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Abstract General relativity and some alternative theories of gravity predict gravitational waves.
With their first detection in 2015 those theories can now be tested. In this work we first give a
theoretical overview of gravitational waves. Then we present some of the most recent results in testing
general relativity and possible deviations with data from LIGO and Virgo. To date no significant
deviations have been found. Tests on the polarization content find Bayes’ factors of more than 200
and 1000 in favour of models with pure tensor polarization over models with pure vector and scalar
polarization, respectively. Although first long-time observations give lnOSIG

N = −0.53, which indicates
a nondetection of the stochastic gravitational-wave background, the total background power of each
polarization content has been restricted. Also deviations on the propagation of gravitational waves have
been limited successfully. The speed of gravitational waves has been bounded to −3×10−15 ≤ ∆v/c ≤
+7×10−16 and the upper limit for the graviton mass has been calculated to be mg ≤ 1.76×10−23 eV/c2.
Hence also Lorentz-invariance has been strengthened. Waveform tests don’t show any deviations from
theory. Residuals after subtracting the best-fit waveform mostly seem to come from instrumental
Gaussian noise. The differences of the inferred mass and spin from the inspiral and postinspiral phase
of GWTC-2 BBH mergers, ∆Mf/M̄f = 0.02+0.20

−0.17 and ∆χf/χ̄f = −0.05+0.36
−0.41, are quite consistent

with the zero values from general relativity. The no-hair conjecture seems to hold to the best of our
knowledge.
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1 Introduction

More than a century after its prediction general relativity is still the best theory we have to describe
gravity and has therefore become one of the great pillars of modern physics. Nevertheless, Einstein’s
theory has some serious issues in very small and very large scales. The persistent difficulty of quanti-
zation and the mysteries of cosmic inflation and dark energy lead physicists to develop numerous alter-
native theories of gravitation. Unfortunately, to date none of them could be confirmed experimentally.
On the other hand, over the years more and more observations have shown stunning agreement with
the predictions of general relativity. In 2015 with the first detection of gravitational waves the next
step has been made. Einstein already predicted the existence of gravitational waves in 1916. These
waves, generated by time-varying quadrupole moments of a mass distribution propagate at the speed
of light and locally deform spacetime. Their detection opens a whole new world of possibilities to test
general relativity and its limits.

So far we could only test gravity indirectly, by deducting the motion and properties of sources in the
sky through measurements of electromagnetic waves and with the help of our astrophysical knowledge.
Now we can ”see” the effect of gravity directly be measuring these perturbations in spacetime. The
mere existence of gravitational waves is yet another argument which strengthens general relativity, but
over the years other theories which predict their existence have been developed and maybe, if all of
these were proven wrong, we still need another theory which hasn’t been developed yet. Gravitational
waves can be used to test these theories in a few different ways. In this paper we want to go through
some of them and summarize what impact five years of experiment have already made on general
relativity and its contending theories of gravity.
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2 Theory of gravitational waves

2.1 General relativity

2.1.1 Linearized gravity

This section mainly follows the lecture notes of Philippe Jetzer [26] and the work of Alessandra Buo-
nanno [15] and Matthias Blau [14]. Among the most important statements of Einstein’s theory of
general relativity are the Einstein field equations

Rµν = −8πG

c4

(
Tµν −

T

2
gµν

)
. (1)

Assuming both a weak gravitational field and a static gravitational field the Newtonian limit can be
recovered. However, if we only impose that the field is weak,

gµν = ηµν + hµν , |hµν | � 1, (2)

other interesting physics is revealed. This limit is called linearized gravity. Dropping the higher order
terms the Ricci tensor of first order in h becomes

R(1)
µν =

1

2
(2hµν + h,µ,ν − hσµ,ν,σ − hσν,µ,σ).

Thus the linearized version of (1) can be written as

2hµν + h,µ,ν − hσµ,ν,σ − hσν,µ,σ = −16πG

c4

(
T (1)
µν −

T (1)

2
ηµν

)
. (3)

2.1.2 Gauge invariance

General relativity is a theory which is invariant under the group of all possible coordinate transforma-
tions

xµ → x′µ(xµ),

where the transformation is a diffeomorphism (differentiable and invertible with differentiable inverse).
Under such a generic transformation the metric tensor field transforms as

gµν(x)→ g′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ.

This follows from the statement that the line element should be the same in any coordinate frame

ds2 = gρσdxρdxσ = gρσ
∂xρ

∂x′µ
∂xσ

∂x′ν
dx′µdx′ν .

By choosing the metric to be a small perturbation of flat space as in equation (2) we break general
covariance since we move into a particular frame. However, there is still a residual gauge symmetry
left. This is the gauge symmetry of linearized gravity. Consider the transformation

xµ → x′µ = xµ + εµ, ε� 1 (4)

Then we get
∂xρ

∂x′µ
= δρµ − ∂µερ.
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The transformed field is up to first order

g′µν = (δρµ − ∂µερ)(δσν − ∂νεσ)gρσ

= (δρµδ
σ
ν − δρµ∂νεσ − δσν ∂νερ + ∂µε

ρ∂νε
σ)(ηρσ + hρσ)

= ηµν + hµν − ηµσ∂νεσ − ηρν∂µερ − hµσ∂νεσ − hρν∂µερ + ηρσ∂µε
ρ∂νε

σ + hρσ∂µε
ρ∂νε

σ

≈ ηµν + hµν − ∂νεµ − ∂µεν .

Assuming that this transformation preserves the form of (2) we get g′µν = ηµν + h′µν . And so the field
transforms as

h′µν = hµν −
∂εµ
∂xν
− ∂εν
∂xµ

. (5)

Here we simplified a little bit in the sense that we assumed that (4) was a symmetry of (2). This as-
sumption is intuitively justified, because only small shifts in spacetime can leave the form of the metric
close to flat space. However, the correct way to see this is by looking at all possible transformations
which leave h sufficiently small. This is fully shown in the appendix A.

