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Abstract

MRI (Magnetic Resonance Imaging) scans pose the primary screening method to detect, assess
and segment brain pathologies amongst other diseases for diagnosis and subsequent treatment
planning. These checks are often performed by radiologists who examine such abnormalities
manually. Since this is a time-consuming process, there is a need for more effective and potentially
more robust solutions for this task. Due to recent successes on many visual tasks such as image
classification or segmentation, the machine learning community has undertaken large efforts to
assist in the analysis of such images or even automate this lengthy process entirely.

Recently, generative models, such as Variational Autoencoders, have been successfully de-
ployed to perform unsupervised lesion detection as a promising alternative to state-of-the-art su-
pervised approaches. These unprecedented models are trained on healthy patients data exclusively
and measure abnormality of test samples by assessing their deviation to the learned healthy in-
distribution training data. While current methods solve the problem to some extent, they might
be prone to errors in real-world scenarios since the current assumption for the factors of a sample
being Out-of-Distribution (OOD) does not include the notion of distributional shifts due to, for
example, varying scanning protocols and parameters. This renders these methods vulnerable to
actual OOD samples for which reason this work aims to understand and disentangle those under-
lying root causes for a sample to be predicted to be OOD.

The main contributions of this work are as follows. First, it reveals that the hypothesis of partial
blindness or entanglement stated above is of great concern when applying such models in practice
and is typically overlooked thus far. Thereto, we propose measures to disentangle the influencing
factors for a sample to be predicted anomalous or not. Recent developments in the field of OOD
detection in the form of the WAIC and DoSE scores are being explored and applied to the case
of unsupervised anomaly detection. Next, a proposal of weak prior knowledge about the nature
of lesions in comparison with samples which have undergone a domain-shift is introduced via a
normalized entropy score. Furthermore, an approach following the notion of learning disentangled
representations via strong latent space regularization is being assessed for usability in the task of
disentangling these underlying factors.

Results show that the proposed methods are unable to improve the currently employed met-
rics for unsupervised lesion detection or successfully disentangle the underlying factors for a test
sample to be OOD. However, since it could be shown that entangled factors are a major concern
in these frameworks, further research to enable safe deployment is strongly encouraged. Last but
not least, several insights into the encoding principles and training mechanisms of unsupervised
generative models have been made and documented to facilitate future research.
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duce a neuron output value ŷ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 A multilayer perceptron with an eight-dimensional input layer, three hidden layers
and a four-dimensional output layer.
Source: https://www.rsipvision.com/ . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 A selection of the most popular activation functions used. From left to right:
Sigmoid, Tanh, ReLU (Recitified Linear Unit) and leaky ReLU activation functions. 9

2.6 Schematic comparison of stochastic gradient descent, mini-batch gradient descent
and standard gradient descent for a hypothetical two-dimensional cost function
represented by its isolines. While the gradient descent algorithm uses the true
gradient calculated by incorporating all data at hand, stochastic or mini-batch gra-
dient descent might eventually converge to the same or qualitatively equal local
minimum with much less computational resources required. . . . . . . . . . . . 12

2.7 A fully connected layer. The thickness of connecting lines represent the magnitude
of weights associated with a particular connection.
Source: https://www.medium.com/ . . . . . . . . . . . . . . . . . . . . . . . . 13

III



LIST OF FIGURES

2.8 A convolutional kernel of size 3 × 3 (transparent grey) moves along spatial posi-
tions on a feature map (blue) with zero-padding of one pixel in both dimensions to
produce the output feature map (green) which, in this case, has the same dimen-
sions as the input map.
Source: [Dumoulin and Visin, 2018] . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9 A transpose convolutional kernel of size 3 × 3 (transparent grey) moves along
spatial positions on a 2× 2 feature map (blue) with zero-padding of two pixels in
both dimensions to produce the output feature map (green) whose extent is larger
than the input feature map.
Source: [Dumoulin and Visin, 2018] . . . . . . . . . . . . . . . . . . . . . . . . 15

2.10 Schematic training and validation loss over the course of ongoing model training.
The model starts overfitting to the training data roughly at the epoch corresponding
to the dashed vertical line when the loss on the held-out validation data starts to
increase. This would be the optimal point to do early stopping of the training to
achieve best performance and maximum generalizability. . . . . . . . . . . . . . 15

2.11 Schematic representation of a fully connected network with two hidden layers and
a single output neuron without (a) and with (b) dropout applied.
Source: [Srivastava et al., 2014] . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.12 An example of a simple graphical model. The observed random variable x de-
pends conditionally on the hidden or latent variable z which governes the genera-
tive process for samples following x. . . . . . . . . . . . . . . . . . . . . . . . . 17

2.13 The Shannon entropy as a function of probability p that some positive event will
occur for the case of a Bernoulli experiment. The negative probability is then
given by p− 1. The highest entropy and likewise highest uncertainty with respect
to the outcome is given when p = 1/2. . . . . . . . . . . . . . . . . . . . . . . . 18

2.14 Two examples of discrete distributions and p(x), q(x) and the respective KL di-
vergence between them. (a) KL(p||q) = 0 due to identical distributions and (b)
KL(p||q) = 3/4log(3/2) + 1/4log(1/2) > 0 indicates dissimilar distributions . . . 19

2.15 Confusion matrix for the binary classification problem. . . . . . . . . . . . . . . 20

2.16 Left: ROC curve comparing three classifiers. The hypothetical perfect classifier
is in the upper left with 100% TPR and 0% FPR. The classifier belonging to the
red curve has the overall highest AUC (area under ROC curve) and is therefore
preferable to the other two. The purple classifier has an AUC smaller than 0.5
which indicates systematically wrong predictions. The horizontal dashed center
line represents a random classifier with an AUC of 0.5. Right: PRC curve com-
paring three classifiers. The hypothetical perfect classifier lies on the upper right
with 100% recall, meaning all positive instances have been detected and 100%
precision, meaning that all instances predicted to be positive are actual positives.
The direction of movement along either the ROC or PRC curve when changing
the scoring threshold is indicated with arrows. . . . . . . . . . . . . . . . . . . . 22

2.17 (a) A T2-weighted axial-slice MRI brain scan with a hyperintense lesion on the
upper right. (b) A healthy T1-weighted slice.
Source: Case courtesy of Assoc Prof Frank Gaillard, Radiopaedia.org, rID: 28272 25

IV



LIST OF FIGURES

3.1 Schematic depictions of (a) Auto Encoder (AE) and (b) Variational Auto Encoder
(VAE) architectures. Both frameworks encode an input sample x into a latent
space representation z before decoding it back into sample space to obtain a re-
construction x. While the vanilla AE architecture is completely deterministic, the
VAE framework models the latent space representation by means of a probability
distribution parametrized by µ and σ. An actual latent sample z is then being
sampled from this distribution from which the decoder will eventually generate a
reconstructed sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Images are being created by traversing the latent space while varying two distinct
dimensions. Samples are being drawn at those various positions and reconstructed
by the decoder. (a) The Variational Autoencoder (VAE) was able to learn the direc-
tion of gaze as well as the mood of a person which it encoded into the latent space
representation. Trained on the Frey Face Dataset. (b) Similar principle applied to
the MNIST [LeCun and Cortes, 2010] dataset which reveals the continuous nature
of the latent space encoding.
Source: [Kingma and Welling, 2014] . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 This work reveals empirically that a generative model (GLOW in this case [Kingma
and Dhariwal, 2018]), might assign higher likelihoods to OOD samples from
the Street View House Numbers (SVHN) Dataset [Netzer et al., 2011] when be-
ing trained on CIFAR-10 data [Krizhevsky, 2009], which thus is regarded as in-
distribution for this experiment. Note that Negative Bits Per Dimension can be
converted into a likelihood measure.
Source: [Choi et al., 2019] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 (a) Shows the example of a high-dimensional Gaussian with mean µ and standard
deviation σ. This two dimensional represents that while the mean location µ has
indeed the highest likelihood for a Gaussian, the typical set of this distribution lies
in an annulus σ

√
d from which region actual Gaussian noise can be sampled. This

annulus region is where most of the probability mass (volume) resides as shown
in sub-figure (b).
Source: [Nalisnick et al., 2019b] . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 (a) Axial slice of an MRI T2-weighted brain scan from the BraTS2017 dataset
[Menze et al., 2014] showing a glioma on the bottom left. (b) The corresponding
ground truth pixel-level annotation crafted by domain experts. . . . . . . . . . . 32

3.6 [Baur et al., 2020] compared a wealth of different unsupervised anomaly detection
frameworks and reported their relative performance in a standardized experiment
on.
Source: [Baur et al., 2020] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 β-VAE (β = 250) achieves to disentangle underlying factors such as azimuthal
rotation much better than the standard VAE (β = 1) implementation at the expense
of resolution. Note that the standard VAE is able to learn notions of azimuthal
angles as well but entangles the representation with other factors such as lightning
or hair stlye.
Source: [Burgess et al., 2018] . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

V



LIST OF FIGURES

4.1 Working principle of unsupervised lesion detection based on VAEs as used in this
work. During training, a VAE learns to approximate the distribution of healthy im-
ages by maximizing the so-called Evidence Lower Bound (ELBO)L (cf. Equ.3.4).
During inference, the residual map r of an input test image yields the pixel-wise
lesion detection map. Finally, the resulting binary pixel-wise lesion prediction is
obtained by comparing every residual pixel with a threshold τ which has been de-
termined using training data only. Unlike previous works, this framework aims to
answer the question due to which underlying factors a sample is being predicted
to be OOD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Overview on as to which metrics can be used given the classification scenarios for
pixel-wise and slice-wise anomaly detection. . . . . . . . . . . . . . . . . . . . 37

4.3 Overview on as to which metrics can be used given the classification scenario of
OOD Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 The VAE architecture used throughout the experiments of this work.
Source: [Baur et al., 2020] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Visual Examples of MRI based datasets. . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Visual Examples of toy datasets used primarily in OOD detection experiments. . 44
5.3 The patient-wise histograms of two test patients are being matched against the

patient-wise intensity histogram of a reference patient. . . . . . . . . . . . . . . 45
5.4 All slices for two patients from the CamCAN T2 dataset after standardization,

that is, subtracting slices the mean and dividing by the standard deviation both of
which have been calculated over all pixels from a single patient beforehand. The
histogram on the left shows intensity values from a single patient. The bump on
the left side can be explained due to imperfections in the brain mask which adds
low-valued background pixels to the distribution. . . . . . . . . . . . . . . . . . 45

5.5 Rows from top to bottom: Original image, ground-truth tumor segmentation, re-
construction, residual image, binary tumor prediction map. Columns: (a) No post-
processing applied. (b) Instead of the raw l1 distance from input to reconstruction,
set pixels to zero which are brighter in the output image compared to the input.
(c) Apply brain-mask erosion to get rid of boundary effects. (d) Apply median
filtering to smooth out the residual map. Note that the threshold for this image
has been found with all post-processing enabled. Nevertheless, there one cannot
obtain the same quality of segmentation as in column (d) without the processing
steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Optimization procedure to determine the threshold τ on the residual map r by set-
ting an accepted False Positive Rate (FPR) on the training data (5%) and searching
for a threshold which produces a FPR on the training set which is closest to this
value. The optimization is carried out using the Golden Section Search algorithm. 48

5.7 From top row to bottom: Random input samples from CamCAN T2, associated re-
constructions, l1 residuals and resulting binary pixel maps when applying a thresh-
old of τ = 0.7 which results in a false positive rate of max. 5% throughout the
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.8 Reconstructions of latent-space samples which follow a multivariate Gaussian
with zero mean and unit variance. Whe the model has been trained with very
values of β (0.1 - 0.3), the approximate prior is not regularized enough and the
decoding process will not yield realistic reconstruction. For higher values of β,
the approximate prior mimics the Gaussian prior more closely and realistic recon-
structions are obtained. For very high values of β (e.g. 10), a loss of resolution
can be observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

VI



LIST OF FIGURES

5.9 Reconstructions of MNIST input images. Left: MNIST input (batch of 16 samples
each), right: corresponding reconstructions. The top model has been trained with
β = 1.0 (original VAE objective) while the bottom model has been trained with a
lower latent space regularization of β = 0.1. We believe that the top model suffers
from posterior collapse while the reconstructions of the bottom model indicate a
proper latent space conditioning due to the fact that it is not able to reconstruct the
heavy OOD input samples but is still able to reconstruct MRI brain images faithfully. 50

5.10 Comparing reconstructions from two models trained with different KL-term weights
(0.3 and 10). The model with a high weight is not able to reconstruct all input sam-
ples faithfully rendering it unusable for unsupervised lesion detection. . . . . . . 50

5.11 Running inference on samples from the CamCAN T2 lesion dataset, which con-
tains artificially crafted lesions in form of Gaussian blobs. Rows from top to bot-
tom: Random input samples, ground truth segmentation obtained by the 1σ region
around the mean of the Gaussian blob, reconstruction, residual, binary prediction. 52

5.12 Similar to Fig. 5.11, however now on the BraTS T2 dataset. Common failure
modes include the inability to reconstruct the ventricles faithfully when being
trained on CamCAN T2 and tested on BraTS T2. Therefore these regions usu-
ally yield a high amount of false positives. . . . . . . . . . . . . . . . . . . . . 52

5.13 Another failure mode of the VAE based models presented in this work is their
inability to detect lesions which are not hyper-intense. While the lesions associ-
ated with the first two colums (brain compared to remaining brain tissue) can be
detected, the lesion in the rightmost column is not detected at all. . . . . . . . . . 53

5.14 Densities for sample-wise loss term contributions (cf. 3.4) for various OOD datasets.
CamCAN T2 (teal) represents the in-distribution training data containing only
healthy slices. CamCAN T2 lesion holds samples from CamCAN T2 but with arti-
ficially added Gaussian blobs to simulate lesional samples as explained in Sec. 5.1
and shown in Fig. 5.11. All other datasets can be regarded as OOD. We can con-
clude that non of the commonly used metrics, that is, DKL, l1 (reconstruction
error) or L is able to differentiate between whether a sample is being detected as
abnormal due to a domain-shift or due to actual lesions. . . . . . . . . . . . . . . 54

5.15 Similar setup as in Fig. 5.14, however in this case the focus lies on the effect
of histogram matching and whether it can mitigate the entanglement of domain-
shift effects and actual lesions. Lesional samples tend to have higher reconstruc-
tion errors compared to healthy ones on average which is expected. Surprisingly,
performing histogram matching seems to increase the reconstruction error distri-
bution slightly although a superior segmentation performance is being achieved.
Histogram matching does not seem to change the behaviour in the latent space.
It is noteworthy though that for this model, lesional samples have a smaller KL
divergence on average compared to healthy samples. . . . . . . . . . . . . . . . 55

5.16 Normalized entropy scores for a number of BraTS T2 l1 residual maps. . . . . . 56
5.17 Similar to fig. 5.16, however now with the lmax1 score as introduced in section

Sec. 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.18 Each line holds a number of reconstructions which reside from random samples

from the latent space. The numbers on the left side represent the minimum and
maximum radii of a hyper-shell lying in the 128-dimensional latent space from
which the corresponding samples from the right side. Since

√
d = 128 = 11.3,

this is the distance (line [10, 12]) from the origin where the typical samples from
our dataset reside. Note that this model has been trained with β = 1.0 . . . . . . 59

VII



LIST OF FIGURES

5.19 Reconstructed random Gaussian latent space samples follow the training distribu-
tion in a visually coherent manner. . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.20 Distribution of the distances to the origin (norms) for 1000 random samples from
a normal Gaussian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.21 The effect of switching on masked loss calculation during training. For each epoch
considered, there is a batch of 16 slices on the left and the corresponding recon-
structions on the right. While in early epochs, the model learns to predict the
background pixel values rather quickly (after 1 epoch), it produces lots of arte-
facts in later epochs after masking has been enabled (after epoch 8). Since there is
a brain mask associated with every slice, evaluations can be performed on pixels
within the mask exclusively. Therefore, the artefacts should not bother us too much. 60

5.22 2D UMAP embedding of latent codes from samples originating from different
datasets showing the effect of enabling masked training on the latent space distri-
bution of input samples from different datasets. The models have been trained on
CamCAN T2 as usual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.23 Similar to Fig. 5.22, however this time with MNIST and Gaussian noise samples
only along the in-distribution CamCAN T2 dataset. The latent space embedding
changes drastically which is also reflected in Fig.5.24 . . . . . . . . . . . . . . . 61

5.24 Sample-wise KL divergence histograms for masked and non-masked training. . . 61

A.1 Running inference using the in-distribution training data from CamCAN T2 and
various OOD datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2 Slides across ±3σ (vertical axis) along one non-constant dimension i (horizontal
axis) of a 128-dimensional latent space. All values zj 6=i are hold constant at 0 for
β = 100. Note that all the variation is pushed into two axes, z80 and z108 in that
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3 Slides across ±3σ (vertical axis) on the dimensions holding the variations. The
two examples at the top show reconstructions from sampling at a particular latent
space position in the respective dimension (green arrow). They align correctly
with the passes along the dimensions holding the semantic variance . . . . . . . 66

A.4 Grid of two slides across two dimensions in latent space and corresponding recon-
structions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.5 Different implementations of β-annealing strategies found throughout the literate.
The KL term weight, β, varies over time by (a) monotonically increasing from a
start to a target value, (b) periodically increasing to a target value before dropping
down again (cyclic), (c) increasing to a target value in a generalized sigmoidal
shape and (d) using an exponential decay until a target value is reached. . . . . . 68

