

Theoretical Particle Physics Seminar - University of Zurich (September 28, 2020)

Factorization at Subleading Power and Endpoint Divergences in Soft-Collinear Effective Theory

Matthias Neubert
PRISMA+ Cluster of Excellence \& MITP Johannes Gutenberg University Mainz
nitp 0

Introduction

* Factorization of scales is a fundamental concept in HEP:
- LHC cross section $\sim \sigma_{\text {parton }} \otimes$ PDFs
- basis for the resummation of large logarithmic corrections
* Soft-collinear effective theory (SCET) provides a framework for studying factorization and resummation for processes involving light energetic particles using tools of effective field theory (EFT)
[Bauer et al. 2000, 2001; Beneke et al. 2002]

Introduction

* SCET was constructed as the EFT for QCD factorization, as applied to hadronic decays of B mesons:

[Beneke, Buchalla, MN, Sachrajda 1999, 2000]

Introduction

* Puzzling observation:
- some power-suppressed corrections (e.g. weak annihilation) involve divergent convolution integrals $\sim \int_{0}^{1} \frac{d x}{x}$, which were interpreted as a breakdown of factorization [Beneke, Buchalla, MN, Sachrajda 2000]
- proof of factorization requires showing that certain soft-collinear modes parameterizing these endpoint contributions cancel out to all orders
[Hill, MN 2003; Becher, Hill, MN 2005]
* It was believed that SCET may overcome the problem of endpoint divergences ("everything factorizes") or at least shed new light on it

Introduction

* Conventional EFTs provide a systematic expansion in inverse powers of a large scale Q :
$\mathcal{L}_{\text {eff }}=\sum_{i} C_{i}(Q, \mu) O_{i}(\mu)+\frac{1}{Q} \sum_{j} C_{j}^{(1)}(Q, \mu) O_{j}^{(1)}(\mu)+\frac{1}{Q^{2}} \sum_{k} C_{k}^{(2)}(Q, \mu) O_{k}^{(2)}(\mu)+\ldots$
* Examples: $\mathcal{H}_{\text {eff }}^{\text {weak }}, \chi \mathrm{PT}, \mathrm{HQET}, \mathrm{NRQCD}, \mathrm{SMEFT}, \ldots$
* Extension to higher orders "straightforward if tedious"
- χ PT: 2, 12, 117, 1959, 45171, 1170086, ...
[Graf et al. 2020]
- SMEFT: 12, 3045, 1542, 44807, 90456, 2092441, ...
[Henning, Lu, Melia, Murayama 2015]

Introduction

* SCET is more complicated in several aspects:
- operators contain non-local products of fields (unavoidable consequence of $E \sim Q$ but $p^{2} \ll Q^{2}$), need to introduce Wilson lines for gauge invariance
- Wilson coefficients depend on large momentum components in addition to heavy masses of particles integrated out
- fields are split up in momentum modes (method of regions):
[Beneke, Smirnov 1997]

Introduction

* SCET is more complicated in several aspects:
- hard modes are integrated out (Wilson coefficients = hard matching coefficients)
- different collinear sectors appear decoupled in the effective Lagrangian except for soft interactions
- soft interactions can be decoupled by means of field redefinitions \rightarrow factorization theorems
- large logarithms can be resummed systematically by solving RGEs

Introduction

* Typical SCET factorization theorem:
- Two common scale hierarchies:

SCET-1

SCET-2

Introduction

* Examples:
- threshold resummation for DIS, DY, Higgs $t \bar{t}$ production, ...
- p_{T} resummation, jet vetoes, event shapes, jet substructure, ...
- non-global logarithms, super-leading logarithms (ongoing work)
- high-order structure of IR divergences of scattering amplitudes, subtractions methods for N^{n} LO fixed-order calculations (e.g. based on N-jettiness)

Introduction

* Extension to next-to-leading power?
- generically (all known examples), find endpoint-divergent convolution integrals! [Beneke et al., Moult et al., Stewart et al., MN et al. 2018-2020; ...]
- upsets scale separation and breaks factorization
- prevents systematic resummation of large logarithms
- failure of standard OPE based on dimensional regularization and $\overline{\mathrm{MS}}$ subtractions
* Questions usefulness of entire SCET framework!
- a hard problem; many groups world-wide work on this...