2.1.3 Gauge fixing

A possible gauge fixing is the harmonic gauge (also Lorenz or De Donder gauge) which is given by the
condition

2hµν,µ = hµµ,ν . (6)

Note that if h does not satisfy this condition then there exists a suitable gauge transformation of the
form (5) which gives a field that satisfies the condition. These gauge transformations are given by all
vector fields εµ that satisfy

2εν = −hµν,µ +
1

2
hµµ,ν . (7)

Differentiation of (6) with respect to xµ leads to

h,µ,ν − hσµ,ν,σ − hσν,µ,σ = 0.

Inserting this into (3) gives the decoupled linearized field equations

2hµν = −16πG

c4

(
Tµν −

T

2
ηµν

)
.

In the vacuum one has Tµν = 0 and thus the source-term vanishes leaving the wave equation

2hµν = 0.

Solutions of this equation are plane waves of the type

hµν = eµν(~k) exp (−ikρxρ) (8)

with kµk
µ = 0. Since hµν is symmetric also the polarization tensor eµν must be symmetric which

reduces the number of independent components from 16 to 10. Furthermore one can always choose a
coordinate system in which the wave is travelling in positive z-direction, kµ = (k, 0, 0, k). Inserting this
solution (8) into the gauge condition (6) gives 4 more constraining equations leaving 6 independent
components

e00, e11, e33, e12, e13 and e23, (9)

while the other components are given by

e01 = −e31, e02 = −e32, e22 = −e11, e03 = −1

2
(e00 + e33).
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Our gauge (6) has still some redundant degrees of freedom; we can still choose εµ such that

2εµ = 0

and the condition won’t change, as can be seen from (7). Solutions of this are again plane waves

εµ = δµ(~k) exp(−ikρxρ), (10)

where we have chosen the same wave vector kµ as before. Inserting equations (8) and (10) into the
field transformation (5) gives for the six independent components (9) the equations

e′11 = e11, e
′
12 = e12, e

′
13 = e13 − ikδ1, e′23 = e23 − ikδ2, e′33 = e33 − 2ikδ3, e

′
00 = e00 + 2ikδ0.

Since for every field δµ all these transformed components represent the same physical solution we can
simplify the polarization tensor by choosing δµ such that e′00 = e′13 = e′23 = e′33 = 0. This fixes the
second gauge condition and is called the transverse-traceless gauge. We end up with

hµν =


0 0 0 0
0 e11 e12 0
0 e12 −e11 0
0 0 0 0

 · exp(−ikρxρ). (11)

This is the most simple description of a gravitational wave travelling in z-direction.

2.2 Alternative theories

Many alternative theories to general relativity have been developed in order to describe physical effects
which general relativity fails to describe. Modern theories mainly focus on cosmological aspects, like
dealing with inflation, dark matter and dark energy or on unifying gravity with the rest of physics. The
most natural way to describe a theory is through its action. If we assume that the Einstein equivalence
principle holds, which has strong empirical evidence [34] [35], then the theory we are looking for must
be metric. General relativity and its equations follow directly from the Einstein-Hilbert action

S =

∫
R
√
−g d4x+ Sm(ψm, gµν).

One can now add different kind of terms to this action and thus find different kind of theories. Many of
these metric theories have already been ruled out [35]. Some theories which are still viable are shortly
presented in the following.

2.2.1 Scalar-tensor theories

In scalar-tensor theories [34] the action contains also a scalar field ϕ(x), a potential V (ϕ) and a coupling
function A(ϕ)

S =

∫
[R− 2gµν∂µϕ∂νϕ− V (ϕ)]

√
−g d4x+ Sm(ψm, A

2(ϕ)gµν).

These theories have become very popular in unification schemes. For instance, string theory predicts
that the spin-2 graviton has a spin-0 partner called the dilaton, forcing a more precise theory of gravity
to be a scalar-tensor theory. Brans-Dicke theory and f(R) theories are popular examples which use
both a tensor and a scalar field to mediate gravitational interaction.
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2.2.2 Vector-tensor theories

In vector-tensor theories [34] the action contains a four vector field uµ. This vector might be uncon-
strained or constrained to be a time-like unit vector (Einstein aether theory). The most general action
looks like

S =

∫
[(1 + ωuµu

µ)R−Kµν
αβ∇µu

α∇νuβ + λ(uµu
ν + 1)]

√
−gd4x+ Sm(ψm, gµν),

where
Kµν
αβ = c1g

µνgαβ + c2δ
µ
αδ
ν
β + c3δ

µ
ββ

ν
α − c4uµuνgαβ ,

with arbitrary coefficients ci.

2.3 Field theoretical point of view

Modern physics tries to incorporate gravity as a fourth force in the Standard Model. This description
is called Quantum Gravity (QG). As in the case of the other known forces (electroweak theory and
quantum chromodynamics) we would like to describe gravity as a gauge theory. These are theories
where the Lagrangian is invariant under transformations of a Lie group, called symmetry group. The
interaction between particles is then given by the exchange of gauge bosons, which are excitations
of the gauge field. It is an interesting idea, that general covariance can be considered as the gauge
symmetry of gravity. The associated gauge boson, called graviton, would then be an excitation of the
flat metric field ηµν . The main problem of QG is that from second order corrections the theory is
non-renormalizable.