VIII



List of Tables

4.1 Baseline performance for pixel-wise lesion detection from [Chen et al., 2020].
While the V AE128’s model architecture is comparable to ours, GMVAE uses a
Gaussian mixture model to model the latent space distribution and deploy restora-
tion of the input image which has been shown to yield significant performance
boosts by [Baur et al., 2020]. For the Dice score, the patient-wise mean and stan-
dard deviation is reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Baseline performance for slice-wise lesion detection from [Zimmerer et al., 2020]. 36

5.1 Pixel-wise anomaly segmentation (Dice) and detection (AUROC /AUPRC) perfor-
mance. * includes post-processing (smoothing & mask-erosion of residual map)
, ** no post-processing, *** results from [Chen et al., 2020]. Dashed entries were
not provided by the authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Slice-wise anomaly detection on various Out-of-Distribution datasets. The posi-
tive class holds lesional slices from the respective test set while the negative class
holds healthy slices from the test and in-distribution validation set (CamCAN T2).
To this point, neither the entropy score nor classical OOD detection metrics are
able to outperform the classical reconstruction error metric. . . . . . . . . . . . . 57

5.3 OOD detection performance. `1 is the mean reconstruction error per pixel for a
slice, DKL the KL divergence between the prior and approximate posterior and L
the ELBO. WAIC has been defined in Equ. 3.6 and DoSE in Equ. 3.7 . . . . . 57

IX



Chapter 1

Introduction

1.1 Medical Motivation

Accumulations of diseased cells within the brain and medulla spinalis are referred to as tumors
of the central nervous system. Celebral tumors (tumors in the brain) only make up for around
two percent of all malignancies (cancerous tumors) and can thus be regarded as relatively rare
occurrences. Nonetheless, around 500-700 people fall ill every year due to celebral tumors in
Switzerland alone [krebsliga.ch, 2020], in most cases being being affected by a glioma. The World
Health Organization (WHO) differentiates more than 100 types of celebral tumors [Arevalo et al.,
2017] from which the gliomata are found to be the most frequently occurring ones. Gliomata
are then further classified into grades of severity ranging from grade I to IV (Glioblastomas),
where the latter make up for around 50% of all glioma. [Wolff et al., 2010] reported 5 year
survival rates ranging from around 10 to 19% for children, depending on the chemotherapeutic
treatment. Survival rates for adults are reported to be even lower and strongly depends on the
treatment possibilities ranging from 50% to 0%. It stands to reason that a reliable tumor detection
system is of utmost importance. Although the methods presented in this work are very general and
applicable to an unlimited range of imaging datasets in which one might be interested to detect
anomalies, they are first and foremost tested on MRI brain imaging data with the aim to detect and
segment such malignant tissue.

Symptoms indicating malignant brain tumors include strong headaches, visual disorders, con-
fusedness, dissociative convulsions or unconsciousness amongst others [Aigner and Stephens,
2016]. On an initial check-up, a doctor will conduct an anamnesis followed by a physical and
neurological examination to test the workings of the patients central nervous system. This is typ-
ically done with various tests targeting the patients responsiveness and coordination skills and
observing reactions of specific muscle groups to external stimuli. In case the results substantiate
concerns regarding a potential cerebral tumor, imaging procedures such as MRI (Magnetic Reso-
nance Imaging (cf. Sec. 2.8), CT (Computer Tomography) and PET (Positron Emission Tomogra-
phy) are being employed next. MRI scans pose the primary screening method to detect, assess and
segment brain pathologies for diagnosis and subsequent treatment planning. In practice, a doctor
might be interested in the existence and extend of a tumor mass which he would abstract from
the sectional images of a MRI scan which might also be registered with other imaging modalities,
such as PET. Since this process is not only time-consuming (a single scan might consist of several
hundred slices) but also error-prone, large efforts have been undertaken by the machine learning
community to automate the detection and segmentation of lesions from brain MRI scans.

Similar to other fields into which Deep Learning has found its way into, such as Autonomous
Driving, the medical domain can be regarded as a field with high-consequence decision making.
Although machine learning based diagnostics hold great potential to assist and befriend medical
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practitioners, there are open questions as to how safe and robust such systems are to date. This
work investigates the applicability and trustability of Deep Learning based anomaly detection
frameworks, specifically so-called unsupervised lesion detection approaches.

1.2 Focus of this Work

While supervised Deep Learning approaches (cf. Sec. 2.1) , often based on the infamous U-Net
architecture [Ronneberger et al., 2015], contribute state-of-the-art lesion segmentation techniques
[Isensee et al., 2020], they are constrained to the distribution of anomalies used during training and
the need for corresponding pixel-wise ground-truth labels from domain experts. This process of
crafting pixel-level lesion annotations is expensive and subject to an inherent inter- and intra-rater
ambiguity [Moraal et al., 2010]. Unsupervised methods on the other hand have the potential to
serve as a class-agnostic anomaly detection framework and might act as quality assurance tool for
doctors and practitioners without the need to curate specialized training datasets.

Nevertheless, unsupervised anomaly detection techniques exploit OOD detection as their work-
ing principle, making them vulnerable to actual OOD samples during inference. Those are samples
that might or might not contain lesions but more importantly originate from a different domain
compared to the training distribution, which might be due to different scanner models used or
changed parameters such as magnetic field strength during scanning. While the issue of unreliable
model behavior for OOD samples is well-known and has received much attention in the case of su-
pervised approaches in the past, also in the medical field [Mårtensson et al., 2020], it is even more
pronounced for unsupervised anomaly detection, which equates anomaly detection with OOD de-
tection, by nature. Since models performing unsupervised anomaly detection in the field of MRI
will be presented with data whose generating process is governed by numerous influencing factors
that might provoke a domain-shift, this is of great concern for safe model deployment and is usu-
ally not addressed assuming that test samples follow the same distribution like the training data.
Furthermore, datasets that contain both healthy and lesional samples are typically not publicly
available which complicates the investigation of the severity of model performance degradation
under such domain-shifts and makes this a particularly challenging problem since there is no ac-
cess to lesional samples originating from the same domain. Thus, it is important to investigate
whether common approaches can disentangle the underlying factors for a sample to be OOD - i.e.
whether it is lesional or not.

This work explores the effects of domain-shifted test data in the setting of unsupervised lesion
detection of brain tumors, which has not been addressed before. More explicitly, we asses com-
monly deployed lesion detection metrics as well as recently developed OOD detection techniques
in the field of generative modelling. We show that domain-shift effects are usually entangled with
effects the actual lesions have on the prediction. Thus, it should be desirable to have metrics or
techniques which tackle either one or the other.

1.3 Thesis Organization

The remainder of this work is organized as follows. Chapter 2 will give an overview on basic ma-
chine learning principles and provide the theoretical background and foundations for the specific
techniques, concepts and evaluation procedures used throughout this work. Chapter 3 will give
an overview on the most relevant works in the field of generative modelling, unsupervised lesion
detection and OOD detection that constitute essential building blocks for this work. Chapter 4
presents our approaches and methodologies. Chapter 5 will present experiments and correspond-
ing results along with visual examples while chapter 6 will present the discussion and conclusion
of our experiments and give some suggestions for future work. The appendix A holds additional
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information on implementation, further examples and a copy of the paper submission which is
currently under review for the 2021 MIDL (Medical Imaging with Deep Learning) conference,
titled The OOD Blindspot of Unsupervised Lesion Detection.
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Chapter 2

Fundamentals

This chapter provides a brief summary of Machine and Deep Learning fundamentals on which the
remainder of this work relies on. It starts by discussing core concepts of learning paradigms, the
historic background of (deep) neural networks, their components and training mechanism. Finally,
it introduces core concepts from probability and information theory. The reader is expected to be
familiar with simple concepts from probability theory such as random variables or conditional
probability distributions.

2.1 Supervised vs. Unsupervised Learning

2.1.1 Supervised Learning

Suppose to be given a dataset consisting of a set of samples X = {x(i)}Ni=1 with corresponding
labels y = {y(i)}Ni=1. A label y(i) could either be categorical or continuous. Supervised learning
aims to infer a direct mapping f(x) 7→ y for any sample x with corresponding label y, given
some training data X. This is achieved by training a model which acts as a generic function
approximator f . Depending on the approach taken, those models are often regarded as black
box function approximators, meaning that, while they achieve to learn the actual mapping f , it
is hard to determine the reasoning of a network to come up with a particular prediction. While
this is true to a large extent for most models used in Deep Learning approaches in the vision
domain (cf. Sec. 2.4), classical machine learning models, such as decision trees, might offer more
insights into the decision making procedure. In case y is continuous, this process is denoted as
a regression task while categorical labels result in classification tasks (cf. Fig. 2.1 (b)), that is,
finding a decision boundary in a potentially high dimensional feature space to separate unseen
instances from different classes. Note that the labels y could be rather complex, for example,
bounding boxes for the task of object detection within an an image or pixel-level label maps for
the task of semantic segmentation, that is, assigning class labels to every pixel within an input
image.

2.1.2 Unsupervised Learning

In the unsupervised setting, there are no available labels y associated with data points x during
the learning phase. Thus, the goal is to learn some underlying, hidden structure from the data.
Common tasks include clustering, dimensionality reduction, representation learning or density es-
timation (cf. Fig. 2.1 (a), (c), (d) & (e)). Note that unsupervised anomaly detection, introduced
in Sec. 3.3, heavily relies on the principle of feature or representation learning based on some
training data distribution, which in this works case is usually a set of healthy MRI brain scans.
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Figure 2.1: Examples from supervised and unsupervised machine learning. (a) unsupervised clus-
tering in a 2-dimensional feature space with three classes, (b) learning a binary decision boundary
in supervised classification within a 2-dimensional feature space, (c) dimensionality reduction
from two to one dimension using Principal Component Analysis (PCA) by projecting data points
onto e lower-dimensional manifold that represents the largest amount of variance in the projected
data, (d) representation (feature) learning in an autoencoder setting by encoding a sample x into
a latent representation z before decoding it back into an input space representation, (e) density
estimation for one-dimensional datapoints using Kernel Density Estimation (KDE).

Furthermore, Variational Autoencoders [Kingma and Welling, 2014], introduced in Sec. 3.1.2,
implicitly perform density estimation, that is, they learn the data distribution of the training data
at hand. While the number of systems relying on unsupervised learning, that is, learning about
the world around us without explicit supervision, in the industry lack far behind the more obvious
use cases of supervised approaches, they are believed to constitute an essential ingredient to pave
the road towards what is referred to as general artificial intelligence. It should be noted that, while
supervised approaches might learn highly efficient representations for some task at hand, signals
contained in the data which might be very relevant for other tasks could be ignored completely
since they are of no use for the specific task the model has been trained for. An ideal unsuper-
vised model on the other hand would learn information rich, transferable representations of data
which should capture all there is to learn about the data and thus truly understand the underlying
distribution.

2.2 Discriminative vs. Generative Models

2.2.1 Discriminative Models

Discriminative models do model the probability p(y|x) for some data point (x, y). Intuitively
speaking, they do not model densities of some data distributions but only have to learn a con-
ditional distribution shown above. For example, in a supervised classification task, this would
account to concentrating efforts on learning the decision boundary between classes, often making
them superior over generative models which tackle a much broader objective.

2.2.2 Generative Models

Generative approaches model the joint distribution p(x, y) = p(x|y)p(y), that is they have to esti-
mate the underlying density distribution which is a challenging task in most cases. The generative
process can then be described by first sampling from p(y) and then, given a particular y, generate
a sample p(x|y). In the generative setting, one is usually concerned with generating new samples
similar to those of a training data distribution pdata(x), which a generative model approximates
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by learning a distribution pmodel(x). Thus, generative models tackle the problem of density esti-
mation, either implicitly, like Generative Adversarial Networks (GAN) [Goodfellow et al., 2014],
or explicitly, like Variational Auto Encoders (cf. Sec. 3.1.2) which approximate the true density
(cf. Sec. 3.1.2). While it is a flattering objective to be able to reproduce samples following a cer-
tain data distribution, the true power of generative models lies in their ability to learn a model of
how the samples from the training data distribution are actually being created and to be able to do
so they have to understand this distribution. For images, the most successful generative models
follow the GAN framework, which is able to generate high fidelity, close to realistic looking sam-
ples. The VAE framework based on variational inference on the other side is known to produce
blurry images. Nevertheless, it has the attractive property of approximating what is known as the
posterior distribution explicitly by means of a latent space distribution and thus exposes more in-
sights into the generative process and the underlying data distribution. It offers the possibility to
sample explicitly from this latent space to generate specific types or classes of data samples. More
details will be given in chapter 3, where those frameworks are discussed in great detail.

2.3 Representation Learning

Representation learning is concerned with learning useful representations of data making it eas-
ier to extract information for downstream tasks such as classification or regression [Bengio et al.,
2012]. More generally, this includes extracting and potentially disentangling the underlying hid-
den features of data which are relevant for the task at hand. Prior the the Deep Learning era, much
attention has been put into engineering feature extraction pipelines to boost the models predictive
performances which was not only labour intensive but limited the general applicability of artifi-
cial intelligence in the first place due to engineered bias and cognitive limitations. Representation
learning is particularly interesting in the field of unsupervised learning where, due to the absence of
labelled data point, the only hope is to learn data representations to draw conclusions from. Multi-
task learning models, that is, models that perform multiple predictions given a single data sample,
can benefit from Representation Learning by sharing representations across multiple predictive
tasks, for example in the form of a shared backbone network. Finally, learned representations
in a supervised or unsupervised fashion can be used by models for specific tasks by fine-tuning
the representation using only little data. This process is known as transfer learning and is widely
adopted in the field of image classification. The models used throughout this work (cf. Sec. 3.1)
reside in the field of representation learning by learning a compressed representation of an input
image to tackle the problem of unsupervised lesion detection (cf. Sec. 3.3). Fig. 2.2 depicts in
an attractive way, how convolutional neural networks (cf. Sec. 2.4.6) build up a visual vocabulary
by combining low level features such as edges and textures to high level representations which
resemble actual real-life objects.

2.4 Neural Networks

2.4.1 History

The first approach to model computation in the human brain dates back to 1943, when W. Mc-
Culloch and W. Pitts attempted to model the functionality of so-called neurons (cf. Sec. 2.4.2)
[McCulloch and Pitts, 1988], the structural and functional primary unit of the nervous system. In
the course of this, they modeled a simple neural network by means of electrical circuits. A major
breakthrough, at least conceptually, in training such networks dates back to 1986 when [Rumelhart
et al., 1986] introduced and popularized the so-called back propagation algorithm (cf. Sec. 2.4.5)
to the field of neural networks. Deep learning, a sub-field of machine learning, refers to the train-
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Figure 2.2: Visualization of images which have been generated through an optimization procedure
that activate particular neurons (cf. Sec. 2.4.2) in a given layer maximally for the GoogLeNet
[Szegedy et al., 2014] architecture. Those feature images can be regarded as ”visual words” and
the response of a particular neuron to any query image indicates whether a particular feature is
present or not within the image. Going from left to right, the depth of layers increases which
indicates that primitives, such as simple edges, encoded in early layers, are being used to construct
more high level representations in deeper layers of the network, that is, closer to the output.
Source: [Olah et al., 2017].

ing of high capacity neural networks consisting of multiple layers of hidden neurons. Although
the mathematical foundations to train such networks has been developed decades ago, interest has
risen dramatically in the recent years due to successes in their deployment in the fields of Com-
puter Vision [Krizhevsky et al., 2012] and Natural Language Processing. Higher availability of
large scale datasets, which are necessary to train such large networks, as well as strong increases
in compute power, first and foremost the possibility to use Graphical Processing Units (GPUs)
for training, are regarded as the main drivers for the triumphal march of deep learning in the last
decade.

2.4.2 Neurons and Neural Networks

Neural networks draw inspiration from biological neurons in the brain and spinal cord and the
signal passing along their connections. A neuron or nerve cell represents the main functional unit
of the nervous system. It reacts to stimuli of sensing organs and forwards this information to the
brain or spinal cord, receives motor signals from the brain to perform, e.g. muscle contractions,
or simply connects to other neurons for message parsing. It possesses one so-called axon filament
at which ending there is a synapse. Signals are passed through an axon and the synapse with an
electrochemical pulse, the so-called action potential, which is launched when the neuron gets ex-
cited electrically.

Fig. 2.3 depicts the basic computations happening on the level of a single neuron within an
artificial neural network which can be understood as a simplified model of a biological processing
unit of our brains. The neuron has a number of input signals x1, x2, ..., xn, where each signal xi
is associated with a weight wi. The input signals are being combined as a weighted sum

z = b+
n∑
i=1

xi ∗ wi (2.1)

where b is the so-called bias. Subsequently, the intermediate result z is forwarded through an
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Figure 2.3: The basic computational layout of a neuron within a neural network. A weighted sum∑
of input signals along the bias is passed through a non-linearity g to produce a neuron output

value ŷ.

activation function (cf. Sec. 2.4.3) g to obtain the output ŷ of the neuron

y = g(z) (2.2)

Stacking layers of neurons where each activation value of some neuron residing in one partic-
ular layer acts as an input value of a subsequent layer yields what is referred to as a multi-layer
perceptron (cf. Fig. 2.4), a basic neural network architecture which is often referred to as being
the ”vanilla”, i.e. default, neural network in textbooks. It is made up of several so-called fully-
connected layers (cf. Sec. 2.4.6) of neurons while the output value of one neuron is computed by
Equ. 2.2. Other types of layers will be introduced in Sec. 2.4.6. A forward pass refers to the
computation carried out when calculating neuron activation values consecutively starting with the
input layer, passing the hidden layers and finally arriving at the output layer which represents the
networks prediction.