SCET 2020

Bern, Switzerland June 8 - 11, 2020

XVIlth annual workshop on Soft-Collinear Effective Theory

Organizers:
http://scet.itp.unibe.ch/
Thomas Becher, Christoph Greub, Thomas Rauh, Xiaofeng Xu, Marcel Balsiger, Samuel Favrod, Francesco Saturnino

First SCET factorization theorem at subleading power

Liu, MN: 1912.08818 (JHEP)
Liu, Mecaj, MN, Yang: 2009.04456 \& 2009.06779
Liu, MN: 2003.03393 (JHEP)
Liu, Mecaj, MN, Yang, Fleming: 2005.03013 (JHEP)

A subleading-power observable

* Consider b-quark induced contribution to $h \rightarrow \gamma \gamma$ decay amplitude (pseudo observable)
- this and related $g g \rightarrow h$ process may be relevant for high-precision Higgs studies, but here are considered for academic purposes mainly
- "sufficiently complicated but simple enough"

* Relevant modes are hard, collinear (n_{1} and n_{2}) and soft, with SCET-2 scaling
* Scale hierarchy: $m_{b}^{2} \ll M_{h}^{2}$

A subleading-power observable

* Same momentum regions appear in analysis of the Sudakov form factor (e.g. electroweak Sudakov resummation)
- standard factorization theorem without endpoint divergences:

$$
\sigma \sim H \int J \otimes J \otimes S
$$

- a single, leading-order SCET operator arises at $O\left(\lambda^{2}\right)$:

$$
V_{\mu}{\underset{\lambda}{n_{1}}}_{\bar{x}_{\perp}}^{\mu}{\underset{\lambda}{\mu}}_{\mathcal{X}_{n_{2}}}
$$

- crucial difference: soft quark can appear at subleading power

A subleading-power observable

* Relevant momentum regions at 1-loop order:

A subleading-power observable

* Relevant momentum regions at 1-loop order: $\quad \lambda \sim m_{b} / M_{h}$

A subleading-power observable

* Corresponding SCET operators at $O\left(\lambda^{3}\right)$:
$\lambda \sim m_{b} / M_{h}$

$O_{1}^{(0)}=\frac{\stackrel{m}{b}^{m_{b}}}{e_{b}^{2}} h \mathcal{A}_{n_{1}}^{\perp \mu} \mathcal{A}_{n_{2}, \mu}^{\perp}$

$O_{3}^{(0)}=T\left\{h \bar{x}_{n_{1}} x_{n_{2}}, i \int d^{D} x \mathcal{L}_{q \xi_{n_{1}}}^{(1 / 2)}(x), i \int d^{D} y{\stackrel{\mathcal{L}}{\xi_{n_{2}} q}}_{\lambda^{1 / 2}}^{(1 / 2)}(y)\right\}+$ h.c.
subleading SCET Lagrangian

A subleading-power observable

* Corresponding SCET operators at $O\left(\lambda^{3}\right)$:

Existence of only three SCET operators at $O\left(\lambda^{3}\right)$ ensures that these regions account for all higher-order loop graphs (see [Liu, MN 2019] for a 2-loop example)!

"Bare factorization theorem"

* Adding up the three contributions we find:

$$
\mathcal{M}_{b}(h \rightarrow \gamma \gamma)=H_{1}^{(0)}\langle\gamma \gamma| O_{1}^{(0)}|h\rangle+2 \int_{0}^{1} d z H_{2}^{(0)}(z)\langle\gamma \gamma| O_{2}^{(0)}(z)|h\rangle+H_{3}^{(0)}\langle\gamma \gamma| O_{3}^{(0)}|h\rangle
$$

with:

$$
\begin{aligned}
\langle\gamma \gamma| O_{3}^{(0)}|h\rangle= & \frac{g_{\perp}^{\mu \nu}}{2} \int_{0}^{\infty} \frac{d \ell_{+}}{\ell_{+}} \int_{0}^{\infty} \frac{d \ell_{-}}{\ell_{-}} \\
& \times\left[J^{(0)}\left(M_{h} \ell_{+}\right) J^{(0)}\left(-M_{h} \ell_{-}\right)+J^{(0)}\left(-M_{h} \ell_{+}\right) J^{(0)}\left(M_{h} \ell_{-}\right)\right] S^{(0)}\left(\ell_{+} \ell_{-}\right)
\end{aligned}
$$

* Factorization formula accomplishes a naive scale separation, but all component functions are still unrenormalized!