If the postulated graviton exists, we can already predict some of its properties. Gravity is a long
range force which implies that its force carrier should be massless and constantly moving at the speed
of light. Furthermore we expect the graviton to be a spin-2 particle since gravity is described by a
2-tensor field. Weinberg already proved in 1965 that every quantum field theory of a massless spin-2
particle would give rise to Einstein’s field equation [33]. We could think of gravitational waves to be
linear excitation of the graviton field. In that case equation (11) already suggests some of the graviton
properties. Since kµ is a light-like vector (kµkµ = 0) the graviton moves at the speed of light implying
mg = 0. Furthermore we can look at the transformation properties of the polarization tensor. As the
name suggests

hµν =


0 0 0 0
0 h+ h× 0
0 h× h+ 0
0 0 0 0


is a tensor. So under a rotation of angle φ around the direction of propagation

Λµν =


1 0 0 0
0 cosφ sinφ 0
0 − sinφ cosφ 0
0 0 0 1


it transforms as

h′µν = ΛρµΛσνhρσ.

With

Λ2 =


1 0 0 0
0 cos 2φ sin 2φ 0
0 − sin 2φ cos 2φ 0
0 0 0 1
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we can see that the transformation rules are

h′× = cos(2φ)h× + sin(2φ)h+,

h′+ = − sin(2φ)h× + cos(2φ)h+.

Changing into the basis
h↓,↑ = h× ± ih+,

h× =
1

2
(h↑ + h↓), h+ =

i

2
(h↓ − h↑)

we find that
h′↓,↑ = e∓2iφh↓,↑. (12)

In particle physics we call helicity the projection of the spin operator onto the direction of propagation
H = S · n. Under a rotation of φ around the axis of propagation the helicity eigenstates transform as

h→ eiHφh.

From equation (12) we can see that h↓,↑ are helicity eigenstates with S = 2. Thus the graviton is
a massless spin-2 particle. Being a massless particle it has only two physical projections onto the
direction of propagation, which indeed reflects in gravitational waves having only two polarization
modes.

3 Detection

3.1 Observatories

In September 2015 the Laser Interferometer Gravitational-Wave Observatory (LIGO) was the first one
to detect gravitational waves. LIGO consists of two 4 km long ground-based detectors, one located in
Hanford (US) and the other one in Livingston (US). Together with the Virgo interferometer, which is
3 km long and located near Pisa in Italy, they have observed 50 events ever since [1], [9].

At the very core these detectors are Michelson interferometers. They follow the same principle as those
in the famous Michelson-Morley experiment in 1887 which would have detected earth’s motion through
the hypothetical aether. A basic Michelson interferometer consists of a source emitting coherent light
(laser), a beam splitter which divides the laser into two orthogonal arms of the same length (which
might be variable), mirrors which reflect the laser and send it back through the arms until both beams
recombine and a detector which measures the amplitude of the incident light. The difference in optical
path length of the two beams will then give either destructive or constructive interference. Thus one
can make deductions about the wavelength of the source or materials placed in between one of the
arms.

In the case of gravitational waves we want to measure the deformation of space itself. If a gravitational
wave passes by it changes the length of the arms according to its direction of propagation. This of
course changes the optical path length of the laser in the arms and gives rise to measurable fringes.
The more stretched space the laser has to travel through the bigger is the phase difference of the
two beams. Thus increasing the length of the arms means increasing the sensibility of detecting very
small oscillations in space. The amplitude of a gravitational wave can be defined through the relative
difference in length of an object

h := 2
l(t)− l0

l0
. (13)

To estimate the order of magnitude of this amplitude predicted by general relativity we can use the
post-Newtonian approximation. A simple way is presented in [32]. To calculate the change of the
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gravitational field as a function of distance of a massive system one can use multipole expansion.
Similar to electromagnetism the zeroth order (spherical) monopole term is zero due to conservation of
mass and energy. But unlike in electromagnetism also the dipole term vanishes, since it would derive
from an oscillation of the center of mass, which would violate momentum conservation. So the leading
angular term is the quadrupole moment. Simple estimates for a neutron star in the Virgo cluster give

h ∼ 10−21.

This means that our detector must be able to measure changes in distance of one part in 1021. In
order to achieve this, LIGO uses Fabry-Peròt cavities. These are parallel mirrors placed at both ends
of the arms which reflect the laser beams back and fort approximately 280 times. This increases the
sensibility of the interferometer to small perturbations.

3.2 Detecting gravitational waves

Gravitational waves are created in strongly curved regions of spacetime where heavy masses are accel-
erated. These waves then move at the speed of light until they reach us as small perturbations. On
earth our spacetime can assumed to be flat, Tµν = 0, so that these perturbations are of the form (11).
When such a wave passes by it deforms spacetime according to

ds2 = gµνdxµdxν = (ηµν + hµν)dxµdxν .

This deformation will produce an electric signal hout(t) in the detector, the so-called response function.
This is nothing else than the strain from equation (13) as a function of time. The most promising
sources of detection are the so-called gravitational-wave transients. These are single peaked signals
generated by high-energy events like compact binary coalescences (CBCs), including binary black hole
(BBH) mergers, binary neutron star (BNS) mergers and neutron star-black hole (NS-BH) mergers. An
example of a visual data set of a BBH merger is shown in Figure 1. This was the first ever measurement
of LIGO Hanford and LIGO Livingston, known as GW150814 (since detected on August 14th 2015).
The top row shows the output strain hout(t) measured by the two detectors. More details can be found
in [4].

4 Tests of polarization

A prediction of general relativity is the existence of only two polarizations, the cross and plus modes

e+ =

1 0 0
0 −1 0
0 0 0

 , e× =

0 1 0
1 0 0
0 0 0

 .

Assuming only metric theories the number of possible polarizations is constrained to be at most six.
So in general other gravitational theories allow up to four additional polarizations, the x and y vector
modes and the breathing and longitudinal scalar modes [6], [28]

ex =

0 0 1
0 0 0
1 0 0

 , ey =

0 0 0
0 0 1
0 1 0

 , eb =

1 0 0
0 1 0
0 0 0

 , el =

0 0 0
0 0 0
0 0 1

 .