Figure 2.4: A multilayer perceptron with an eight-dimensional input layer, three hidden layers and
a four-dimensional output layer.
Source: https://www.rsipvision.com/

2.4.3 Activation Functions

Without passing the weighted sum z through a non-linear activation function g, a neural network
would essentially become a linear regressor, incapable of modelling complex, non-linear, high
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Figure 2.5: A selection of the most popular activation functions used. From left to right: Sigmoid,
Tanh, ReLU (Recitified Linear Unit) and leaky ReLU activation functions.

dimensional mappings. Non-linear activation functions allow for the network to learn high order
polynomials beyond one degree. The activation function decides on the amount of activation for a
particular neuron while a non-zero bias shifts the activation function in either direction.

The most commonly used activation functions [Nwankpa et al., 2018] are depicted in Fig. 2.5.
Historically, a common choice for an activation has been the Sigmoid, also known as the logistic
function

g(z) =
1

1 + e−z
(2.3)

However, it suffers from what is referred to as the gradient vanishing problem, that is, due to the
near-zero derivative at the activation functions tails, the gradients vanish during the backpropaga-
tion algorithm (cf. Sec.2.4.5) towards earlier layers in the network. In consequence, earlier layers
are not being updated, or learn as much, as the later layers and the network might get stuck in
a (very sub-optimal) local minimum. However, since the Sigmoid function values resides in the
interval [0, 1], it is a valid choice for the output layer in the setting of binary classification. There,
it might be desirable to predict a class-membership probability-distribution.

g(z) = tanh(z) =
ez − e−z

ez + e−z
(2.4)

More recently, the ReLU (Rectified Linear Unit)

g(z) = max(0, z) (2.5)

and leaky ReLU

g(z) =

{
z if z greater 0
az else

(2.6)

have become popular, where a is commonly set to 0.01. ReLU-based activation functions guar-
antee faster computation since no exponentials or divisions have to be performed. Maybe more
importantly, these functions have derivatives different from zero for large range of input values
which speeds up training and counteracts the vanishing gradient problem.

Interestingly, although new state-of-the-art activation functions might outperform older activa-
tion functions or variants thereof, new network architectures usually rely on tested versions, such
as the ReLU [Nwankpa et al., 2018]. A very common pattern seems to be to use ReLU activations
for hidden layers while Softmax activations are used on output layers in multi-class classification
tasks to turn the so-called logits, the neuron outputs before passing them through an activation
function, into a normalized probability distribution of class memberships. The Softmax function
is defined as

σ(z)j =
ezj∑K
k=1 e

zk
, k = 1, ...,K (2.7)

for K classes and is a generalisation of the logistic function seen above. The function transforms
the components of a k-dimensional input vector z with real components into a k-dimensional
output vector σ(z) whose components are squished into the range (0, 1] and sum up to 1.
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2.4.4 The Loss Function

Training Neural Networks can be regarded as solving a non-linear optimization problem. Which
is, tuning the networks internal parameters such that for a given input, a desired output is being
produced. Hence, it is required to define an objective function, which in this context is referred to
as a loss function. By performing backward passes (cf. Sec. 2.4.5) subsequent to forward passes
through the network, its weights and biases are adjusted such that the occurring loss is being
minimized.
A natural choice for such an objective is the mean squared error or l2-loss which is popular in the
field of optimization and reads

LMSE =
1

N

N∑
i=0

(yi − ŷi)2 (2.8)

where N is the number of samples while ŷi refers to the prediction for some input sample xi and
yi is the corresponding ground truth label. When applying this loss function to images, the loop
in Equ. 2.8 could run over all pixels in an image or all the pixels of a batch of images as explained
in the subsequent section. Note that in practice, often the sum of absolute differences or l1-loss is
used

L1 =
1

N

N∑
i=0

|yi − ŷi| (2.9)

In classification tasks, it is common practice to put a Softmax activation on the network’s
final layer for multi-class classification and a Sigmoid for binary classification. Subsequently, the
cross-entropy loss is being computed as

LCE = −
N∑
i=0

yi · log(ŷi) (2.10)

resulting in categorical and binary cross-entropy losses respectively. Sec. 2.4.5 will describe how
the network weights are being updated with respect to the sample- or batch-wise loss such that
a forward pass through the network produces an output closer to the desired prediction during
training.

2.4.5 Training

Training a neural network refers to the process of successively updating its parameters (weights
and biases) such that the network yields correct predictions for unseen examples for some task at
hand. For example, a classification network should output the label ”cat” when trained to recognise
images of various animals and ”cat” is a valid category in the trainind dataset. In that case, a
test image is being fed into the input layer, a forward pass with the corresponding calculations
(cf. Equ. 2.2) takes place and the neuron associated with the ”cat”-category should yield the highest
value of all neurons in the output layer, denoting a high probability for the sample to be of type
”cat”. Updating the weights correctly such that this outcome is going to be likely is achieved with
the so-called backpropagation algorithm discussed next.

Optimization and The Backpropagation Algorithm

The training procedure is an interplay between forward passes of samples or batches of samples
through the network and backward passes (which is essentially done via the backpropagation
algorithm) to adjust the weights in a direction which minimizes the objective function value for
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the training batch passed to the network. Let C denote the total cost of the network, that is the
average loss per sample for all samples present in the training data. The direction in which the
weights and biases, represented by the vector w, should be changed is then given by the negative
gradient of this total cost function

−∇C(w) (2.11)

Note that referring to the term weight often includes the biases and addresses all of the network’s
parameters. The i-th entry of this gradient vector represents the sensitivity of the cost function
C to changes of the weight wi. The actual magnitude of the update depends on the learning
rate η, which is a training hyper-parameter (cf. Sec. 2.4.5) and is usually set by the operator and
potentially adjusted over the course of training. The weight update for one particular training step,
that is, one forward pass of (a batch of) data and the corresponding backward pass, is given by

w← w− η∇C(w) (2.12)

The question remains on how to compute this gradient vector for such a complex function
like a neural network with millions of parameters. Sec. 2.4 introduced the idea of forward passes,
that is, calculating the output of the network given some input. The backpropagation algorithm
is concerned with backward passes to compute the gradient of the neural networks cost function
with respect to every single parameter. In other words, if we know the influence of every parameter
to the overall loss, we know how to turn the knobs and dials to adjust the parameters in order to
increase the final loss. This works by starting at the very last layer and applying the chain rule
consecutively moving backwards through the network until the input layer is reached.

Stochastic and Mini-batch Gradient Descent

In practice, it is computationally very demanding or infeasible to compute the influence to the
gradient of the cost function of every single training example in every single training step. Instead,
the training set is shuffled and random samples or batches of samples are being drawn for which the
gradient is then being computed to update the weights accordingly. The former strategy is denoted
as stochastic gradient descent (a single random sample is responsible for a full update of the
networks weights) while the latter is called mini-batch gradient descent (a set of training sample
- a so-called mini-batch yields one update step of the networks weights). While those strategies
likely do not yield the true gradient of the cost function at any time, they work well in practice
and let the network approach a local minimum much faster than computing the gradient including
all training samples in every step which would embody the actual gradient descent algorithm.
Fig. 2.6 compares the behaviour of the three variants of gradient descent schematically. Note that
basic gradient descent yields the optimal update of parameters but is also computationally very
demanding. On the other hand, stochastic gradient descent produces a very wiggly path in the cost
function’s space with a very cheap update of weights. Mini-batch gradient descent combines the
best of both worlds with descent parameter updates and feasible computational efforts and is thus
done in practice. The algorithm is written-out in Listing 1.

It should be noted that cost functions of high-dimensional networks, that is, networks with a
high number of parameters, are usually far from being convex like the example shown in Fig. 2.6.
Thus, training such a network likely results in getting stuck in a local minimum. While this
might sound problematic at first, practice has shown that those local minima yield ”good enough”
predictive power for the networks to be deployed in a variety practical applications.

Hyper-parameters

We have learned before that neural networks act as automatic feature extractors. That is, they learn
representations or features of data without the need for human experts to curate or extract features
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Figure 2.6: Schematic comparison of stochastic gradient descent, mini-batch gradient descent
and standard gradient descent for a hypothetical two-dimensional cost function represented by its
isolines. While the gradient descent algorithm uses the true gradient calculated by incorporating
all data at hand, stochastic or mini-batch gradient descent might eventually converge to the same
or qualitatively equal local minimum with much less computational resources required.

Algorithm 1: Mini-batch Gradient Descent

0) initialize network parameters randomly;
while cost decreases do

1) sample a mini-batch from the training set;
2) forward pass the batch through the network to obtain predictions;
3) calculate the mean gradient of the cost function for the mini-batch;
4) update the networks paramters accordingly;

end

from samples using prior knowledge. However, to train neural networks, one has to set certain
parameters that cannot be (this is actually subject to research since it is clearly advantageous to
learn as many aspects involved in a neural network training procedure as possible) learned by the
model and are commonly referred to as hyper-parameters.

A number of hyper-parameters are hidden in the actual model architecture. This might in-
clude the number of layers, the width, height and number of convolutional filters. Also the type of
activation functions can be regarded as part of the hyperparameters.

In Sec. 2.4.5 we have already come across the learning rate η. It is usually set to some small
value like 0.0001 in the applications discussed in this work. However, there exist adaptive schemes
where the learning rate is decreased over time as the network approaches some minimum of its
cost function. If the learning rate is too large, the weight updates will be large as well and the
trajectory will overshoot minima which might drive the loss into oscillation or divergence and
prohobit convergence. On the other hand, if the learning rate is too small training will take signif-
icantly longer.

The mini-batch gradient descent algorithm introduced earlier relies on the sampling of a num-
ber of samples from the training data. The size of those batches is denoted as the batch size and
mainly depends on the available memory of the underlying compute hardware. Since larger batch
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mean more parallelization, training is usually faster and one usually chooses whatever fits into the
memory of the GPU at hand. That being said, the choice of batch size can influence the training
dynamics.

2.4.6 Common Components and Techniques

This section gives an overview over common components and techniques used in modern deep
learning. It is not exhaustive and focuses on the most important and relevant works in the field,
discussing techniques which are being used in the models deployed in experiments throughout this
work.

Layered Structure

Artificial neural networks are usually composed of various numbers of neuronal layers. The output
of the computation belonging to a neuron in a particular layer, as defined in Equ. 2.2, is being
forwarded as part of an input vector to a neuron in a subsequent layer. Over the last decades,
the number of layers has been seen continuous growth. While the early LeNet5 network [Lecun
et al., 1998] was composed of only five layers, recent networks such as the Resnet architecture
[He et al., 2015] contain hundreds of layers. The term Deep Learning refers to training networks
with multiple numbers of (hidden) layers which are considered to be deep.

Fully Connected Layers

Fully connected layers are arguably the most simple or basic type of network layer. Neurons
are usually stacked in layers (cf. Fig. 2.4 for the multilayer perceptron) where each neuron of a
particular layer is connected with each neuron of the preceding layer as shown in Fig. 2.7. In the
popular task of image classification, such layers are usually placed behind a block of convolutional
layers right before a final Softmax activation layer which transforms the output values of the last
layers into a class probability distribution.

Figure 2.7: A fully connected layer. The thickness of connecting lines represent the magnitude of
weights associated with a particular connection.
Source: https://www.medium.com/
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Convolutional Layers

Although introduced over two decades ago by [Lecun et al., 1998], convolutional neural networks
have gained traction significantly due to successes in the ImageNet competition by [Krizhevsky
et al., 2012]. Today, image-based deep learning cannot be imagined without convolutional layers.
The core mechanism of those layers is the convolution (pixel-wise summation) of one or multiple
kernels (also called filters) with some input image in the first layer or feature map in deeper layers.
A convolutional layer’s output shape depends on the chosen number of filters and their sizes as
well as the amount of padding applied to the input feature map and the stride of the kernel. Refer
to Fig. 2.8 for an example with common choices of such parameters. Note that convolutional
neural networks are sparse in that every value in an output feature map only depends on a small
number of input values (convolved with some kernel). This preserves topological information
which would be lost when transforming an image into a one-dimensional vector and feeding it
into a fully-connected network. Convolutional layers are also very efficient due to the re-use of
parameters since the values of some kernel are constant while sweeping over the input feature map
and get updated only after a full training step is done. The input feature map can hold image-like
matrices, e.g. a colored image is composed of three channels. A single filter would then produce
three output maps which are being added for a final output map. Each filter yields such an output
map, thus the number of filters decides for the number of channels in the final output feature map.

Figure 2.8: A convolutional kernel of size 3 × 3 (transparent grey) moves along spatial positions
on a feature map (blue) with zero-padding of one pixel in both dimensions to produce the output
feature map (green) which, in this case, has the same dimensions as the input map.
Source: [Dumoulin and Visin, 2018]

Since the networks used throughout this work fall into the family of Auto Encoders, they fol-
low a encoder-decoder structure, that is, the input image is encoded down to a smaller latent space
representation via convolutional layers before being upsampled again with so-called deconvolu-
tional layers, also known as transpose convolutions, whose mechanics are depicted in Fig. 2.9.

Overfitting and Dropout

One common concern with training deep neural networks is that of overfitting to the training
data. Models which overfit to the training data do not generalise well to held-out test data, that is,
they perform poorly on unseen samples although showing better performance on in-distribution
training data. For that reason, one does usually sub-sample a held-out validation set from the
training data at hand, which is not used in training, to validate the models performance as training
goes on. When the model shows significantly higher performance on the training set compared to
the validation set, this is usually a sign that the model does indeed overfit to the training data.

Several strategies exist to tackle this problem: Increasing the amount of training data usually
helps to avoid overfitting due to increased diversity in the training data. This process might be
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Figure 2.9: A transpose convolutional kernel of size 3× 3 (transparent grey) moves along spatial
positions on a 2 × 2 feature map (blue) with zero-padding of two pixels in both dimensions to
produce the output feature map (green) whose extent is larger than the input feature map.
Source: [Dumoulin and Visin, 2018]

Figure 2.10: Schematic training and validation loss over the course of ongoing model training.
The model starts overfitting to the training data roughly at the epoch corresponding to the dashed
vertical line when the loss on the held-out validation data starts to increase. This would be the
optimal point to do early stopping of the training to achieve best performance and maximum
generalizability.

expensive (e.g. highly paid experts manually labelling images) or infeasible due to the lack of
abundance of relevant events. In the setting of unsupervised learning it’s not even an option by
nature. Those difficulties can be overcome partially by artificially creating new data samples from
existing ones by applying data augmentation. That is, applying geometric or lighting transforma-
tions to input images, such as random flips, sheers, scalings, crops or exposure adaptations. Data
augmentations have been used heavily in image-based deep learning to make models more robust
against distributional shifts or deviations from unseen examples compared to the training data dis-
tribution.

Dropout [Srivastava et al., 2014] is yet another technique to tackle the issue of overfitting and
can be seen as a way to regularize the neural network. Regularization can be seen as a way to
prevent unwanted model complexity. It works by dropping neurons with a certain probability at
train time, that is, setting them to zero. The dropout rate enters as yet another hyper-parameter
which needs to be chosen by the programmer and is usually set to 40-70%. At test time, all neurons
are used as is, that is, no dropout is being applied. This procedure is depicted in Fig. 2.11. An
intuition as to why this technique would work in the first place can be given as follows. From the
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perspective of a single neuron, it might be dangerous to rely on single input features since, with
dropout, those input features might be gone in the next iteration. Thus, it is rewarding to spread
out the weights which corresponds to shrinking them. This draws an interesting connection to the
well-known L2-regularization technique, which is frequently applied to classical machine learning
models and aims to shrink a models parameters to reduce its complexity. Dropout has been used
extensively with great success in the field of deep learning and particularly in the Computer Vision
community since training data is usually sparse compared to the high dimensionality of input
samples.

Figure 2.11: Schematic representation of a fully connected network with two hidden layers and a
single output neuron without (a) and with (b) dropout applied.
Source: [Srivastava et al., 2014]

More recently, it could be shown that Dropout can be used to represent the models uncertainty
[Gal and Ghahramani, 2016] in its predictions. This simple technique leaves Dropout turned on
also during test time and performs several forward passes of a training sample through the network,
each time with different random Dropout. The uncertainty of the prediction can then be reported
via the standard deviation of the individual predictions.

Batch Normalization

Batch normalization makes neural networks more robust to various sets of hyper-parameters and
can also speed up training deep models and has been introduced by [Ioffe and Szegedy, 2015].
Batch normalization works by normalizing the output values (usually after the activation function)
of a single layer such that their mean and variance are parameterized by two learnable parameters.
Intuitively speaking, batch normalization applies similar normalization to deeper layers, and thus
facilitates training, as does normalization (scaling) of input features, a well-known technique used
when training machine learning models. In more detail, even though activation values in some
hidden layers might change when inputting different samples, their mean µ and standard deviation
σ stay the same. Note that µ and σ for a particular layer do not have to be 0 and 1 necessarily. This
makes the activation values throughout the network more stable and lets the later layers work with
normalized input data much like the very first hidden layer when normalizing the original input
data.

