacon). Man erkennt Beugungsmaxima an vier Netzebenenscharen, die mit den kristallographischen Indizes (111), (220), (311) und (400) bezeichnet sind

(311)

60°

(400)

70°

http://cnx.org/contents/URlgriBI@2/Powder-X-Ray-Diffraction H. W. Chiu, C. N. Chervin, and S. M. Kauzlarich, Chem. Mater., 2005, 17, 4858.

DIFFRACTION METHODS

Powder diffraction:

Powder sample, monochromatic light, variable scattering angle detection

Single crystal diffraction:

Single crystal sample, monochromatic light, variable scattering angle detection + sample rotation

Laue diffraction:

Single crystal sample, polychromatic light (white beam)

Scattering facilities around Zurich

Paul Scherrer Institute

SINGLE CRYSTAL ELECTRON DIFFRACTION

TEM diffraction patterns of a gold-film

Gold film

Scattering plan: (100) & (010)

Scattering plan: (100) & (011)

(a) and (b) are [001] and [110] incidence of the electron beam.

http://www.k5.dion.ne.jp/~inos1936/shozoHP1E.html

SINGLE CRYSTAL ELECTRON DIFFRACTION

TEM diffraction patterns of a gold-film

Gold film

Scattering plan: (100) & (010)

Scattering plan: (100) & (011)

(a) and (b) are [001] and [110] incidence of the electron beam.

http://www.k5.dion.ne.jp/~inos1936/shozoHP1E.html

Schematic of 4-circle diffractometer

http://serc.carleton.edu/research_education/geochemsheets/techniques/SXD.html

DIFFRACTION METHODS

Powder diffraction:

Powder sample, monochromatic light, variable scattering angle detection

Single crystal diffraction:

Single crystal sample, monochromatic light, variable scattering angle detection + sample rotation

Laue diffraction:

Single crystal sample, polychromatic light (white beam)

Scattering facilities around Zurich

Paul Scherrer Institute

LAUE BACK REFLECTION GEOMETRY

$2d\sin\theta = n\lambda,$

http://multiwire.com/index.shtml

DIFFRACTION METHODS

Powder diffraction:

Powder sample, monochromatic light, variable scattering angle detection

Single crystal diffraction:

Single crystal sample, monochromatic light, variable scattering angle detection + sample rotation

Laue diffraction:

Single crystal sample, polychromatic light (white beam)

Scattering facilities around Zurich

Paul Scherrer Institute

PAUL SCHERRER INSTITUTE (PSI)

https://www.psi.ch

PAUL SCHERRER INSTITUTE (PSI)

Kartendaten © 2016 GeoBasis-DE/BKG (©2009),Google 5 km L

Google Maps

PAUL SCHERRER INSTITUTE (PSI)

https://www.psi.ch

Neutron powder diffractometer @ PSI

Figure 3: The DMC powder diffractometer is also appropriate for the investigation of magnetic phenomena.

Neutron single crystal diffractometer @ PSI

European facilities

Topic of next week's lecture