This means that finding one of the last four polarizations would violate general relativity and favour an
alternative gravitational theory. The deformation of a ring of free falling particles under the effect of
these polarization modes is shown in Figure 2. In principle every combination of the above polarizations
is allowed in general gravitational theories. At every point in spacetime x the metric perturbation can
be written as

hij(x) = ha(x)eaij =

h+ + hb h× hx
h× −h+ + hb hy
hx hy hl

 ,
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Figure 1: The gravitational-wave event GW150814 observed by LIGO Hanford (H1, left column) and
LIGO Livingston (L1, right column). Top row: the gravitational wave strain measured by the two
interferometers. Second row: the simulated strain with inferred parameters of this BBH merger using
numerical relativity. The shaded regions show the 90%-credibility regions for two different models.
Third row: Residual noise after subtracting the numerical waveform from the detector measurements.
Bottom row: a time-frequency representation of the data, showing which frequency bands are domi-
nant.

Figure 2: The effect of all six gravitational wave polarization modes on a ring of free falling particles.
The wave is always propagating in z-direction.
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where we summed over all the polarizations a and only considered the spatial part i, j ∈ {1, 2, 3}. There
are several factors which limit the study of the polarization of gravitational wave transients. First of
all, the detectors of LIGO-Hanford and LIGO-Livingston are nearly co-oriented, preventing Advanced
LIGO from measuring more than a single polarization mode. Secondly, even if the detectors were more
favourably oriented a network of at least six detectors is needed to fully characterize the polarization
content of a gravitational wave transient [16]. It should be noted that using quadrupolar detectors
like LIGO and Virgo the two scalar modes, longitudinal and breathing, give completely degenerate
responses. So a network of quadrupolar detectors can measure at most five different independent
polarization degrees of freedom. We can simplify things by splitting all combinations into models of
pure polarization states, i.e. pure tensor, pure vector and pure scalar modes and into models of mixed
polarization states.

4.1 Pure modes

These models limit the number of polarization modes to be at most two. This makes it possible
to analyse them by observing gravitational-wave transients with both LIGO and Virgo. The data
of the event GW170814 [5], which was a BBH merger and the first signal detected by LIGO and
Virgo together, strongly favours pure tensor polarization over pure vector or pure scalar polarizations.
The methodology used to compare theory with experiment is based on how the polarization of a
gravitational wave affects the response function of ground-based detectors [18]. Different polarizations
have different impacts on the relative strain. This can be quantified in form of the antenna pattern
F , which is a purely geometric quantity. In the following we use the coordinate frame where one
interferometer arm lies on the x-axis and the other one on the y-axis. Let (θ, φ) be the direction of
the source and ψ be the polarization angle. The response function for tensor polarized waves is then

h(t) = F+h+ + F×h×,

with the tensor antenna patterns

F+ =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ

F× =
1

2
(1 + cos2 θ) cos 2φ sin 2ψ − cos θ sin 2φ cos 2ψ.

In the search for gravitational-wave polarizations done in [5] Bayesian analysis is used once with the
standard tensor antenna response functions and then repeated with the appropriate response functions
for scalar and vector polarizations. The results show Bayes’ factors of more than 200 in favour of pure
tensor polarizations over pure vector polarizations and more then 1000 times in favour over pure scalar
polarizations. This is a clear evidence which strengthens general relativity over other models with
alternative polarizations.

4.2 Mixed modes

In this section we present a viable alternative to the detection of strong binary coalescences with the
study of the stochastic gravitational-wave background, presented in full glory in [16] and [25]. The
stochastic gravitational-wave background is generated by the superposition of all gravitational-wave
sources which are too weak or too distant to individually resolve. In order to detect and study the
stochastic gravitational-wave background we have to make minimal assumptions about the background
and basically none about the sources itself. The measured quantity is the cross-correlation

Ĉ(f) ∝ s̃∗1(f)s̃2(f), (14)

between the strains s̃1(f) and s̃2(f) measured by two different detectors. These are nothing else than
the measured amplitude as a function of the frequency f . We assume that the stochastic background
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is isotropic (no preferred direction with respect to earth), stationary and Gaussian. Furthermore we
assume that there is no correlation between different types of polarization, so that the correlation in
(14) can be written as a sum over the polarization type

Ĉ(f) ∝ s̃∗1,a(f)s̃a2(f),

with a ∈ {T, V, S}. Finally, we assume that tensor and vector modes are individually unpolarized.
This follows from our isotropy assumption. Since {e+, e×} and also {ex, ey} can be rotated into each
other by a coordinate transformation and we assumed that they are randomly oriented with respect
to earth we expect no preferred mode within the same type. This doesn’t hold for scalar modes since
they can not be transformed into each other. However, as stated above, our detectors are only sensitive
to the total scalar power and can not resolve breathing and longitudinal modes individually. Certain
theories may violate one or more of the previous assumptions. For example in theories violating Lorentz
invariance the background will not be isotropic. However, given these assumptions, the total measured
cross power due to the background is given by

〈s̃∗1,a(f)s̃a2(f ′)〉 = δ(f − f ′)γa(f)Ha(f).

The function γa(f) is the overlap reduction function which states the sensitivity of the detector pairs
to the detection of the isotropic background of the polarization a. The function Ha(f) is an observable
quantity which contains the spectral shape of the stochastic background and is theory independent.
However, normally it is expressed through the gravitational-wave energy density of the stochastic
background defined as the fraction of the critical energy-density contained in gravitational waves per
logarithmic frequency interval

Ω(f) =
1

ρC

dρGW
d ln f

.