It should be noted that batch normalization adds additive (by subtracting the mean) and mul-
tiplicative (by dividing through the standard deviation) noise to the layers activations. The noise
enters since the normalization is usually performed by only taking the samples from one single
mini-batch into account. This in turn has a regularization effect since individual units tend to
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rely less on values of single input connections. This raises the question whether one should use
Dropout next to batch normalization or rely on the regularization effect of batch normalization
itself. Note that for larger batch sizes, regularization due to batch normalization decreases.

2.5 Graphical Models

Graphical Models are probabilistic models which make use of a graph-based representation to
express conditional dependencies of a collection of random variables. One particular class of
graphical models based on Directed Acyclic Graph (DAG) are known as Bayesian Networks or
Belief Networks. At this point, a very simple form of a Belief Network shown in Fig. 2.12 shall be
discussed since it is essential to understand the inner workings for VAEs which will be introduced
in Sec. 3.1.2. Note that this section relies on shorthand notation, that is, the probability distribution
p(X = x) for a random variable X is represented in shorthand notation by p(x).

In this case, we are interested in inferring the probability distribution of the latent variable
p(z), which governs the generative process for the data distribution p(x). That is, we want to infer
the conditional distribution p(z|x). This can be expressed using Baye’s theorem

p(z|x) =
p(x|z)p(z)
p(x)

=
p(x, z)

p(x)
(2.13)

In this setting, p(z|x) is known to be the posterior, p(z|x) is the likelihood, p(z) the prior and
p(x) the marginal distribution. The marginal distribution often renders itself intractable, especially
when deploying deep neural networks as function approximators since the integral

p(x) =

∫
p(x|z)p(z)dz (2.14)

becomes very high dimensional and intractable. Thus, to perform posterior inference, one employs
different techniques like Markov Chain Monte Carlo sampling (MCMC) or Variational Inference.
The latter will be introduced in Sec. 3.1.2 as it poses the foundation for VAEs which is the major
framework used throughout this work.

Figure 2.12: An example of a simple graphical model. The observed random variable x depends
conditionally on the hidden or latent variable z which governes the generative process for samples
following x.

2.6 Information Theory

Information theory is based on the work and findings of the mathematician Claude Shannon. It
is concerned with problems like the handling of information, its compression and transmission.
Furthermore Shannon’s definition of entropy, which reflects a notion of uncertainty, has become

17



CHAPTER 2. FUNDAMENTALS

increasingly important in the field of deep learning when analysing the reliability of model predic-
tions. This chapter shall give a short overview on the most relevant pieces out of this broad field
which are relevant to understand techniques and methods used and applied in this work.

2.6.1 Information Content

Let X denote a discrete random variable with a probability density function p(X = x) = p(x).
The associated possible outcomes are defined by the alphabet X = {x1, x2, ..., xn}. The informa-
tion content is then defined as

I(x) = − log2 p(x) (2.15)

and describes the surprise of a particular event. Intuitively speaking, due to the nature of the loga-
rithm, very likely events, that is, events with high probability of occurrence, yield low information
content and vice-versa.

2.6.2 Shannon Entropy

The Shannon Entropy is defined as the expectation value of the information content

H(X) =
∑
x∈X

p(x)I(x) = −
∑
x∈X

p(x)log2p(x) (2.16)

and represents the average uncertainty within a random variable. For example, the Bernoulli
experiment of tossing a coin has the highest possible value of entropy if the coin is fair, that is
p(X = heads) = p(X = tails) = 1/2 since H(X) = −(1/2log1/2 + 1/2log1/2) = 1, as shown in
Fig. 2.13.

Figure 2.13: The Shannon entropy as a function of probability p that some positive event will
occur for the case of a Bernoulli experiment. The negative probability is then given by p − 1.
The highest entropy and likewise highest uncertainty with respect to the outcome is given when
p = 1/2.
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2.6.3 KL Divergence

The KL divergence represents a measure of dissimilarity for two probability distributions. It tells
us how strong two distributions p(x) and q(x) differ from one another. It is defined as

KL(p||q) =
∑
x∈X

p(x)log
p(x)

q(x)
= −

∑
x∈X

p(x)log
q(x)

p(x)
(2.17)

for the discrete and

KL(p||q) =

∫ +∞

−∞
p(x)log

p(x)

q(x)
dx (2.18)

for the continuous case. In the discrete case (Equ. 2.17), the latter representation is often preferred
in the literature. The KL divergence is non-negative and not symmetric:

1. KL(p||q) ≥ 0

2. KL(p||q) 6= KL(q||p)

The KL divergence will come into play in Sec. 3.1.2 where it shows up as a term in the loss
function of the Variational Auto Encoder framework. Fig. 2.14 shows an example of the behaviour
of the KL divergence in the case of two simple discrete probability distributions to gain some
intuition.

Figure 2.14: Two examples of discrete distributions and p(x), q(x) and the respective KL di-
vergence between them. (a) KL(p||q) = 0 due to identical distributions and (b) KL(p||q) =
3/4log(3/2) + 1/4log(1/2) > 0 indicates dissimilar distributions

2.7 Metrics

2.7.1 Evaluation of a Binary Classifier

Since binary classification is of great concern for the experiments and results presented throughout
this work, this chapter shall present the most important concepts and evaluation strategies when
using binary classifiers. Binary classification is concerned with predicting an input sample to
belong to a positive (usually denoted with label 1) or negative class (label 0). This results in four
types of predictions. True positives (TP), that is, a sample belongs to the positive class and the
model assigns a positive label to the sample. True negatives (TN), that is, a sample belongs to the
negative class and the model assigns a negative label to the sample. False positives (also known as
type 1 error, FP), that is, the sample actually belongs to the negative class, but the model predicts
that it belongs to the positive class. And finally, false negatives (type 2 error, FN), that is, the
sample actually belongs to the positive class but the model predicts it to belong to the negative
class. The term positive and negative has no valuation and it is up to the programmer to decide
which class represents the positive and negative samples depending on the task at hand. In this
work, the positive class is usually assumed to be the lesional or OOD class.
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The Confusion Matrix

Fig. 2.15 arranges the aforementioned categories into a 2× 2 confusion matrix, a common tool to
evaluate the performance of a binary classifier.

Figure 2.15: Confusion matrix for the binary classification problem.

Accuracy

Accuracy is frequently used as a summarizing metric for a binary classification problem. It gives
the ratio of all correct predictions over all predictions.

accuracy =
TP + TN

TP + TN + FP + FN
(2.19)

It should be used with great care since it can give very skewed impressions of the performance
of a classifier when dealing with unbalanced datasets. For example, a classifier which predicts all
samples to be diseased (positive class) given a set of 10′000 blood samples while there are 100
sick patients achieves an accuracy of 99% which is not expressing the fact that it is completely
failing in detecting the diseased samples while at the same time marking healthy samples as such.

Precision and Recall

Precision answers the question ”From all the samples that have been predicted to be positive, how
many are actually positive?”.

precision =
TP

TP + FP
(2.20)

Recall on the other hand answers the question ”What fraction of positive examples has the classi-
fier been able to detect as such?”.

recall =
TP

TP + FN
(2.21)

Reporting precision and recall compared to only accuracy is often a much stronger statement com-
pared to stating only the accuracy of a classifier. For example, the classifier in the example above
with an accuracy of 99% would achieve a recall of 100% (since all positive, diseased samples,
have been detected) but a precision of only 1%. This reveals the fact that although the classi-
fier is being able to detect all diseased samples and thus has the highest number of true positives
possible, it produces a massive amount of false positives such that we cannot really trust its pre-
dictions. In practice, there is a trade-off between precision and recall which is expressed in the
Precision-Recall Curve (PRC), discussed in the next section.
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ROC and PRC Curves

A classifiers prediction usually comes in the form of a probability distribution or with a more
generic scoring function value. For example, for an input blood sample, the classifier would report
with 20% probability that the sample is diseased and consequently with 80% probability that it is
not diseased. It is then the operators choice to set a threshold on the predictive probability at which
a sample should be considered diseased or not. By adjusting the threshold to low probabilities, the
recall increases since a new sample is marked positive already with a low predicted probability or
scoring. On the other hand, the precision decreases since more false positive are being introduced.
There exist two common ways to visualize and summarize those findings in a single metric.

The ROC Curve (Receiver Operating Curve) plots the True Positive Rate (TPR) against the
True Negative Rate (TNR). The True Positive Rate is another denotation for the recall and ex-
presses the very same thing. The True Negative Rate or specificity is defined by

TNR =
TN

TN + FP
(2.22)

and answers the question ”What is the fraction of actual negatives samples, which have been
labeled as such by the classifier?”.

The AUC (Area under the ROC curve) summarizes the overall performance of a binary classi-
fier by simply reporting the area under the curve for a given classifier. A high value of AUC means
that the classifier performs well, that is, it generates high recall while keeping the false positive
rate low, over a large range of thresholds. A random classifier (random guessing) yields an AUC of
0.5 while a perfect classifier yields an AUC of 1.0. A classifier which systematically predicts the
wrong class will yield an AUC smaller than 0.5. Fig. 2.16 shows a ROC curve for three different
classifiers. The blue classifier is closest to the hypothetical perfect classifier in the upper left and
has the overall best performance across all probability thresholds with the largest AUC. Note that
the operater can choose an operating point (probability threshold) depending on the goal of the
predictive system. If it is very important to capture close to all of the positive examples, he will
set the threshold rather low to achieve a high recall with the drawback of introducing more false
positives. In that case, he will move on the ROC curve to the upper right. If however it is important
to be very sure that a positive prediction is actually positive, he would chose a high threshold and
move to the bottom left to reduce the false positive rate.

The PRC Curve (Precision-Recall Curve) depicts the trade-off between precision and recall
introduced earlier. It is an alternative to the ROC Curve and frequently used to visualize the overall
performance of a binary classifier.

Similar to the AUC, the AUPRC (Area under the Precision-Recall Curve) summarizes the
performance of a classifier in a single metric.

Scientific papers in the field of Unsupervised Anomaly Detection and OOD detection typically
report AUC and/or AUPRC scores to describe the performance of the classification models. This
could concern the ability of an anomaly detection model to detect lesional MRI brain scans or
the ability of an OOD detection framework to detect distributional shifts of input data samples.
Fig. 2.16 give a schematic overview of a ROC and PRC curve with corresponding annotations of
the principles discussed above.

2.7.2 Image Segmentation

Unsupervised Lesion Detection is concerned with the task to segment out pixels from an input
image which belong to lesional structures such as brain tumors. This is similar to the the binary
classification problem on a pixel level. The community of image segmentation has developed their
own metrics for this type of tasks. The most common metrics reported are the Intersection over
Union (IoU) and Dice score introduced up next.
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Figure 2.16: Left: ROC curve comparing three classifiers. The hypothetical perfect classifier is
in the upper left with 100% TPR and 0% FPR. The classifier belonging to the red curve has the
overall highest AUC (area under ROC curve) and is therefore preferable to the other two. The
purple classifier has an AUC smaller than 0.5 which indicates systematically wrong predictions.
The horizontal dashed center line represents a random classifier with an AUC of 0.5. Right: PRC
curve comparing three classifiers. The hypothetical perfect classifier lies on the upper right with
100% recall, meaning all positive instances have been detected and 100% precision, meaning that
all instances predicted to be positive are actual positives. The direction of movement along either
the ROC or PRC curve when changing the scoring threshold is indicated with arrows.

Intersection over Union (IoU)

The IoU metric is defined as

IoU =
|target ∩ prediction|
|target ∪ prediction|

(2.23)

where target and prediction denote the set of pixels belonging to the ground truth and prediction
mask belonging to the class of pixels one wants to segment. The IoU values lie in the range [0, 1]
where a value of 0 means that the intersection of prediction and ground truth is zero, that is, no
pixel could be segmented successfully, and a value of 1 denotes perfect overlap of the two and
represents the highest score possible.

Dice Score

The Dice score is similar to the IoU metric and reads

Dice =
2 ∗ |target ∩ prediction|
|target|+ |prediction|

(2.24)

Just like the IoU metric, the Dice score ranges from 0 (worst) to 1 (best). Note that instead of
the union, the denominator now holds the sum of the target and prediction areas. The factor 2 in
the nominator thus makes sure that the Dice score sums up to 1 for a perfect prediction, similar
to the IoU. While there are subtle differences in the behaviour of those metrics when it comes to
taking averages over many inferences, that is, IoU measures closer to the mean performance while
Dice measures closer to the worst case performance, their application depends mainly on what is
commonly used in the respective domain. In the field of Unsupervised Lesion Detection on brain
MRI, the predominant metric reported is the Dice score.
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2.8 Magnetic Resonance Imaging (MRI)

The methods presented throughout this work are first and foremost applied to MRI data which is
why this imaging modality shall be introduced in this section in more detail. And possibly also
due to the fact that this thesis concludes my studies of Physics which I would like to highlight
briefly in this chapter.

Physics Background Nuclei contained in the human body might carry spin S which translates
into magnetic moment µ via the gyromagnetic ratio γ

µ = γ · S (2.25)

While the proportionality factor γ depends on the specific nuclei in consideration, it should be
noted that a high value of γ is usually preferred in the context of MRI since this would translate a
given ”amount” of spin into a large amount of magnetic moment. This is key in obtaining strong
MRI signals for detection. In a world of very small length scales, one has to consider quantum
mechanical effects which reveal that spins (and energy levels) occur in quanta. The z-component
of a nuclei spin vector S is defined by

Sz = ~m (2.26)

where ~ = 1.054 × 10−34J · s is the reduced Planck’s constant and m the magnetic quantum
number

m = −I,−I + 1, ..., I − 1, I (2.27)

while I is the spin quantum number. It reads I = 1/2 in the case of 1H , thus m = ±1/2 which
results in µz = γ~m = ±1/2~γ. For simplicity, the following considerations will always consider
the case of 1H isotopes. Hereby, the z-component is defined through the direction of an externally
applied magnetic field B. Strong alignment of the magnetic moment µ with B results in a low-
energetic state and vice-versa. Note that full alignment can never be achieved due to quantum
mechanical constraints, since

|S| = ~
√
I(I + 1) (2.28)

The energy content in a given spin-state is defined by

Em = −µ · B = −µz ·B0 (2.29)

where the last equality takes into account that the external magnetic field B is perfectly aligned in
the z-direction by definition. This reveals that the m−1/2-state is high-energetic (Em = +~/2B0)
while m+1/2-state is lower energetic (Em = −~/2B0).

MRI relies on the fact that for a given isotope, that is, an element defined by it’s number of
protons with possibly varying number of neutrons, in the human body, e.g. 1H , the number of
nuclei residing in a low-energetic up-spin state, n−1/2 and those in a high-energetic low-spin state,
n+1/2, differs and follows the so-called Boltzmann statistics

n−1/2

n+1/2
= exp(− ∆E

kB · T
) (2.30)

where kB = 1.38064852 × 10−23m2kgs−2K−1 is the so-called Boltzmann constant, T is the
temperature in Kelvin and ∆E represents the energy-gap between high and low energetic nuclei.
Note that this gap depends linearly on the background field strength B0, a key factor exploited
by MRI systems since this field strength can be varied over time and space with the appropriate
facilities.
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Nuclei shifting from a high to a lower energetic state release photons with energy

∆E = ~ · ωL (2.31)

where ωL is known to be the larmor frequency. MRI systems measures the decay of macroscopic
magnetization which is defined by

M0 =
∑

µz (2.32)

for a given volume of interest over which we consider the sum of magnetic moments. This macro-
scopic view allows us to consider a classical approach and observe the magnetization dynamics
which are governed by the so-called Bloch equations

d

dt
M = γB×M−

 Mx/T2

My/T2

(Mz −M0)T1

 (2.33)

In matrix-vector form they read

d

dt
M =

 −1/T2 −γBz γBy
Bz −1/T2 −γBx
−γBy γBx −1/T1

M +

 0
0

M0/T1

 (2.34)

MRI principles Now, consider adding a circularly polarized field with circular frequency wRF ,
which yields non-zeroBx andBy components of the resulting field which will now precess around
to z-direction. To complicate things further, the Bloch equations reveal that the total magnetiza-
tion vector M itself precesses around the net magnetic background field. Thus adding such a
secondary field with an appropriate frequency perturbs the magnetization and changes the trans-
verse and longitudinal magnetization components. After shutting down the radio-frequency pulse
those magnetization components get relaxed, meaning they decay exponentially. The time horizon
for transverse relaxation is what we denote T2 relaxation while T1 is associated with longitudinal
relaxation. Those are typically in the range of 40 − 100 msec for T2 and 200 − 900 msec for T1.
The key observation to obtain tissue contrast in MRI images is the fact that the relaxation times
differ for different types of tissue.

Magnetic moments induce magnetic fields and signal detection can be carried out by placing
a detector coil close to the patient’s body and exploiting the Farraday’s induction principle to
measure an induced voltage in the coil.

Position localization of the signal is done using so-called gradient fields which are put in place
with so-called Golay pairs. They introduce magnetic field gradients dBz/dz, dBy/dz, dBx/dz which
can be used for position localization using

ω(z) = γ(B0 +
dBz
dz

z) (2.35)

which reflects that fact that gradient fields make the emitted photon frequency during relaxation
position dependent.

T1- T2-weighted imaging While early MRI images basically exploited the mechanisms ex-
plained above, also known as frequency encoding, and produced images reflecting the spin dis-
tribution within the body, more modern approach are often weighted by the relaxation times T1
and T2 of tissues. While there are different methods to obtain T1 weighted images, one variant is
to apply a 90 deg flip of magnetization and let one tissue type relax by waiting for the so-called
recovery time. After a second RF pulse, there will be more transverse magnetization available
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in this tissue for imaging which will highlight tissue with shorter T1 relaxation times when the
recovery time is chosen to be small. T2-weighted images are somewhat more complicated and
obtained by so-called Spin-Echo experiments where a 90 deg pulse is followed by a 180 deg pulse
before imaging. Fig. 2.17 shows axial slices from T2- and T1-weighted MRI brain scans.

Figure 2.17: (a) A T2-weighted axial-slice MRI brain scan with a hyperintense lesion on the upper
right. (b) A healthy T1-weighted slice.
Source: Case courtesy of Assoc Prof Frank Gaillard, Radiopaedia.org, rID: 28272
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Related Work

3.1 Generative Models

The basic concepts behind generative modelling have been introduced in Sec. 2.2.2 while graphical
models have been discussed in Sec. 2.5. In the following, a number of relevant Deep Learning
based generative models shall be introduced to understand how they can be used for the task of
unsupervised anomaly detection. In the present case of segmenting anomalies within brain MR
images, we use the notion of deep unsupervised lesion detection. The generative models outlined
in this section provide the foundation for this intend.

Figure 3.1: Schematic depictions of (a) Auto Encoder (AE) and (b) Variational Auto Encoder
(VAE) architectures. Both frameworks encode an input sample x into a latent space representation
z before decoding it back into sample space to obtain a reconstruction x. While the vanilla AE
architecture is completely deterministic, the VAE framework models the latent space representa-
tion by means of a probability distribution parametrized by µ and σ. An actual latent sample z
is then being sampled from this distribution from which the decoder will eventually generate a
reconstructed sample.

3.1.1 Autoencoder (AE)

An Autoencoder learns to map a given input x using an encoder network encθ(x) with parameters
θ into a so-called latent space representation z = encθ(x) before reconstructing the original input
via a decoder network decφ as x̂ = decφ(encθ(x)). It does so by minimizing the reconstruction
error |x− x̂|p, where p is usually chosen to be 1 (absolute error) or 2 (squared error) in the context
of image reconstruction. The latent space representation can be either a one-dimensional vector
or a higher-dimensional, tensor-like representation. However, in practice it is usually chosen to be
low-dimensional compared to the input data to force the learning of a meaningful representation
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of the most important features of the input data due to limited amount of space available. This
can be interpreted as dimensionality reduction while the most important features of the data are
preserved to be able to create a meaningful reconstruction. In fact, in can be shown that a simple
AE with one hidden layer is equivalent to PCA introduced in Sec. 2.1, arguably the most popular
dimensionality reduction technique. A schematic depiction of an image-based Autoencoder with
convolutional hidden layers and a one-dimensional bottleneck is shown in Fig. 3.1 (a). Vanilla
Autoencoders do not impose any constraints or regularization on the latent space representation,
allowing any configurations and heavy imbalances in terms of occupied volume for different types
of samples, which might not be beneficial. The Variational Autoencoder framework in upcoming
section addresses this issue by imposing a regularization term on the latent space representation.

3.1.2 Variational Auto Encoders (VAE)

The family of Variational Auto Encoders are the major type models used throughout this work
justifying the somewhat in-depth introduction in the following section. In a nutshell, Variational
Auto Encoders [Kingma and Welling, 2014] introduce two distinct changes to the Auto Encoder
framework introduced in Sec. 2.2.2 even though their development originates from a very different
point of view. First, the loss function is being adapted by introducing a term based on the KL-
divergence (cf. Sec. 2.6.3). The additional loss term introduces regularization into the latent-space
distribution which means a more expressive latent code. Second, the latent space representation
changes from a tensor-like layer structure to a layer representing a probability distribution. Finally,
by introducing stochasticity into the framework, the so-called reparameterization trick is being
deployed to enable render training such a network feasible.

Consider the graphical model introduced in Fig.2.12. The generative process is given by
p(z)p(x|z). The posterior p(z|x) however is intractable as stated before. The idea is then to
approximate p(z|x) by using a tractable distribution q(z|x). For simplicity, we denote to this dis-
tribution as q(z) here but the general case still holds. For it to be a decent approximation, we want
it to be close to p(z|x) which is achieved by minimizing the KL divergence

KL(q(z)||p(z|x)) = −
∑
z

q(z) log
p(z|x)

q(z)

= −
∑
z

q(z) log

p(x,z)
p(x)

q(z)

= −
∑
z

q(z) log
p(x, z)

q(z)p(x)

= −
∑
z

q(z)

[
log

p(x, z)

q(z)
+ log

1

p(x)

]
= −

∑
z

q(z) log
p(x, z)

q(z)

∑
z

q(z)(x)

= log p(x)−
∑
z

q(z) log
p(z, x)

q(z)

(3.1)

Rearranging the result above yields

log p(x) = KL(q(z)||p(z|x)) +
∑
z

q(z) log
p(x, z)

q(z)︸ ︷︷ ︸
L

(3.2)
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Note that log p(x) is a constant when varying q(z), therefore minimizing the KL divergence
KL(q(z)||p(z|x)) corresponds to maximizingL, also known as the Evidence Lower Bound (ELBO)
since it acts as a lower bound for log p(x). L is a true lower bound of log p(x) due to the fact that
theKL term is strictly non-negative, thus L < log p(x). Since the logarithm is a strictly monoton-
ically increasing function, maximizing L also has the effect of generating the observation x since
we increase p(x).

Some further transformations yield the more common form of the ELBO

L =
∑
z

q(z) log
p(z, x)

q(z)

=
∑
z

q(z) log
p(x|z)p(z)

q(z)

=
∑
z

q(z)

[
log p(x|z) + log

p(z)

q(z)

]
=
∑
z

q(z) log p(x|z)︸ ︷︷ ︸
Eq(z) log p(x|z)

+
∑
z

q(z) log
p(z)

q(z)︸ ︷︷ ︸
−KL(q(z)||p(z))

= Eq(z) log p(x|z)−KL(q(z)||p(z))

(3.3)

The final objective of the vanilla VAE framework is to maximize this lower bound. This
is commonly achieved by minimizing the negative value if L which is comprised of two terms,
the reconstruction error and the KL divergence between the approximate posterior and the prior
which we denote as the prior loss in this context.

log p(x) ≥ L = Eqφ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
Reconstruction Error

−DKL[qφ(z|x)||p(z)]︸ ︷︷ ︸
Prior Loss

, (3.4)

While the first term aims to reduce the reconstruction error (similar to the standard Auto En-
coder framework), the second term minimizes the KL-divergence between some chosen prior dis-
tribution p(z) and the approximate posterior distribution q(z) or q(z|x) to be precise. In practice,
the first term is often replaced by |x− x̂|p with p ∈ {1, 2}. There is no way to make a well-
informed decision on what distribution to chose for the latent space prior distribution p(z). Hence,
in practice, usually a multi-variate Gaussian is chosen for that purpose. In a neural network set-
ting, the transformations q(z|x) and p(x|z) are represented by an encoder encθ with parameters θ
and a decoder decφ network with parameters φ respectively. Fig. 3.2 shows that VAEs are able to
learn a meaningful latent space representation which might encode high-level semantic properties
of the training data.

The Reparameterization Trick

Without loss of generality, consider the case where an encoder encφ maps an input image x to
an approximate latent space distribution q(z|x). When passing a sample through the network,
an actual latent representation is being sampled from this latent distribution. The stochasticity
introduced by the sampling operation renders the network not differentiable with respect to the loss
anymore which is a key requirement for backpropagation to work. Thus, [Kingma and Welling,
2014] proposed the use of the so-called reparameterization trick which, for this particular case,
states that the reparameterized latent space representation becomes

z = µ+ ε · σ (3.5)
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Figure 3.2: Images are being created by traversing the latent space while varying two distinct di-
mensions. Samples are being drawn at those various positions and reconstructed by the decoder.
(a) The VAE was able to learn the direction of gaze as well as the mood of a person which it en-
coded into the latent space representation. Trained on the Frey Face Dataset. (b) Similar principle
applied to the MNIST [LeCun and Cortes, 2010] dataset which reveals the continuous nature of
the latent space encoding.
Source: [Kingma and Welling, 2014]

where ε ∼ N (0, I) which let’s us approximate the normally distributed latent space distri-
bution with another normal distribution. Note that the network is now differentiable since µ and
σ are deterministic outputs of the encoder network encφ. The python pseudo-code for a simple
forward pass within a VAE is thus given by

mu , s igma = e n c o d e r ( i n p u t i m a g e )
l a t e n t c o d e = r e p a r a m e t e r i z e (mu , s igma )
r e c o n s t r u c t i o n = d e c o d e r ( l a t e n t c o d e )

3.2 OOD Detection Using Generative Models

OOD detection is concerned with the task of detecting input samples during inference on a trained
model which do not fit the so-called in-distribution data that has been used during training. More
specifically, consider the simple case of a discriminative model which infers a predictive distri-
bution p(y|x) for some input x which at train time is sampled from a training distribution p(x).
At test time, inference is run on samples from following a distribution q(x). The objective of
OOD detection is then to answer the question whether p(x) ≡ q(x), that is whether the test set
distribution matches the training distribution.

As introduced in Sec. 2.2.2, generative models model the density either implicitly or explic-
itly. More specifically, in the case of VAE’s, the ELBO L acts as a a lower bound for the data
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log likelihood log p(x) and the true likelihood can be obtained via MCMC sampling techniques.
Thus it stands to reason to define a single-sided likelihood threshold by running inference on in-
distribution training data. All samples which have lower likelihoods during inference compared
to this threshold would be regarded as OOD. While this technique has been introduced in the
early 90’s of the last century [Bishop, 1994], only recently it has been reported that it cannot be
trusted when working with high-dimensional input spaces, such as images, which might contain
thousands or millions of pixels. Recently, [Nalisnick et al., 2019a] and [Choi et al., 2019] have
reported the observation that OOD samples might be more likely for generative models compared
to in-distribution training data, which is difficult to make sense of intuitively. This behaviour is
shown in Fig. 3.3.

Figure 3.3: This work reveals empirically that a generative model (GLOW in this case [Kingma
and Dhariwal, 2018]), might assign higher likelihoods to OOD samples from the Street View
House Numbers (SVHN) Dataset [Netzer et al., 2011] when being trained on CIFAR-10 data
[Krizhevsky, 2009], which thus is regarded as in-distribution for this experiment. Note that Nega-
tive Bits Per Dimension can be converted into a likelihood measure.
Source: [Choi et al., 2019]

In the same work, [Choi et al., 2019] introduced the so-called WAIC score which consists
of the log likelihood and the corresponding variance over an ensemble of model predictions and
reads

WAIC(x) = Eθ[log pθ(x)] + V arθ[log pθ(x)] (3.6)

for a model parameterised wit parameters θ. The WAIC score is essentially a corrected version of
the expected log likelihood. The correction term subtracts the variance to penalize samples which
are sensitive to a particular choice of model parameters. Note that the expectation is taken over
multiple models with differing initializations which not only requires large efforts to train these but
also slower inference since a single WAIC score prediction needs several inference passes on the
various models. While this approach seems to be more robust in various pairings of in-distribution
and out-of-distribution datasets, no conclusive explanation as to why that is could be provided.
Nevertheless, by combining the notions of density estimation and uncertainty estimation into one
metric it does perform well empirically.

Similar findings were reported simultaneously by [Nalisnick et al., 2019a]. As a consequence,
a number of works attempted to explain and overcome this counter-intuitive behavior. In a fol-
lowup work [Nalisnick et al., 2019b] reported that there are dataset combinations for which the
likelihood distributions of in- and out-of-distribution datasets (training on CelebA, testing on Ci-
far) actually overlap near perfectly making the situation even more challenging. At the same
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time they provided a hypothesis as to why the likelihood method fails using the example of a
high-dimensional Gaussian. For a high-dimensional, symmetric Gaussian, the vast majority of
the probability mass resides in an annulus centered at a distance

√
d around the origin (which

at the same time represents the mean), where d is the dimensionality of the distribution. Or in
other words, when sampling from this high-dimensional Gaussian, the typical samples received
will very likely lie in this region and not close to the mean where one would find samples with the
highest likelihood given the probability density function. This behaviour is depicted in Fig. 3.4.
Following this assumption, they derive a statistical test for typical test set membership and apply
this metric to the task of OOD detection.

Figure 3.4: (a) Shows the example of a high-dimensional Gaussian with mean µ and standard
deviation σ. This two dimensional represents that while the mean location µ has indeed the highest
likelihood for a Gaussian, the typical set of this distribution lies in an annulus σ

√
d from which

region actual Gaussian noise can be sampled. This annulus region is where most of the probability
mass (volume) resides as shown in sub-figure (b).
Source: [Nalisnick et al., 2019b]

[Ren et al., 2019] proposed an OOD detection method based on so-called likelihood ratios.
The rational behind this approach is the assumption that any sample might consist of a back-
ground component holding generic noise and a foreground component which holds semantic in-
formation. By training a background model with perturbed training data (assuming perturbations
destroy semantic components) along with a foreground model with using original non-perturbed
input training data, the are able to correct the likelihood measure by subtracting the background
component which they assume to overshadow the semantic components in the standard likelihood
metric. By doing so, they are able to achieve a more robust OOD detection framework for various
dataset pairings.

Recently, [Morningstar et al., 2020] introduced another density-based OOD detection frame-
work by aggregating various inference statistics, e.g. the reconstruction errors, into the so-called
Density of States Estimation (DoSE) score. Specifically, they fit a Kernel Density Estimator (KDE)
to each statistics distribution evaluated on the training data and mark novel samples as OOD by
thresholding their sum of likelihoods under said estimators. A statistic is to be understood in the
sence that a trained model receives input samples on which inference is being performed. Any
generated output or intermediate result from the model can be used to deduce a quantity out of
which a complete statistic can be collected by running inference on a whole set of samples. There
are two major advantages compared to other works described above. 1) the decision boundary is
defined through a KDE fit rather than a single-sided threshold on some criteria and 2) it leaves
freedom of choice as to which statistics to include in the metric to the implementation. On the
other hand this introduces ambiguity as to which statistics might perform well for the task at hand.
They have shown however, that there is no significant performance penalty by adding a multitude
of training statistics into the framework. The finalDoSEKDE score which is then used as a metric
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to perform OOD detection reads

DoSEKDE =

m∑
j

KDEj(x) (3.7)

where KDEj is a Gaussian kernel density estimation fit on a particular statistic j on the training
data. Note that unlike the WAIC score, high DoSEKDE values indicate in-distribution samples.

3.3 Unsupervised Lesion Detection

Lesion detection for MRI brain scan images (or any other type of images for that matter) can be
performed on a per-pixel level resulting in the task of semantic segmentation or on a sample-level
which is a task of binary classification.

Figure 3.5: (a) Axial slice of an MRI T2-weighted brain scan from the BraTS2017 dataset [Menze
et al., 2014] showing a glioma on the bottom left. (b) The corresponding ground truth pixel-level
annotation crafted by domain experts.

Prior to the rise of Deep Learning based approaches, unsupervised lesion detection algorithms
were proposed by registering images to a healthy standardized brain Atlas and fitting mixture
models, amongst others, based on tissue-specific densities to detect lesions [Kamber et al., 1995,
Van, 2001, Prastawa et al., 2004] as model outliers.

More recently, Deep Generative models based on Variational Autoencoders (VAE) [Kingma
and Welling, 2014] and Generative Adversarial Networks (GAN) [Goodfellow et al., 2014] have
become popular due to their abilities to model high dimensional distributions, essentially learning
what is referred to as the normative data distribution. During inference, anomaly detection is then
performed by assessing the deviation of test samples from the training distribution. One common
way within VAE-based frameworks is to do this via the reconstruction error of the reconstructed
to the input sample. For images, pixel-level anomaly detection is performed by thresholding the
residual map between an input and reconstruction images, as shown in Fig. 4.1, which builds upon
the assumption that lesional regions are expected to have high reconstruction errors since they
deviate from the training distribution. Recently, different metrics for pixel-level anomaly detec-
tion have been proposed by [Zimmerer et al., 2020]. [Baur et al., 2019] introduced a VAE based
framework incorporating adversarial training to improve the realism of reconstructions and avoid
memorization. [Chen and Konukoglu, 2018] identified the lack of and improved latent space con-
sistency by adding a regularizing constraint. [Chen et al., 2020] used a VAE with mixtures of
Gaussian in the latent space, which is a more expressive prior distribution. At the same time,
they applied Image Restoration on the input image prior to assessing the residual image which
proved to give significant performance improvements. [Baur et al., 2020] presented a compre-
hensive comparative study for recent approaches to unsupervised lesion detection. Fig. ?? shows
input with ground-truth annotations and the corresponding reconstructions and residual maps for
different models employed in their work.
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While the approaches mentioned before are based on auto encoder frameworks, there are inter-
esting works inspired by the GAN framework. [Schlegl et al., 2017, Sch, 2019] have developed the
AnoGAN and f-AnoGAN frameworks, the latter of which showed competitive performance with
VAE (with restoration applied) based models in the comparative study above. However, unlikely
VAE-based models, GANs do not offer a way to encode an input sample into the latent space due
to which an optimization problem has to be achieved to infer the latent space representation before
the decoder can produce a reconstruction.