The relation between the energy-density and the strain power Ha is theory dependent. However, in
any theory obeying Isaacson’s formula 1 (as general relativity) this relation is given by [11]

Ω(f) =
20π2

3H2
0

f3H(f),

where H0 is the Hubble constant. Although the last formula doesn’t hold in general, for simplicity we
will use it as a definition for the energy-density spectrum. Now we can choose a normalization of the
cross-correlation such that

〈Ĉ(f)〉 = γa(f)Ha(f).

However, measuring the cross-correlation is not enough to identify gravitational waves since there is
always some motion due to external noise. Therefore we have to define the signal-to-noise ratio (SNR)

SNR2 =
(Ĉ|γaΩaM )2

(γbΩbM |γcΩcM )
,

where ΩaM (f) is a model for the energy-density spectrum of the stochastic background and the inner
product (·|·) is defined such that SNR is maximized when the model is equal to the true energy-density
spectrum. The method which was used in [16] to study the polarization content is based on Bayesian
statistics. First we need to construct an odds ratio OSIG

N between signal (SIG) and noise (N) to
determine if a stochastic background (of any polarization content) has been detected. Then we need a
second odds ratio ONGR

GR between the hypotheses of alternative theories (NGR), i.e. any polarization
content except tensor-only, and general relativity (GR), i.e. only tensor polarization. These odds
ratios are the Bayes factors

OAB =
P (Ĉ|A)π(A)

P (Ĉ|B)π(B)
(15)

1Effective energy-stress tensor for gravitational waves in the transverse-traceless gauge: Tµν = 1
32π

〈∂µhρσ∂νhρσ〉 [23]
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Table 1: Results for the Bayesian analysis for a scalar-, vector- and tensor-polarized gravitationa-wave
background. This table shows the upper limits on the amplitudes of each polarization content inside
the stochastic gravitational-wave background at a reference frequency of f0 = 25 Hz.

for two hypotheses A and B. π(A) is the prior probability of A and

P (Ĉ|A) =

∫
L(Ĉ|, θA,A)π(θA|A)dθA (16)

is the Bayesian evidence for A given the data set Ĉ(f). The likelihood

L(Ĉ|, θA,A) ∝ exp
[
− 1

2
(Ĉ − γaΩaA|C − γaΩaA

]
(17)

gives the conditional probability to measure the data set Ĉ under this hypothesis with fixed parameters
θA. Conventionally models for stochastic energy-density spectra are power laws

ΩaM (f) = Ωa0

( f
f0

)αa

, (18)

where we sum over the polarizations in the model M and Ωa0 is the backgrounds’ amplitude at a
reference frequency f0. For instance the model in which all three polarizations exist would be

ΩTV S(f) = ΩT0

( f
f0

)αT

+ ΩV0

( f
f0

)αV

+ ΩS0

( f
f0

)αS

. (19)

The GR hypothesis would then just be given by the tensor amplitude while the NGR hypothesis would
be given by the collection of the remaining polarization models:

ONGR
GR =

∑
A∈{V,S,V S,...}

OAT . (20)

The SIG hypothesis is just the collection of all polarization models and the N hypothesis is given by
the model where no signal is present (ΩN(f) = 0):

OSIG
N =

∑
A∈{T,V,S,...}

OAN . (21)

As more and more data comes in, the Bayesian odds are updated according to equation 16. This method
was used in [6] with the data of Advanced LIGOs first observational run O1. The resulting values for
the odd ratios are lnOSIG

N = −0.53, which indicates a nondetection of the stochastic gravitational-
wave background, and lnONGR

GR = −0.25, which is a consistent value in the presence of Gaussian noise.
Although this nondetection is not able to differentiate between GR and NGR, it can still be used to
place upper bounds to the tensor, vector and scalar contribution to the gravitational-wave background.
The results for each polarization amplitude is shown in Table 1, which was taken from [6]. Future
long-time measurements with more data might lead to a detection of the stochastic gravitational wave
background and give insights about its polarization content.
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5 Tests of propagation

5.1 Speed of gravitational waves

General relativity predicts that gravitational waves propagate at the speed of light. On the other hand,
some scalar-tensor theories predict a propagation speed different than the speed of light [13]. This is
due to the fact that the scalar field couples to the metric perturbations via the Weyl tensor, breaking
Lorentz invariance.

A huge step in limiting the speed of gravitational waves has been made in 2017 when the event
GW170817 was observed by the Advanced LIGO and Virgo collaboration and the gamma-ray burst
GRB170817 was observed by the Fermi Gamma-ray Burst Monitor. The full details of the measure-
ments can be found in [3] and [21]. These two observations have been measured almost simultaneously
and their sky locations are overlapping. The probability for two different events to occur with such
a temporal and spatial similarity is 5.0 × 10−8 [7]. Thus they have been identified to belong to the
same physical event, a BNS merger. The observed time delay between the two observations was
(+1.74± 0.05) s. We are interested in the difference between the speed of gravitational waves vg and
the speed of light c. For short travel time differences we can write

∆v

c
=
vg − c
c
≈ c∆t

D
,

where ∆t is the travel time difference and D is the distance to the source. Since smaller distances
give a less constraining result we will use the lower bound for the 90% credible interval on luminosity
distance, which was calculated to be D = 26 Mpc. If we assume that the peak of the gravitational
wave signal and the first photons were emitted simultaneously the entire time difference which was
measured can be attributed to the travel time ∆t = (+1.74 ± 0.05) s. This provides an upper bound
for ∆v. For a lower bound we assume that the gravitational-wave signal was emitted 10 s before the
GRB-signal. This results in the constraint for the speed of gravitational waves of

−3× 10−15 ≤ ∆v

c
≤ +7× 10−16.