Figure 3.6: [Baur et al., 2020] compared a wealth of different unsupervised anomaly detection
frameworks and reported their relative performance in a standardized experiment on.
Source: [Baur et al., 2020]

3.4 Supervised Lesion Detection

As introduced in Sec. 2.1, supervised approaches are free to use ground-truth labels during train-
ing. In the field of medical image segmentation, supervised models are often based on or variants
of the infamous U-Net architecture [Ronneberger et al., 2015]. As a matter of fact, the winning
submission for the 2020 Brain Tumor Segmentation Challenge (BraTS) is such a variant [Isensee
et al., 2020], using a cascaded U-net architecture. While supervised lesion detection is an exten-
sive topic in itself, it is not very relevant for this work and will therefore not be discussed in great
detail.

3.5 Learning Disentangled Representations

Much interest has been put into learning meaningful representations with disentangled influencing
factors. In the case of a VAE this means that it would be desirable to have single dimensions of
some latent space representation encode isolated hidden factors. This could be, for example, the
size of a brain, some notion of shape or the level of diseasedness. [Higgins et al., 2017] have
shown that by simply increasing the weight (called β) of the KL-divergence term in equ. 3.4 from
1.0, which would correspond the original VAE framework, to something larger, one is able to
learn a more disentangled latent space representation. That means that a certain type of variation
should be encoded in a single dimension when traversing the latent space. The main idea is rather
simple: When enforcing a multivariate, isotropic Gaussian prior on the latent space, then, due to
it being isotropic, it’s components are independent of each other, or in other words, disentangled.
The stronger the latent space representation follows this prior, the stronger the disentanglement.
Hence, by introducing a simple modification to the VAE cost function, namely up-weighting the
KL-term one can achieve better disentanglement of the individual underlying factors. By doing
so, the regularization on the latent space is increased and it gets less flexible while at the same
time the KL term starts become more important compared to the reconstruction loss which results
in blurrier reconstructions overall.
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Figure 3.7: β-VAE (β = 250) achieves to disentangle underlying factors such as azimuthal ro-
tation much better than the standard VAE (β = 1) implementation at the expense of resolution.
Note that the standard VAE is able to learn notions of azimuthal angles as well but entangles the
representation with other factors such as lightning or hair stlye.
Source: [Burgess et al., 2018]
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Materials and Methods

4.1 Unsupervised Lesion Detection using VAE’s

4.1.1 Working Principle

This section shall explain in more detail the concepts of unsupervised lesion detection based on
VAEs, the core objective of the models used throughout this work.

Figure 4.1: Working principle of unsupervised lesion detection based on VAEs as used in this
work. During training, a VAE learns to approximate the distribution of healthy images by maxi-
mizing the so-called Evidence Lower Bound (ELBO) L (cf. Equ.3.4). During inference, the resid-
ual map r of an input test image yields the pixel-wise lesion detection map. Finally, the resulting
binary pixel-wise lesion prediction is obtained by comparing every residual pixel with a threshold
τ which has been determined using training data only. Unlike previous works, this framework
aims to answer the question due to which underlying factors a sample is being predicted to be
OOD.

Using a VAE trained on a set of healthy samples, a potentially lesional test sample x̃(i) is
being fed through the model to obtain a reconstruction x̂(i). Being trained on healthy samples
exclusively, the model is expected to not being able to reconstruct lesional components while it
should succeed in reconstructing healthy parts of the input. A pixel-wise anomaly segmentation
map can thus be retrieved by thresholding the pixel-wise residual r = ‖x̂(i) − x̃(i)‖p ∈ Rm×n,
where ‖ · ‖p is the `p-norm, and p is chosen to be 1.

A pixel is being marked as anomaly if the per-pixel value in the residual image r exceeds
some threshold τ . Since, in an unsupervised setting, there is no access to ground truth labels, it
is not possible to tune such hyper-parameters with regards to the final metrics of interest, e.g. the
Dice score as one would typically do in a supervised setting. Instead, we follow the approach in
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[Konukoglu and Glocker, 2018], where we assume any pixel from the training set images marked
to be anomalous by the anomaly detection algorithm to be a false positive. We set a limit lFPR
(typically 5%) on the false positive rateFPRtrain we are willing to accept to determine a threshold
that satisfies the constraint. The threshold is computed via the Golden Section Search algorithm
[Kiefer, 1953] by performing the optimization problem

τ = min
t
|FPRtrain(t)− lFPR| (4.1)

Finally, the threshold τ gets deployed to convert the residual map r to a binary lesion map for
which the final segmentation metrics are being computed per patient on unseen test data.

4.1.2 Baselines

For pixel-wise lesion detection we compare to the baseline provided by [Chen et al., 2020] which
denotes the current state-of-the-art performance in unsupervised lesion detection on brain MRI
images. They use the T2-weighted images from the CamCAN dataset for training and test on
T2-weighted images from the BraTS 2017 datasets, similar to our experiments.

Model Dice AUROC
VAE128 0.23 ± 0.13 0.69
GMVAE 0.46 ± 0.23 0.83

Table 4.1: Baseline performance for pixel-wise lesion detection from [Chen et al., 2020]. While
the V AE128’s model architecture is comparable to ours, GMVAE uses a Gaussian mixture
model to model the latent space distribution and deploy restoration of the input image which has
been shown to yield significant performance boosts by [Baur et al., 2020]. For the Dice score, the
patient-wise mean and standard deviation is reported.

Slice-wise or sample-wise lesion detection is done significantly less frequently in the field
of unsupervised lesion detection. However, recently [Zimmerer et al., 2020] performed slice-wise
lesion detection using both terms from Equ. 3.4 as well as the full ELBO L. They train on the
HCP [Van Essen et al., 2013] dataset and test their model on the BraTS 2017 challenge dataset
as well. While no exact numbers are given, their plots suggest an AUROC of about 0.70 to 0.75
for a latent-space dimension of 128. They found that the KL-term performed just slightly superior
compared to the reconstruction error or full ELBO.

Model AUROC
VAE 0.70 to 0.75

Table 4.2: Baseline performance for slice-wise lesion detection from [Zimmerer et al., 2020].

To the best of our knowledge there are no works applying recent OOD detection techniques
in the field of unsupervised lesion detection on brain MRI images which is why there exists no
baseline to compare to.

4.2 Possible Evaluation Metrics

This section provides an overview and explanation as to which metrics have been used to evaluate
our experiments and the rational behind that.

In the setting of pixel-wise lesion detection, we can test either on a set of healthy images, le-
sional images or a combination thereof. Note that when using healthy images only in the test set,
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that is images which contain no lesions, there are no actual positives, as shown in Fig. 4.2. Here,
we denote actual positives as pixels which are actual lesional based on ground truth annotations.
Hence we can define the ROC and PRC curves only when testing on lesional slices only or a com-
bination of healthy and lesional slices as for example the raw BraTS 2017 dataset. Reporting the
ROC and PRC curves in the case of slice-wise lesion detection is only possible when considering
a test set containing both healthy and lesional slices.

Figure 4.2: Overview on as to which metrics can be used given the classification scenarios for
pixel-wise and slice-wise anomaly detection.

For OOD detection, we actually don’t care if we test on healthy or lesional slices when it
comes to metrics since the ground-truth annotation in this case has nothing to do with the presence
or lesions but is concerned with labelling samples being in- or out-of-distribution. Therefore we
have the freedom to split up the analysis of OOD detection into the three groups, that is healthy
samples, lesional samples or a combination thereof, as shown in Fig. 4.3.

Figure 4.3: Overview on as to which metrics can be used given the classification scenario of OOD
Detection.
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4.3 Conditioning the Latent Space

Sec. 5.5 introduced the trade-off between fidelity of reconstructions and a stronger regularization
of the latent space by weighting the KL-divergence term of the VAE loss function (cf. Equ. 3.4).
For small values of β, the reconstruction error has a higher relative weight which leads to sharper
reconstructions. At the same time there is less regularization on the approximate posterior which
means more entanglement of latent space dimensions. Also, there is more freedom for the learned
approximate posterior to deviate from the imposed prior, which in our case is a multivariate Gaus-
sian with zero mean and unit variance. When lowering β too far, we approach the limiting case of
a standard Auto Encoder and end up with a less expressive latent space. There, it should not be
possible to sample from the prior distribution and let the decoder produce samples following the
training distribution anymore. Therefore, it is desirable to find a β sweet-spot where

• high-quality reconstructions are possible (lower β better),

• it is possible to sample from the prior and receive reconstructions following the training
distribution for an interpretable latent space behaviour (higher β better),

• the approximate posterior is not ignored (lower β better).

The last point of the above list is what is referred to as posterior collapse and reflects the
issue that the approximate posterior collapses q(z|x) to the imposed prior p(z), i.e. q(z|x) = p(z).
The model essentially learns to ignore the latent variable. Understanding the causes of posterior
collapse and its implications is an active area of research but recent work has shown that it is likely
to be connected with training dynamics [He et al., 2019].

The experiments to fulfill the above requirements are shown in Sec. 5.4. They are essential to
continue in analysing the potential of learning disentangled representations.

4.4 What Can Pre- and Post-processing do for us?

Histogram Matching [Chen et al., 2020] used histogram matching (cf. Sec. 5.2) to improve
their lesion segmentation performance. However, there was no indication given as how much
improvement can be achieved by doing so. So a first natural experiment is to quantify this effect,
the results of which are shown in Tab. 5.1. Furthermore, it is expected that histogram matching
reduces domain-shift effects which is important to realize since this in turn effects the capability
to detect lesional samples. This is an important insight since one might argue that histogram
matching could potentially solve the problem. We show that it does affect sample-wise anomaly
detection only mildly by comparing loss term histograms in Fig. 5.15.

Post-processing the residual map Tab. 5.1 also shows the quantitative effects of applying the
post-processing effects explained in Sec. 5.2. It should be noted that these techniques might intro-
duce prior knowledge deviating away from the idea of a completely unsupervised system. Never-
theless, the processing steps applied are mild and assume very little knowledge about the nature
of lesions but rather represent sensible image processing techniques to reduce noise.

4.5 Disentanglement of Lesions and Domain-shift Effects

At test time, the model might be exposed to samples from the following three categories (cf. Fig. 5.14
which considers CamCAN T2 to be in-distribution and BraTS T2 healthy and BraTS T2 lesional
OOD):
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1. healthy & in-distribution, anomaly-free images from the same domain as the training data
(e.g. CamCAN T2)

2. healthy & OOD, anomaly free-images with domain shift from the training data (e.g. BraTS
T2 healthy),

3. lesional & OOD, images with lesions regard less of domain shift (e.g. BraTS T2 lesional)

.
A practitioner is interested in a model which answers the question ”Does this sample contain

lesions?”. He is not interested in the question ”Has this sample undergone a domain shift?”. Rather
he would like to have the additional question ”Can I trust this prediction?” answered. Note that for
our case the last two questions actually have the same meaning. When deploying an unsupervised
lesion detection model, a high anomaly detection score, for example the reconstruction error,
might tell him something like ”This sample could be lesional. Or, it could be perfectly healthy but
is domain shifted, that is, it is very different from the samples I have seen during training. I cannot
tell you what drives the anomaly score though.”. This is reflected by the experiments and results
presented in Sec. 5.7.

To enable save deployment in practice, one would have to be either absolutely sure the model
is only fed with samples originating from the same domain or learn to differentiate between the
two sources of error. Since the former is difficult to achieve and maintain in practice and does
not give any insights from a research point of view, we discuss how to potentially achieve such
disentanglement up next.

4.5.1 Learning Disentangled Representations via β-VAE

Learning disentangled representations via the β-VAE framework has been introduced in Sec. 3.5.
We conduct several experiments to find out whether this can help in disentangling the underlying
factors for a sample to have high reconstruction error. First, the baseline model is properly condi-
tioned as described before. Then, we assess the effect a stronger latent space regularization has on
the learned representation.

The corresponding experiments and results can be found in Sec. 5.5 while further insights can
be found in the appendix in Sec. A.2.

4.5.2 The Entropy Score

Our experiments (cf. Sec. 5.7) indicated that when performing unsupervised lesion detection, er-
rors originating from domain-shift effects are inherently intertwined with such originating from
lesions themselves. The entropy score proposed in the following is an opinionated approach to
tackle

Assumption Lesional samples are expected to have large residual errors confined in relatively
small regions considering pixels within a tumor dominating the reconstruction error. On the other
hand, a (healthy) OOD sample should show a steady but spread out error due to global domain-shift
effects which is equivalent to a large uncertainty in the pixel-wise error distribution which might
be captured by the following entropy measure. We extend the framework with an entropy statistic
H`1 and investigate its suitability to disentangle the underlying reasons for which a sample appears
to be marked OOD. The normalized sample-wise entropy scores are calculated on a normalized
(sums up to 1) residual map r via

H`1(r) = −
np∑
j

rj log rj
log np

. (4.2)
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where np is the number of pixels within the brain mask. Note that by doing so, we implicitly
assumed the normalized residual image to be a discrete np-dimensional probability distribution.
Furthermore we should note that the entropy score does not take spacial information into account.

4.5.3 Recent OOD metrics

We have described earlier and backed up the hypothesis by experiments (cf. Sec. 5.5) that unsu-
pervised lesion detection is inherently equated or even based on OOD detection. Thus, it stands
to reason to assess their usefulness in sample-wise lesion detection. A metric which performs
well in this experiment can be expected to be more susceptible to effects originating from lesions
which make the sample deviate from the training distribution. The associated results are listed in
Tab. 5.2.

4.6 Implementation Details

The major model used to carry out the experiments throughout this work is a VAE following the
architecture in [Baur et al., 2020] while also the model used by [Zimmerer et al., 2020] has been
tested without significant discrepancies in performance the the former whose model architecture
is being depicted in Fig. 4.4. Each layer consists of a 2D convolution (partially transpose con-
volutions in the decoder) followed by batch normalisation and a LeakyReLU activation function.
Models are trained for 80 epochs with a batch size of 128. Different β-annealing schedules have
been tested (cf. Sec. A.3) while, if not stated otherwhise, monotonic β-annealing from 0 to 0.4
over the first 2000 training steps is applied. Adam optimizer [Kingma and Ba, 2017] has been
used with an initial learning rate of 10−4.

Figure 4.4: The VAE architecture used throughout the experiments of this work.
Source: [Baur et al., 2020]

4.7 Software & Hardware

Software This project has been carried out using the PyTorch 1 deep learning framework, ar-
guably the most used framework in machine learning research community. To improve repro-
ducibility and ease of development, Pytorch-Lightning 2 was used as an additional abstraction

1https://pytorch.org/
2https://github.com/PyTorchLightning/pytorch-lightning
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layer on top of PyTorch. To track ongoing experiments, Tensorboard 3 has been used. Ad-
ditional dependencies included h5py 4 to create and manage datasets during training and infer-
ence, OpenCV 5 for image processing and nibabel 6 to process neuro-imaging file formats. To
ensure reproducibility of the results, every experiment on the modular evaluation pipeline is con-
nected with logged hyperparameters which get stored along the results. The project was developed
from the ground up resulting in around 13′000 lines of python 7 code and is publicly available at
https://github.com/matthaeusheer/uncertify.

Hardware The workstation used for training and evaluation included a 6 core Intel(R) Core(TM)
i7-8700 CPU running at a frequency of 3.20GHz with 16GB RAM and a NVIDIA GeForce GTX
1060 graphics card with 6GB VRAM. Training a single model usually took around 5 hours.

3https://www.tensorflow.org/tensorboard
4https://www.h5py.org/
5https://opencv.org/
6https://nipy.org/nibabel/
7https://www.python.org/
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Chapter 5

Experiments and Results

5.1 Datasets

The datasets used in this work are subdivided into a group of MRI based brain scan datasets
for which samples are shown in Fig. 5.1 and a group of general purpose toy datasets shown in
Fig. 5.2. Datasets from the first group are essentially variants of the CamCAN [Taylor et al., 2017]
and Multimodal Brain Tumor Segmentation Challenge 2017 (BraTS) [Menze et al., 2014] datasets.
The second group is comprised of datasets oftenly used in machine learning research to enable fair
comparisons and proof of concepts. Whenever a dataset is used for training, a 90%-10% train-test
split is applied. Images are cropped and reshaped to obtain a resolution of 128 × 128 pixels. In
the experiments shown, only CamCAN T2 is used for training while variants of the BraTS dataset
are used for testing only, so no split has been applied there.

The following datasets are all based on MRI data. Throughout this work we used T2- and T1-
weighted images exclusively with several modifications applied during the pre-processing stage
which are explained next.

• CamCAN T2
If not stated otherwise, models used throughout this work have been trained on T2-weighted
images from the CamCAN dataset. It consists of a total of full brain scans from 653 patients.
The histograms from all samples from this dataset have been matched patient-wise against
a randomly chosen patient from the training split to ensure common histogram distributions
throughout the training dataset.

• CamCAN T2 lesion
This is an adaption to the CamCAN T2 dataset in which Gaussian blobs have been pasted
on top of the slices at random as described in Sec. 5.2.

• BraTS T2
We merged different categories of severity classes of labels into one to obtain a binary
lesion map. Our dataset consists of 75 scans from low-grade glioma patients and 210 scans
of high-grade glioma patients. There are no healthy patients contained in this dataset.

• BraTS T2 HM
Similar to BraTS T2 but with histogram matching against the very patient histogram distri-
bution against which all training samples have been matched against.

• BraTS T1
T1-weighted images from the BraTS 2017 dataset.
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• BraTS T1 HM
Similar to BraTS T1 but with histogram matching applied similar to BraTS T2 HM.