Previously there have already been made several other restrictions on the speed of gravitational waves.
Moore and Nelson showed in 2001 that the absence of gravitational Cherenkov radiation gives a lower
bound of 1 − vg/c ≤ 2 × 10−15 [30]. More recently, Hulse-Taylor pulsar observations have restricted
the speed of gravitational waves to be greater than 0.995c [27].

5.2 Graviton mass

In general relativity the mass of the hypothetical graviton should be zero since it propagates along
null geodesics with the dispersion relation

E2 = p2c2.

In alternative theories of gravity the graviton is sometimes endowed with a mass. In order to compare
this fact with experimental data we use a phenomenological approach [10] to modify the dispersion
relation (first introduced in [29])

E2 = p2c2 +Aα(pc)α, (22)

where Aα and α are phenomenological parameters. We consider values for α ranging from 0 to 4 in
steps of 0.5, excluding α = 2, which would not give any observable dephasing [8]. When every Aα is
equal to zero the GR case is recovered. The case of α = 0 and A0 > 0 would be a massive term with
a graviton mass of

mg = A
1/2
0 c−2.
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Table 2: Results for the modified dispersion relation analysis. This table shows the 90% credible upper
bounds of the graviton mass and the absolute value of the modified dispersion relation parameters Aα
and its GR quantilesQGR. For each parameter Aα the < and > columns show the value when assuming
Aα < 0 and Aα > 0 respectively. The first row shows the results from GWTC-1 and the second row
from GWTC-2.

Every other term Aα with α 6= 0 would lead to a Lorentz-violating dispersion relation. Such a
dispersive relation would have an impact on the speed of the graviton, making it frequency-dependent.
The Compton wavelength of the graviton is

λg =
h

mgc
,

with h being the Planck constant. Thus the graviton speed in theories of massive gravity is

v2g
c2

=
p2c2

E2
= 1− h2c2

λ2gE
2
,

where the energy E depends on the graviton frequency. More generally using (22) the speed of the
graviton would be

vg
c

=
pc

E
= 1− Aα

2E2−α +O(A2
α).

This means that low frequency gravitons are slower than high frequency gravitons. This can be mea-
sured by the detectors through the overall phase difference of a gravitational wave which accumulates
during the propagation from the source. The details can be found in [8]. The results of tests with ob-
servations from GWTC-1 and GWTC-2 are shown in the Table 2, which was taken from [10]. We note
that the latest observations from GWTC-2 restrict the graviton mass to be mg ≤ 1.76× 10−23 eV/c2,
with 90% credibility. This measurement is 2.7 times more stringent compared to those from GWTC-1
and 1.8 compared to those from the most recent Solar System bound of 3.16× 10−23 eV/c2, also with
90% credibility [12].

5.3 Extra dimensions

This section is based on the analysis presented in [2]. In theories of gravity where the number of
spacetime dimensions D is greater than 4 there is a difference between the power loss of gravitational
waves and electromagnetic waves. This comes from the fact that energy from gravitational waves
might leak into large extra dimensions while photons and matter only propagate in four-dimensional
spacetime. In general relativity the strain scaling is given by

hGR ∝
1

dGW
L

=
1

dEM
L

,

where the luminosity distances dL for gravitational and electromagnetic radiation are identical. For a
general comparison with the measurements we use a phenomenological approach to modify the scaling
relation. This model should asymptotically approach general relativity in the strong-field regime and
modifications due to leakage in higher dimensions should appear at large distances from the source.
One way to achieve this is through a screening mechanism [2]

h ∝ 1

dGW
L

=
1

dEM
L

[
1 +

(
dEM
L

Rc

)n]−(D−4)/2n
,
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Figure 3: Upper bounds on the number of spacetimes D assuming fixed characteristic length scale Rc
and transition steepness n with 90%-credibility. Shaded regions indicate space excluded by the data.

where Rc is the characteristic length scale beyond which gravitational waves start to leak in higher
dimensions and n is the transition steepness. We note that for D = 4 general relativity is recovered.
Results from the Bayesian analysis is shown in Figure 3 [2], which indicate consistency with general
relativity prediction D = 4.

6 Waveform tests

An important source of information about the strong-field regime is encoded within the waveform of
gravitational waves. Some tests concerning the waveform are presented in the following.

6.1 Residual waveform

One method to test general relativity with gravitational waves is to subtract the best-fit waveform from
the data and to check if the residuals have the expected statistical properties of the instrumental noise.
As an example we can again look at Figure 1. There the first row shows the real strain measurements,
while the second row shows the best-fit waveform from the inferred parameters of the BBH. The third
row shows the difference between the first 2 rows, called the residual strain.

This section follows the analysis and the results from [8] and [10], in which the null hypothesis, that
all detected signals derive from BBH mergers as described by GR, is tested by searching for evidence
which might challenge it. An advantage of this method is that it is model-independent, which means
that we do not have to compare GR with alternative models but we only check how consistent it is with
the data. First Bayesian inference is used to find the best-fit waveform for each detected event. In the
mentioned papers for most of these events the Bayesian-inference software libraries LALIinference
and IMRPhenomPv2 have been used. Now we have to control whether the leftover SNR is consistent
with the instrumental noise. The resulting p-values show that the data is consistent with all the
residual noise being due to instrumental noise. Figure 4, taken from [10], shows the PP-plot with the
p-value on the x-axis and the fraction of events with a p-value less or equal to the corresponding one.
For the null-hypothesis, which is that all residual noise is due to instrumental noise, this distribution
should be uniform. We can see that the measurements show a similar distribution to the one from
the null hypothesis. Thus from this data no evidence for inconsistencies with general relativity are
observable.
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Figure 4: PP-plot for the measured data and
the null hypothesis. The null hypothesis is ex-
pected to have a uniform distribution of the p-
value. For each p-value the blue line marks the
fraction of measurements having a residual-
test p-value less or equal to it. The light-blue
band shows the 90%-credibility regions for the
measurements.