• BraTS T2 HFlip
Horizontally flipped version of BraTS T2. Those flipped datasets are common to test against
in the OOD detection community, since they can be regarded as OOD while still being close
to the original dataset.

• BraTS T2 VFlip

Vertically flipped version of BraTS T2. Since brain scans are more or less horizontally
symmetric, a vertical flip is a much more severy transformation compared to a horizontal
flip.

• IBSR T1
For this dataset contains only T1-weighted images. It holds scans from 20 healthy subjects
and has been used for auxiliary tests throughout development.

• CANDI T1
This dataset contains only T1-weightd images. It has been used on auxiliary tests not re-
flected in the reported experiments.

The following datasets are not based on MRI images. They are clearly OOD for models trained
on MRI data and can be used to test simple ideas or be used in OOD detection experiments.

• MNIST
The MNIST dataset [LeCun and Cortes, 2010], first introduced in 1998, consists of 700́00
greyscale images of handdrawn digits. It has been used in a wealth of works throughout the
years and is arguably the most famous dataset in the machine learning community.

• FashionMNIST
Since the MNIST dataset has become arguably to easy for most modern deep learning meth-
ods, the FashionMNIST [Xiao et al., 2017] has been created to pose greater challenges to
image classifiers and other models. It consists simple greyscale depictions of clothings.

• Gaussian Noise
This dataset consists of images with random Gaussian noise using mean zero and standard
deviation one.
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Figure 5.1: Visual Examples of MRI based datasets.

Figure 5.2: Visual Examples of toy datasets used primarily in OOD detection experiments.
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5.2 Pre- & Postprocessing

Pre-processing For MRI-based data, pre-processing includes bias correction using the N4 al-
gorithm [Tustison et al., 2010] and centering of the brain. Bias correction aims to correct low-
frequency non-uniformities which are commonly seen in MRI data and are known as the bias
field. Patient-wise histogram matching to a randomly chosen in-distribution sample ensures simi-
lar intensity profiles throughout all training samples. Fig. 5.3 shows at an example of two patients
how their intensity profiles change and start to match the reference profile more closely.

Figure 5.3: The patient-wise histograms of two test patients are being matched against the patient-
wise intensity histogram of a reference patient.

Finally, all pixel values within the brain mask are normalized to zero mean and unit variance,
again, on a per-patient level. Image sizes are cropped to 128× 128 pixels. Resulting samples are
shown in Fig. 5.4.

Figure 5.4: All slices for two patients from the CamCAN T2 dataset after standardization, that is,
subtracting slices the mean and dividing by the standard deviation both of which have been calcu-
lated over all pixels from a single patient beforehand. The histogram on the left shows intensity
values from a single patient. The bump on the left side can be explained due to imperfections in
the brain mask which adds low-valued background pixels to the distribution.

Empty MR slices are excluded during training. To obtain lesional samples following the same
distribution as CamCAN T2, we artificially crafted lesional samples by randomly adding high-
intensity Gaussian blobs to CamCAN T2-weighted images. The blobs standard deviations range

45



CHAPTER 5. EXPERIMENTS AND RESULTS

from 0 to 10 (given images of size 128× 128) and are weighted such as to have similar maximum
intensities compared to real lesions. Finally, we applied vertical and horizontal flipping (V-flip,
H-flip) following common practices in recent OOD detection works.

Post-processing The following post-processing steps have been implemented and evaluated.
These techniques have been introduced by [Baur et al., 2020] and apply prior knowledge to com-
mon failure modes and the nature of how lesions show up in MRI images, potentially limiting its
usability with the benefit of higher lesion segmentation performance. The (significant) effect of
the post-processing steps described below is shown in Fig. 5.5.

1. The lmax1 -residual Lesions contained in BraTS (glioma) appear bright in a T2-weighted
image. For that reason the l1-residual between the input and reconstructed image is usually
positive for lesional matter. Thus, all residual pixels smaller than zero can be set to zero.

2. Median Filtering OODs are in general not spoiled for being able to reconstruct high-
frequency content which yields reconstructions to appear blurry. On the other side, high-
frequency content appears as small patches in the residual map without belonging to an
actual lesion. By applying a median filter to the residual map, this issue can be mitigated to
some extent.

3. Brain Mask Erosion A common failure mode of models described in this work is that of
highly erroneous regions at the brain boundary. These pixels usually contribute to the set of
false positives which is why one might want to erode the brain mask inwards on the residual
map to get rid of those wrongly reconstructed pixels.
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Figure 5.5: Rows from top to bottom: Original image, ground-truth tumor segmentation, recon-
struction, residual image, binary tumor prediction map. Columns: (a) No post-processing applied.
(b) Instead of the raw l1 distance from input to reconstruction, set pixels to zero which are brighter
in the output image compared to the input. (c) Apply brain-mask erosion to get rid of boundary
effects. (d) Apply median filtering to smooth out the residual map. Note that the threshold for this
image has been found with all post-processing enabled. Nevertheless, there one cannot obtain the
same quality of segmentation as in column (d) without the processing steps.

5.3 Determining the residual threshold

As described in Sec. 4.1, the threshold on the residual map is determined on training data only by
solving the optimization problem of Equ. 4.1. Fig. 5.6 shows this procedure for a model trained on
CamCAN T2. In this case, post-processing to the residual map in form of brain mask erosion and
median filtering has been applied which reduces the number of false positives considerable and
yields a threshold τ = 0.70. When not applying those post-processing steps the threshold found
is significantly higher at around τ = 1.50.

In the 5th column of Fig. 5.7, one can observe a common failure mode of VAEs, which is
the inability to reconstruct high-frequency content faithfully due to the characteristic blurriness of
reconstructions.
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Figure 5.6: Optimization procedure to determine the threshold τ on the residual map r by setting
an accepted False Positive Rate (FPR) on the training data (5%) and searching for a threshold
which produces a FPR on the training set which is closest to this value. The optimization is
carried out using the Golden Section Search algorithm.

Figure 5.7: From top row to bottom: Random input samples from CamCAN T2, associated re-
constructions, l1 residuals and resulting binary pixel maps when applying a threshold of τ = 0.7
which results in a false positive rate of max. 5% throughout the dataset.
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5.4 Conditioning the Latent Space

To correctly condition the latent space of the VAE, a search is performed to find the optimal β
value as described in Sec. 4.3.

Fig. 5.8 shows decoded reconstructions when sampling from a Gaussian prior distribution
z ∼ N (0,1). While models trained with low values of β do not yield realistic reconstructions,
there is a sweet-spot at β = 0.5 where realistic reconstructions result from decoded latent space
samples. Higher values of β loose fidelity in reconstructions and are more prone to result in what
we believe is a manifestation of posterior collapse (see Fig. 5.9).

Figure 5.8: Reconstructions of latent-space samples which follow a multivariate Gaussian with
zero mean and unit variance. Whe the model has been trained with very values of β (0.1 - 0.3),
the approximate prior is not regularized enough and the decoding process will not yield realistic
reconstruction. For higher values of β, the approximate prior mimics the Gaussian prior more
closely and realistic reconstructions are obtained. For very high values of β (e.g. 10), a loss of
resolution can be observed.

Fig. 5.9 reflects what we believe is a manifestation of posterior collapse, that is, no matter
what the input to the model is, it learns to bypass the latent space representation and reconstructs
samples from the distribution it has been trained on. As a matter of fact, this puzzling behaviour
has been first observed due to a bug in the loss function implementation where the actual loss was
heavily dominated by the KL divergence term which is essentially the same as choosing a high β.
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Figure 5.9: Reconstructions of MNIST input images. Left: MNIST input (batch of 16 samples
each), right: corresponding reconstructions. The top model has been trained with β = 1.0 (original
VAE objective) while the bottom model has been trained with a lower latent space regularization
of β = 0.1. We believe that the top model suffers from posterior collapse while the reconstructions
of the bottom model indicate a proper latent space conditioning due to the fact that it is not able
to reconstruct the heavy OOD input samples but is still able to reconstruct MRI brain images
faithfully.

5.5 Learning Disentangled Representations using β-VAE

The following experiment reveals the interesting fact that some in-distribution input samples can-
not be reconstructed faithfully when choosing a high β value. The original work [Higgins et al.,
2017] on β-VAE proposes β values up to 250. A follow-up work aiming to explain the working
principles of the technique more closely works with a value of 150. In those works they usually
show reconstructions from samples obtained by traversing the latent space, so the particular issue
that some in-distribution input samples can not be faithfully reconstructed as shown in Fig. 5.10
has not been observed before by us. However, this behaviour is probably not surprising in the
sense that the reconstruction term is not important enough in the objective function to obtain faith-
ful reconstructions. Nevertheless, since the framework of unsupervised lesion detection depends
on truthful reconstructions of healthy parts of the brain, we can conclude that such a model can
not be deployed for reconstruction-based anomaly detection, even though it might be able to learn
an expressive latent space representation.

Figure 5.10: Comparing reconstructions from two models trained with different KL-term weights
(0.3 and 10). The model with a high weight is not able to reconstruct all input samples faithfully
rendering it unusable for unsupervised lesion detection.
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Future work in this direction might consider investigating the following algorithm which we
propose based on our empirical findings.

1. Train a model A with a ”sweet-spot” β, in our case β = 0.5 as explained before. This model
will eventually be used to perform unsupervised lesion detection.

2. Train a second model B with a high value of β, polluted with data from different domains. It
has to be verified that this model is actually able to disentangle factors inherent to any MRI
image dataset, such as shape and size of brains, with factors which reflect domain shifts
such as noise behaviour and intensity changes.

3. Finally, one could use the latent dimensions associated with domain shift factors as a domain-
shift detection metric. One would perform lesion detection inference on model A only if the
latent space of model B has shown that there has no domain shift been detected.

While this seems to be an interesting line of work and several follow-up works [Kim and
Mnih, 2019, Chen et al., 2019] have attempted to improve the basic β-VAE framework, we leave
the exploration of these frameworks for the task at hand for future work. Additionally, it should be
pointed out that there is a GAN-based line of work which attempts to learn disentangled represen-
tations [Chen et al., 2016] as well. Instead, we explore techniques based on current advances in
the field of OOD detection for generative models in order to disentangle lesions and domain-shift
influences directly.

Sec. A.2 gives more insights into the behaviour of a model with high β to learn disentangled
factors of variation in the data.

5.6 Pixel-wise anomaly detection

Tab. 5.1 summarizes the pixel-wise lesion detection from our model with and without the post-
processing introduced in Sec. 5.2 applied. While achieving high segmentation performance is
not the main objective of this work, this analysis situates our model and approach compared to
the state-of-the-art. Without post-processing the model performs on par compared to the base-
line while post-processing (eroded brain mask and median filtering on the residual map) brings a
26.5% increase in Dice score. Nevertheless, the GMVAE approach including image restoration
still performs significantly better. Histogram matching brings a 9% performance (Dice) in crease
when post-processing is applied and 56% increase without post-processing.

Table 5.1: Pixel-wise anomaly segmentation (Dice) and detection (AUROC / AUPRC) perfor-
mance. * includes post-processing (smoothing & mask-erosion of residual map) , ** no post-
processing, *** results from [Chen et al., 2020]. Dashed entries were not provided by the authors.

Dataset BraTS T2 HM BraTS T2 CamCAN T2 artificial lesions BraTS T1
Model Dice AUROC AUPRC Dice AUROC AUPRC Dice AUROC AUPRC Dice AUROC AUPRC

Baseline*** 0.23 ± 0.13 0.69 - - - - - - - - - -
Ours VAE* 0.34 ± 0.12 0.75 0.25 0.31 0.73 0.20 0.63 0.92 0.66 0.10 0.51 0.07
Ours VAE** 0.25 ± 0.11 0.69 0.16 0.22 0.66 0.13 0.39 0.88 0.43 0.10 0.49 0.07
GMVAE*** 0.46 ± 0.23 0.83 - - - - - - - - - -

Artificial lesions Lesion detection performance on the artificially crafted lesional CamCAN T2
dataset is significantly higher compared to running inference on BraTS T2. A sample batch pre-
diction for running inference on this dataset is shown in Fig. 5.11. This reflects the scenario when
one would test on lesional images which, lesions set aside, originate from the same data distribu-
tion compared to the training images. The performance improvement is significant moving from
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a Dice score of 0.34 (BraTS T2) to 0.63 (CamCAN T2 lesion). Note that the artificially pasted
lesions differ strongly from actual lesions which is why such an experiment should be taken with
a grain of salt. On the other hand, it serves as a confirmation that domain-shift effects can not
be ignored and as a motivation to investigate further on this issue in the context of unsupervised
lesion detection.

Figure 5.11: Running inference on samples from the CamCAN T2 lesion dataset, which contains
artificially crafted lesions in form of Gaussian blobs. Rows from top to bottom: Random input
samples, ground truth segmentation obtained by the 1σ region around the mean of the Gaussian
blob, reconstruction, residual, binary prediction.

Fig. 5.12 shows reconstructions and associated predictions when running inference on BraTS
T2 for a model trained on CamCAN T2. It can be seen that reconstructing the ventricles usually
poses problems and yields a high amount of false positives.

Figure 5.12: Similar to Fig. 5.11, however now on the BraTS T2 dataset. Common failure modes
include the inability to reconstruct the ventricles faithfully when being trained on CamCAN T2
and tested on BraTS T2. Therefore these regions usually yield a high amount of false positives.

Fig. 5.13 shows on common failure mode that lesions which are not hyper-intense compared
to the surrounding tissue can not be detected by thresholding the residual map. More powerful
models combined with restoration, such as used in [Chen et al., 2020] might be able to overcome
those issues.
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Figure 5.13: Another failure mode of the VAE based models presented in this work is their inability
to detect lesions which are not hyper-intense. While the lesions associated with the first two
colums (brain compared to remaining brain tissue) can be detected, the lesion in the rightmost
column is not detected at all.

Histogram Matching Making sure that the patient-wise intensity histograms are matched to
the patient against which the training samples have been matched against improves segmentation
performance slightly (9% increase in Dice score), as can be deduced from Tab. 5.1. More impor-
tantly, it remains to examine how histogram matching effects domain-shifted data in the upcoming
experiments.

5.7 Domain Shifts vs. Lesions

The following experiments are designed to shed light on the entanglement of effects on commonly
used slice-wise lesion detection originating from domain-shifts, that is, training on one distribution
and testing on another one, and actual lesions within an image.

From fig. 5.14 we can conclude that neither the reconstruction error nor the ELBO are able
to distinguish between a lesional sample that originates from the same distribution as the training
data, that is, a sample from CamCAN T2 lesional and a healthy sample which has undergone a
domain-shift, for example originating from BraTS T2 healthy. This is due to the fact that un-
supervised anomaly detection, exploiting reconstruction errors, is by nature principled on OOD
detection. This makes it blind to actual OOD samples which is being confirmed by this experi-
ment.

Another interesting insight gained in fig. 5.14 is that there might be OOD datasets, such as
plain Gaussian noise in this case, which get mapped into the latent space in such a way that
the KL divergence between this representation and the prior is actually smaller compared to the
in-distribution dataset. This can happen even though the model has been trained in such a way
that the latent-space representation of the in-distribution data is regularized in such a way that it
lies close to the prior. This latent space encoding can change depending dramatically depending
on the model architecture and loss function used as shown in experiments in Sec. 5.11. Also,
note that the KL divergence of FashionMNIST, which can be regarded as heavily OOD, differs
significantly compared to Gaussian noise. Thus, we conclude that it can be dangerous to rely on
the KL divergence as a metric to conduct slice-wise lesion detection, even though [Zimmerer et al.,
2020] reported that using the KL term for exactly that did yield the best results for their setup.
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Figure 5.14: Densities for sample-wise loss term contributions (cf. 3.4) for various OOD datasets.
CamCAN T2 (teal) represents the in-distribution training data containing only healthy slices. Cam-
CAN T2 lesion holds samples from CamCAN T2 but with artificially added Gaussian blobs to
simulate lesional samples as explained in Sec. 5.1 and shown in Fig. 5.11. All other datasets can
be regarded as OOD. We can conclude that non of the commonly used metrics, that is, DKL, l1
(reconstruction error) or L is able to differentiate between whether a sample is being detected as
abnormal due to a domain-shift or due to actual lesions.
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Figure 5.15: Similar setup as in Fig. 5.14, however in this case the focus lies on the effect of his-
togram matching and whether it can mitigate the entanglement of domain-shift effects and actual
lesions. Lesional samples tend to have higher reconstruction errors compared to healthy ones on
average which is expected. Surprisingly, performing histogram matching seems to increase the
reconstruction error distribution slightly although a superior segmentation performance is being
achieved. Histogram matching does not seem to change the behaviour in the latent space. It is
noteworthy though that for this model, lesional samples have a smaller KL divergence on average
compared to healthy samples.
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5.8 The Entropy Score

This section shall present the various experiments conducted to assess the applicability of the nor-
malized entropy score (cf. Equ. 4.2) as an uncertainty measure to target slice-wise lesion detection.

First, we visualize samples of the proposed entropy score in fig. 5.16 and 5.17. The former
shows the standard l1 residual while in the latter figure the lmax1 distance is used as introduced in
Sec. 5.2.

Figure 5.16: Normalized entropy scores for a number of BraTS T2 l1 residual maps.

Figure 5.17: Similar to fig. 5.16, however now with the lmax1 score as introduced in section
Sec. 5.2.

From those visual results it is indeed not possible to conclude that this is a useful metric to
disentangle lesions from domain shifts. Furthermore Tab. 5.2 shows that the entropy Hl1 has
no more discriminative power compared to the well-known reconstruction error l1 in separating
lesional slices from healthy slices.
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5.9 Slice-wise anomaly detection

This section deals with the task of slice-wise anomaly detection. A system or metric which would
be able to disentangle the root causes of a sample to appear OOD, that is, be it from domain-shifts
or from actual lesions, is expected to perform well in detecting lesional slices. The results of
employed metrics are summarized in Tab 5.2. Neither the proposed entropy score (cf. Equ. 4.2),
nor the WAIC (cf. Equ. 3.4) or the DoSE score based on the indicated statistics (cf. Equ. 3.7) is
able to outperform the reconstruction error or for that matter the KL-divergence.

Table 5.2: Slice-wise anomaly detection on various Out-of-Distribution datasets. The positive
class holds lesional slices from the respective test set while the negative class holds healthy slices
from the test and in-distribution validation set (CamCAN T2). To this point, neither the entropy
score nor classical OOD detection metrics are able to outperform the classical reconstruction error
metric.

Metric `1 DKL L H`1 WAIC DoSE(`1, DKL, L, H`1)
Test Set AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

BraTS T2 HM 0.74 0.44 0.50 0.31 0.74 0.44 0.66 0.37 0.64 0.41 0.55 0.30
BraTS T2 0.72 0.41 0.47 0.29 0.73 0.42 0.65 0.35 0.62 0.39 0.53 0.29
BraTS T2 HM H-flip 0.73 0.41 0.50 0.30 0.73 0.41 0.66 0.36 0.62 0.38 0.54 0.29
BraTS T2 HM V-flip 0.59 0.31 0.38 0.22 0.59 0.31 0.53 0.27 0.62 0.36 0.46 0.25
CamCAN T2 artificial 0.83 0.82 0.53 0.61 0.82 0.82 0.71 0.75 0.77 0.78 0.67 0.66

5.10 Out-of-Distribution detection

Table 5.3: OOD detection performance. `1 is the mean reconstruction error per pixel for a slice,
DKL the KL divergence between the prior and approximate posterior and L the ELBO. WAIC
has been defined in Equ. 3.6 and DoSE in Equ. 3.7

OOD Metric→ `1 DKL L WAIC DoSE(l1,DKL,L)
OOD Dataset AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

BraTS
T2
HM

all 0.89 0.86 0.68 0.61 0.85 0.81 0.93 0.95 0.78 0.70
healthy 0.85 0.84 0.73 0.71 0.79 0.79 0.87 0.91 0.78 0.76
lesion 0.92 0.89 0.63 0.55 0.90 0.87 0.99 0.99 0.78 0.70

BraTS
T2

all 0.87 0.85 0.69 0.62 0.83 0.81 0.91 0.92 0.79 0.72
healthy 0.84 0.83 0.74 0.72 0.77 0.78 0.84 0.85 0.80 0.77
lesional 0.92 0.90 0.64 0.56 0.89 0.86 0.98 0.98 0.78 0.70

BraTS
T1
HM

all 0.92 0.91 0.73 0.64 0.88 0.88 0.92 0.95 0.82 0.76
healthy 0.88 0.88 0.76 0.71 0.83 0.85 0.86 0.91 0.82 0.79
lesional 0.96 0.95 0.70 0.60 0.95 0.93 0.99 0.99 0.83 0.76

BraTS
T1

all 0.95 0.94 0.77 0.74 0.91 0.90 0.97 0.98 0.86 0.82
healthy 0.94 0.94 0.82 0.82 0.88 0.88 0.94 0.96 0.88 0.86
lesional 0.97 0.96 0.73 0.66 0.96 0.96 1.00 1.00 0.84 0.78

BraTS
T2
HM H-flip

all 0.86 0.83 0.66 0.60 0.82 0.79 0.89 0.92 0.77 0.69
healthy 0.81 0.80 0.69 0.68 0.76 0.76 0.83 0.88 0.76 0.73
lesional 0.91 0.87 0.63 0.50 0.89 0.85 0.98 0.98 0.78 0.69

BraTS
T2
HM V-flip

all 0.94 0.92 0.63 0.59 0.92 0.90 0.99 0.99 0.79 0.73
healthy 0.94 0.93 0.75 0.72 0.89 0.89 0.99 0.99 0.85 0.82
lesional 0.94 0.93 0.49 0.46 0.94 0.93 0.99 0.99 0.73 0.64

CamCAN
T2
artificial

all 0.69 0.69 0.55 0.58 0.66 0.68 0.74 0.79 0.63 0.61
healthy 0.51 0.51 0.51 0.50 0.52 0.52 0.68 0.73 0.52 0.50
lesional 0.87 0.85 0.60 0.64 0.84 0.82 0.81 0.84 0.74 0.70

MNIST 1.00 1.00 0.00 0.31 1.00 1.00 1.00 1.00 1.00 1.00
Gaussian Noise 1.00 1.00 0.00 0.30 1.00 1.00 1.00 1.00 1.00 1.00

Simply detecting whether a sample is OOD or in-distribution is arguably a simpler task than
detecting whether the same sample is lesional or not. When comparing Tab. 5.3 with Tab. 5.2 this
becomes evident and is another manifestation of the fact that domain-shifted effects are entangled
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with lesional samples. Tab. 5.3 subdivides the predictions whether a sample is OOD or not into
subgroups of the dataset, that is considering only lesional, only healthy or all samples. In general
we can see that it is easier to detect lesional samples as OOD which is expected since the shift from
the lesion is added on top a domain-shift from CamCAN T2 to BraTS T2. CamCAN T2 artificial
with artificially pasted lesions is a special case where the healthy samples have not undergone
a domain-shift and in consequence are in-distribution. All classifiers but the WAIC score are
complete random which is expected. The threshold for the number of lesional pixels within the
brain mask is set to 20 which means that there could be a slight amount of very mildly lesional
samples in the healthy set which the WAIC score could detect. Otherwise it’s hard to explain why
it would not report random classification. Although it seems the WAIC score is the superior metric
to detect ood samples (be it due to lesions or domain-shifts), it is not superior to the reconstruction
error in actually detecting lesional slices. This is reflected in the row lesional of CamCAN T2
artificial which is essentially slice-wise lesion detection. The same behaviour was observed in
Tab. 5.2 where the reconstruction error and ELBO term are amongst the best performing metrics.
We have to conclude that neither the WAIC score nor the DoSE score based on the proposed
training statistics is effective in disentangling the influencing factors for an image to be OOD.

5.10.1 Exploring the Gaussian Annulus Theorem in the context of VAEs

Fig. 5.18 shows reconstructions which arose from random samples taken in the d = 128-dimensional
latent space. Since the latent prior reads p(z) = N (0, 1) and the approximate posterior q(z|x) is
regularized to be close to p(z) in terms of KL divergence, the most typical samples in the latent
space encoding representing the learned distribution should reside at

√
d = 11.3 according to

the Gaussian annulus theorem (cf. Fig. 3.4). These samples lie in the range corresponding to the
spheres with minimum and maximum distances to the origin of [10, 12]. The observations made in
Fig. 5.18 do support this theory since this is the range where we observe the most typical examples.
A similar effect can be observed when taking random Gaussian samples in the latent space with,
essentially sampling from N (0, 1) directly, as shown in Fig. 5.19 which is the same as sampling
from the range discussed above. The distribution of the distances to the origin for 1000 random
samples from a normal 128-dimensional Gaussian is shown in fig. 5.20.
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Figure 5.18: Each line holds a number of reconstructions which reside from random samples from
the latent space. The numbers on the left side represent the minimum and maximum radii of a
hyper-shell lying in the 128-dimensional latent space from which the corresponding samples from
the right side. Since

√
d = 128 = 11.3, this is the distance (line [10, 12]) from the origin where

the typical samples from our dataset reside. Note that this model has been trained with β = 1.0
.

Figure 5.19: Reconstructed random Gaussian latent space samples follow the training distribution
in a visually coherent manner.

Figure 5.20: Distribution of the distances to the origin (norms) for 1000 random samples from a
normal Gaussian.

.
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5.11 Masked Training

As introduced in Sec. 3.1.2, the cost function of a VAE is comprised of two terms, one of which
enforces compliance of the latent code with a multivariate Gaussian prior while the other one
makes sure the model produces faithful reconstructions. The following experiments were con-
ducted from a situation during the project were a flawed loss function in the implementation led to
a dominating KL-term in the VAE loss function. This most probably led to a so-called posterior
collapse as discussed before.

Figure 5.21: The effect of switching on masked loss calculation during training. For each epoch
considered, there is a batch of 16 slices on the left and the corresponding reconstructions on the
right. While in early epochs, the model learns to predict the background pixel values rather quickly
(after 1 epoch), it produces lots of artefacts in later epochs after masking has been enabled (after
epoch 8). Since there is a brain mask associated with every slice, evaluations can be performed on
pixels within the mask exclusively. Therefore, the artefacts should not bother us too much.

Due to the geometric shape of a brain, the images might be dominated by background pixels,
especially for slices at the very beginning or end in the axial direction. This might hinder training
and put too much emphasis on pixels outside of the brain which are not of concern when construct-
ing an unseen sample and checking the residual map within the brain mask. Thus, we examined
the effect of masked training which means that during training only pixels within the brain mask
contribute to the reconstruction loss.

We found (cf. Fig. 5.21) that, although the model produces lots of artefacts around the brain
region, the reconstruction quality does, if at all, improve slightly compared to non-masked training,
that is, when all pixels of an image contribute to the reconstruction loss. Note that, even though the
model has learned to predict the background pixels in earlier epochs, it does produce artefacts in
the background after masked training has been enabled. This is due to the fact that weights within
the network are getting updated over the course of training and might affect the background pixels
in which region the model is not being penalized anymore. Thus is does not matter whether
masked training is switched on from the beginning or at a later point in time during the training
process. There is no discrepancy in terms of segmentation performance, both variants result in the
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same Dice score.

Figure 5.22: 2D UMAP embedding of latent codes from samples originating from different
datasets showing the effect of enabling masked training on the latent space distribution of input
samples from different datasets. The models have been trained on CamCAN T2 as usual.

Figure 5.23: Similar to Fig. 5.22, however this time with MNIST and Gaussian noise samples only
along the in-distribution CamCAN T2 dataset. The latent space embedding changes drastically
which is also reflected in Fig.5.24

.

Furthermore, we observe that the latent space embedding does change significantly when
masking is switched on or off (see Figures 5.22 & 5.23. While it is difficult to explain those
findings conclusively, they might serve as a starting point for experiments to regularize the latent
space during training in such a way that the KL-divergence can actually serve as a robust metric.
With the current findings we have to conclude that it should not be used as an anomaly detection
metric as done by [Zimmerer et al., 2020] due to predisposition to changing model parameters.

Figure 5.24: Sample-wise KL divergence histograms for masked and non-masked training.
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Conclusion

With this chapter I would like to conclude this thesis and recapitulate on the findings and ap-
proaches taken. It will put the results into a larger context and interpret their meaning for the safe
use of unsupervised lesion techniques while at the same time propose directions for follow-up
efforts.

The results in this work showed clearly that it is crucial to understand that frameworks relying
on unsupervised lesion detection are vulnerable to OOD data, that is domain-shifts. In this work,
we have attempted to point out and tackle this fundamental flaw in these kind of approaches. Dis-
entangling the root causes for a sample to be marked OOD in a completely unsupervised settings
is a tremendously challenging problem and it has to be questioned whether it is in fact possible to
succeed in this assignment without the use of dome extent of supervision, target domain data at
hand or strong opinions on the type of lesions on wants to detect.

That being said, the approaches presented in this work, namely the use of weak supervision
in the form of an uncertainty-related entropy score, as well as the use of recently developed OOD
detection metrics (WAIC, DoSE) did not help to improve slice-wise lesion detection or disentangle
the lesional samples and domain-shift effects. The best performing metric to do so is still repre-
sented in the form of the reconstruction error or the ELBO which have been shown to suffer from
entanglement with domain-shift effects.

Future work might explore approaches which incorporate OOD data directly during training
to learn notions related to domain-shifts. This would deviate away from the completely unsuper-
vised assumption limiting the deployed model to a certain domain for which training data could
be supplied. Another line of work is concerned with what is referred to domain-adaptation which
aims to align samples from a source domain with a target domain, in this case the domain of in-
distribution training data. Those works are worthwhile exploring, especially for the case when no
fully unsupervised approach can be found to mitigate the problem of entanglement. While this
would again limit the range of applications, it might be a relatively cheap way to render a model
usable for a particular source domain of test images.

One limitation of this work is that there is no public access to datasets which hold scans from
healthy as well as lesional patients that can be regarded from the same domain apart from lesions.
We overcame this issue partially by artificially crafting a dataset CamCAN T2 lesion which in-
cludes artificial lesions in the form of Gaussian blobs to compare anomaly detection performances
to domain-shifted lesional samples. It would be desirable to see such experiments with real data
in the future which potentially might only be possible in collaboration with hospitals or other data
providers.
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Furthermore, training generative models can be rather involved and involves manual inspec-
tion during training on the training dynamics and latent space encoding behaviour. This led to the
conclusion that using for example the KL divergence term of the VAE loss function as a stand-
alone anomaly detection metric should be done with care. It has been shown that the encoding
behaviour strongly depends on the model chosen as well as on the datasets at hand. While some
OOD datasets showed very large shifts away from the prior distribution, others were encoded in
a way to follow the prior distribution rather well. Exploring this line of work to make the latent
space encoding a more robust metric for anomaly detection would be highly desirable. This would
most likely involve a regularization scheme during training to encourage a certain, potentially dis-
entangled, representation in the latent space.

Finally, I would like to reflect on the initial objective of this work, which was the question
whether it is possible to detect the root causes of a sample to be predicted OOD in the setting of
fully unsupervised lesion detection. While the answer to this question is still subject to further
research, I hope that the insights gained in this work, not only related to this specific task but also
to model behaviour and latent space encoding, will serve as a starting point for future works to
come. May this thesis be a building block of the mosaic which will eventually enable safe and
trustworthy helpers in the form of deep learning models for doctors and patients around the world.
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Appendix A

Additional Materials

A.1 Additional Visual Examples

Figure A.1: Running inference using the in-distribution training data from CamCAN T2 and vari-
ous OOD datasets.

A.2 Additional Insights From Learning Disentangled Representations

The following reveals more insights from using the β-VAE framework on our MRI datasets.
Fig. A.2 shows how an increased β = 100 value pushes the variation in the dataset into two
distinct dimensions, indexed by 80 and 108 in this case. For this experiment, each single dimen-
sion in the latent space representation has been adjusted to run from −3σ to +3σ while all other
values are kept fix at 0. Those latent space representations are then fed through the trained encoder
network to receive the reconstructions shown in the following figures.

Fig. A.3 provides a zoom into the axes which hold the variation along with two real examples
and their latent space representation for those two dimensions. That way one can observe to which
place in the variational spectrum they get mapped to.
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Figure A.2: Slides across±3σ (vertical axis) along one non-constant dimension i (horizontal axis)
of a 128-dimensional latent space. All values zj 6=i are hold constant at 0 for β = 100. Note that
all the variation is pushed into two axes, z80 and z108 in that case.

.

Fig. A.4 shows a grid view of varied values in the two dimensions discussed above. This
reveals that most, if not all, of the visual variations in the dataset can be achieved by choosing
appropriate values in those two dimensions while holding all other values at 0 and feed those
curated latent space representations through the trained decoder network.

While this direction of work poses an interesting path for future research with promising re-
sults (cf. Fig. A.2), we did not continue down the disentanglement learning road. The main reason
being, that we reside in a fully unsupervised setting and have no access to lesional samples dur-
ing training. Nonetheless, experiments in this direction, e.g. by polluting the training data with
lesional samples might be worthwhile pursuing.
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Figure A.3: Slides across ±3σ (vertical axis) on the dimensions holding the variations. The two
examples at the top show reconstructions from sampling at a particular latent space position in the
respective dimension (green arrow). They align correctly with the passes along the dimensions
holding the semantic variance

.
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Figure A.4: Grid of two slides across two dimensions in latent space and corresponding recon-
structions

.
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A.3 The effect of β-Annealing

β-annealing [Bowman et al., 2016] refers to the strategy of varying the KL-term weighting (β)
in the VAE cost function (cf. . 3.4) over time, that is, over the course of training. β-annealing
has been used through various works deploying Variational Autoencoders. It has been shown that
β-annealing helps to counteract the issue of posterior collapse. Furthermore, it has been shown
that, by deploying β-annealing, more meaningful latent space representations could be created.
We implemented various versions of β-annealing, shown in Fig. A.5.

Figure A.5: Different implementations of β-annealing strategies found throughout the literate. The
KL term weight, β, varies over time by (a) monotonically increasing from a start to a target value,
(b) periodically increasing to a target value before dropping down again (cyclic), (c) increasing to
a target value in a generalized sigmoidal shape and (d) using an exponential decay until a target
value is reached.

.

The parameters in the β-annealing schedule become hyperparameters of the training procedure
and have to be set by the operator. Unfortunately, using these advanced annealing schedules during
training did not help to improve lesion segmentation performance. However, a low value of β in
the early training stages did help to learn faithful reconstructions more quickly which is why we
opted for a monotonically increasing β-annealing schedule for most experiments.
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