Figure 5: Simulated gravitational-wave form
using the inferred source parameters from the
first LIGO observation GW150814. With
the help of numerical relativity the different
phases of a BBH merger are shown by visual-
izing the event horizon of the two black holes
while they coalesce.

6.2 Inspiral-Merger-Ringdown

General relativity predicts that the lifetime of a BBH consists of three stages. During the first stage,
called the inspiral, the two black holes will get closer to each other. The orbit of the system will shrink
by loosing energy in form of gravitational waves. The beginning of this phase takes a long time and the
gravitational-wave emission is very weak. As the orbit shrinks, the black holes will accelerate and the
emitted power will increase. The next phase, called the merger, is the time when the two black holes
get so close that they meet and combine to a single black hole. When this happens the gravitational-
wave emission will have its peak. The third and final phase is the ringdown. After merging together
the black hole will oscillate in terms of spherical harmonics until the emission of gravitational waves
will smooth it out. The final state of a BBH then consists of a single Kerr black hole, that is a black
hole with non-zero angular momentum. Figure 5 shows these stages with the data of the first LIGO
observation GW150914 [4].

According to general relativity the mass and spin of the inspiral and post-inspiral stages should be
consistent. These phases roughly correspond to the low-frequency and high-frequency spectrum. In [8]
and [10] this consistency has been tested. The full methodology is presented in [19]. First the overall
mass Mf and dimensionless spin χf from the full BBH signal is calculated with the help numerical
relativity. The cutoff frequency f IMR

c , to differentiate between low- and high-frequency regimes, is
chosen to be the frequency of the innermost stable circular orbit of a Kerr black hole with the mass
Mf and spin χf . Then the mass and spin from the inspiral and post-inspiral phases are inferred and
confronted with the help of the dimensionless parameters

∆Mf

M̄f
= 2

M insp
f −Mpostinsp

f

M insp
f +Mpostinsp

f
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and
∆χf

χ̄f
= 2

χinsp
f − χpostinsp

f

χinsp
f + χpostinsp

f

.

When considered as independent parameters (future implementations may consider them jointly) the
90%-credibility constraints have been set to ∆Mf/M̄f = 0.02+0.20

−0.17 and ∆χf/χ̄f = −0.05+0.36
−0.41, which is

quite consistent with the expected values ∆Mf/M̄f = 0 and ∆χf/χ̄f = 0 from general relativity [10].
Other statistical interpretations of the data give similar consistent results.

6.3 No-hair conjecture

The no-hair theorem states that all black-hole solutions in general relativity can be completely de-
scribed by three quantities: mass, spin and electric charge. All other information are lost behind the
event-horizon and are therefore inaccessible for external observers. In other words, every stationary
black hole solution can be described by the Kerr-Newman metric, which is the following

ds2 = −
(dr2

∆
+ dθ2

)
ρ2 + (cdt− a sin2 θ dφ)2

∆

ρ2
− ((r2 + a2)dφ− acdt)2 sin2 θ

ρ2
,

where (r, θ, φ) are spherical coordinates. The parameters of the metric are all determined by the mass
M of the black hole, its angular momentum J and its electric charge Q:

a =
J

M
, ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2 +Q2.

Thus these three quantities uniquely determine the most general spacetime of a single unperturbed
black hole. This theorem hasn’t been proofed yet, so it is often called the no-hair conjecture.

When it comes to real astrophysical black holes the electric charge can be neglected and so a black
hole is described only by its mass and spin. Once the black hole has become static it is hard to study
it experimentally. However, we can use the last phase of a BBH merger, the ringdown, and see if
its oscillations are completely described by mass and spin. As the black hole gradually relaxes into
the final Kerr state, it damps by oscillating in a set of quasinormal modes (QNMs) while emitting
gravitational waves. In previous studies this ringdown test was done using data from late times after
the signal peak. This was due to concerns about high non-linearities surrounding the BBH merger
at its peak. However, recent studies have shown that already shortly after the peak the signal is
dominated by the ringdown overtones [20], [24]. These are the QNMs with the fastest decay rates and
highest amplitudes near the peak of the dominant l = m = 2 spherical harmonic. In [24] measurements
of the first overtone yields agreement with the no-hair conjecture at the ∼ 20% level.

7 Conclusion

We gave a theoretical overview of gravitational waves deriving their solution from linearized gravity.
We pointed out that according to general relativity these waves have only two tensor polarization modes
and travel at the speed of light. Furthermore, the postulated graviton should be massless. We conclude
that the first measurements of gravitational wave events with data from LIGO and Virgo don’t show
any significant deviations from the theory of general relativity. First analyses of polarization content
confirm that models of pure tensor polarization are more likely than models with pure vector or scalar
polarizations. However, real alternative theories would most likely have mixed polarization states.
These could be tested in future with the help of the stochastic gravitational wave background. First
long-time observations couldn’t detect any background signal, but could instead place upper bounds
on each polarization content of the gravitational-wave background. A very important step in testing
the speed of gravitational waves has been reached in 2017 with the first combined measurement of
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gravitational (GW170817 by LIGO and Virgo) and electromagnetic (GRB170817 by Fermi) detection
from a single source. This detection was able to further constrain the deviations of the speed of
gravitational waves from the speed of light. In a phenomenological approach for alternative dispersion
relations the Lorentz-violating parameters could be restricted, which helped to put upper bounds on
the graviton mass. Also theories of higher-dimensional gravity have been restricted successfully while
confirming consistency with the number of spacetime dimensions of general relativity. Tests of the
residual waveform after subtracting the best-fit waveform don’t show any noteworthy deviations from
expectations. Furthermore, the inferred mass and spin from the inspiral and postinspiral phase of a
BBH merger are equal, as predicted from theory. In addition to that, the no-hair conjecture still seems
to hold to the best of our knowledge.

The future of gravitational waves looks bright. LIGO and Virgo have fulfilled all expectations and
granted new powerful insights in the strong-field regime of spacetime. However, the implementation
of future detectors will make it possible to test general relativity on an even higher level. KAGRA
(Kamioka Gravitational Wave Detector) is already operational and others, like LIGO-India, LISA
(Laser Interferometer Space Antenna), LIGO Voyager and more, will follow in the next years. As the
detector sensitivities improve, we can expect new results, such as detecting the stochastic gravitational-
wave background, which might give insights into the early universe [31], and measuring the low-
amplitude overtones, which will provide stronger tests of the postinspiral BBH phase. While LIGO
and Virgo are limited in their ability to discern the polarization of gravitational-wave transients, the
construction of additional detectors will help to break existing degeneracies and allow for increasingly
precise polarization measurements. With the help of LISA, which is expected to come operational in
the 2030s, not only will we able to make better observations of the strong-field regime [22], but also
measurements of the propagation of gravitational waves will increase in precision and accuracy. New
methods on constraining the graviton speed might be implemented [13].

A Gauge symmetry

Under the assumption that the metric gµν is only a small perturbation of the Minkowski metric we
decomposed it into gµν = ηµν +hµν with |hµν | � 1. However, this decomposition is not unique, in the
sense that there is a whole family of perturbations hµν satisfying this condition. These perturbations
are connected by a gauge symmetry This is a powerful tool which removes redundant degrees of freedom
and lets us choose a simple and elegant form of h. In this section we show a way to see that (4) is
indeed a symmetry transformation which leaves the condition invariant, as presented in [17].

Let us consider two pseudo-Riemannian manifolds (M̄, η) and (M, g). The first one describing the
linearized world with the Minkowski metric and the second one describing the real world with a generic
metric. Now consider the diffeomorphisms

φ : M̄ →M

which naively associates the ”right” points to each other. There is a naturally associated tangent map
(”push-forward”)

φ∗ : T M̄ → TM
which takes vector fields on the tangent bundle of the linearized manifold and maps them to vector fields
on the tangent bundle of the real manifold. Furthermore there is also a cotangent map (”pull-back”)

φ∗ : T ∗M̄ → T ∗M.

The metric g is a 2-form, so a tensor field g ∈ T 0
2 (M). The cotangent map can act on this metric to

give a 2-form on M̄
φ∗g ∈ T 0

2 (M̄)
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defined through
(φ∗g)(X,Y ) = g(φ∗X,φ∗Y ),

where X and Y are two vector fields on M̄. Now we are able to formally define the perturbation as
the difference between the pull-back of g and the Minkowski metric

h := (φ∗g)− η. (23)

Now that we defined what a perturbation is we need to find a family of perturbations parametrized
by some parameter ε. Therefore we introduce the flow

ψε : M̄ → M̄

which is a 1-parametric group of diffeomorphisms satisfying ψt ◦ ψs = ψt+s for every s, t ∈ R. This
flow naturally defines a vector field

ξ : F(M)→ R

ξ(f) =
d

dε
(f ◦ ψε)

∣∣∣
ε=0

.

Next consider the parametrized perturbation

h(ε) = [(φ ◦ ψε)∗g]− η
= [ψ∗ε (φ∗g)]− η.

Inserting φ∗g = h+ η gives

h(ε) = [ψ∗ε (h+ η)]− η
= ψ∗ε (h) + ψ∗ε (η)− η

= ψ∗ε (h) + ε

[
ψ∗ε (η)− η

ε

]
.

In the limit ε→ 0 we find
h(ε) = h+ εLξη. (24)

The first term follows simply from the flow condition ψ0 = ψ0 ◦ ψ0 = 1, while the second term is just
the definition of Lie derivative of the tensor field η in direction of the vector field ξ. We found that all
small perturbations of the metric are connected by the difference of a Lie derivative along some vector
field ξ. This is a beautiful result. Similarly to electromagnetism where the gauge transformation

A′µ → Aµ + ∂µλ

leaves the physics invariant for every scalar field λ, in linearized gravity the gauge transformation is
given by the Lie derivative along ξ.

So far we have used a coordinate-free approach. In order to get to the form in (5) we need to introduce
a set of charts xµ on M̄. Then the diffeomorphisms ψε define the maps

ψε : xµ 7→ yµ := (ψε(x))µ.

The expansion around ε = 0 gives

yµ(ε) = xµ + εξµ +O(ε2)

and thus
∂2yµ

∂xν∂ε

∣∣∣∣
ε=0

= ξµ,ν . (25)
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The pullback of a tensor field in coordinates is given by

(ψ∗εη)µν = ηαβ
∂yα

∂xµ
∂yβ

∂xν

and the computation of the Lie derivative yields

(Lξη)µν =
d

dε
(ψ∗εη)µν

∣∣∣
ε=0

=
d

dε
ηαβ

∣∣∣
ε=0

∂yα

∂xµ
∂yβ

∂xν
+ ηαβ

∂2yα

∂ε∂xµ

∣∣∣∣
ε=0

∂yβ

∂xν
+ ηαβ

∂yα

∂xµ
∂2yβ

∂ε∂xν

∣∣∣∣
ε=0

.

The first term vanishes since η is constant and by using (25) the last equation becomes

(Lξη)µν = ηανξ
α
,µ + ηβµξ

β
,ν = ξν,µ + ξµ,ν .

Finally we can insert this result into (24) and find gauge transformation in coordinates

h(ε)µν = hµν + εξν,µ + εξµ,ν , ε� 1. (26)
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