"Bare factorization theorem"

* Adding up the three contributions we find:

$$
\mathcal{M}_{b}(h \rightarrow \gamma \gamma)=H_{1}^{(0)}\langle\gamma \gamma| O_{1}^{(0)}|h\rangle+2 \int_{0}^{1} d z H_{2}^{(0)}(z)\langle\gamma \gamma| O_{2}^{(0)}(z)|h\rangle+H_{3}^{(0)}\langle\gamma \gamma| O_{3}^{(0)}|h\rangle
$$

* Hard matching coefficients:

$$
\begin{aligned}
& H_{1}^{(0)}=\frac{y_{b, 0}}{\sqrt{2}} \frac{N_{c} \alpha_{b, 0}}{\pi}\left(-M_{h}^{2}-i 0\right)^{-\epsilon} e^{\epsilon \gamma_{E}}(1-3 \epsilon) \frac{2 \Gamma(1+\epsilon) \Gamma^{2}(-\epsilon)}{\Gamma(3-2 \epsilon)} \\
& \times\{1- \frac{C_{F} \alpha_{s, 0}}{4 \pi}\left(-M_{h}^{2}-i 0\right)^{-\epsilon} e^{\epsilon \gamma_{E}} \frac{\Gamma(1+2 \epsilon) \Gamma^{2}(-2 \epsilon)}{\Gamma(2-3 \epsilon)} \\
& \times\left[\frac{2(1-\epsilon)\left(3-12 \epsilon+9 \epsilon^{2}-2 \epsilon^{3}\right)}{1-3 \epsilon}+\frac{8}{1-2 \epsilon} \frac{\Gamma(1+\epsilon) \Gamma^{2}(2-\epsilon) \Gamma(2-3 \epsilon)}{\Gamma(1+2 \epsilon) \Gamma^{3}(1-2 \epsilon)}\right. \\
&\left.\left.-\frac{4\left(3-18 \epsilon+28 \epsilon^{2}-10 \epsilon^{3}-4 \epsilon^{4}\right)}{1-3 \epsilon} \frac{\Gamma(2-\epsilon)}{\Gamma(1+\epsilon) \Gamma(2-2 \epsilon)}\right]\right\} \\
& H_{2}^{(0)}(z)=\frac{y_{b, 0}}{\sqrt{2}\left\{\frac{1}{z}+\frac{C_{F} \alpha_{s, 0}}{4 \pi}\left(-M_{h}^{2}-i 0\right)^{-\epsilon} e^{\epsilon \gamma_{E}} \frac{\Gamma(1+\epsilon) \Gamma^{2}(-\epsilon)}{\Gamma(2-2 \epsilon)}\right.} \\
&\left.\times\left[\frac{2-4 \epsilon-\epsilon^{2}}{z^{1+\epsilon}}-\frac{2(1-\epsilon)^{2}}{z}-2\left(1-2 \epsilon-\epsilon^{2}\right) \frac{1-z^{-\epsilon}}{1-z}\right]\right\}+(z \rightarrow 1-z) \\
& H_{3}^{(0)}=\frac{y_{b, 0}}{\sqrt{2}}\left[-1+\frac{C_{F} \alpha_{s, 0}}{4 \pi}\left(-M_{h}^{2}-i 0\right)^{-\epsilon} e^{\epsilon \gamma_{E}} 2(1-\epsilon)^{2} \frac{\Gamma(1+\epsilon) \Gamma^{2}(-\epsilon)}{\Gamma(2-2 \epsilon)}\right]
\end{aligned}
$$

$\overbrace{z}^{3}+$ eneer $_{z}^{3}$

"Bare factorization theorem"

* Adding up the three contributions we find:

$$
\mathcal{M}_{b}(h \rightarrow \gamma \gamma)=H_{1}^{(0)}\langle\gamma \gamma| O_{1}^{(0)}|h\rangle+2 \int_{0}^{1} d z H_{2}^{(0)}(z)\langle\gamma \gamma| O_{2}^{(0)}(z)|h\rangle+H_{3}^{(0)}\langle\gamma \gamma| O_{3}^{(0)}|h\rangle
$$

* Operator matrix elements:

$$
\begin{aligned}
\langle\gamma \gamma| O_{1}^{(0)}|h\rangle & =m_{b, 0} g_{\perp}^{\mu \nu} \\
\langle\gamma \gamma| O_{2}^{(0)}(z)|h\rangle & =\frac{N_{c} \alpha_{b, 0}}{2 \pi} m_{b, 0} g_{\perp}^{\mu \nu}\left[e^{\epsilon \gamma_{E}} \Gamma(\epsilon)\left(m_{b, 0}^{2}\right)^{-\epsilon}+\frac{C_{F} \alpha_{s, 0}}{4 \pi}\left(m_{b, 0}^{2}\right)^{-2 \epsilon}[K(z)+K(1-z)]\right] \\
J^{(0)}\left(p^{2}\right) & =1+\frac{C_{F} \alpha_{s, 0}}{4 \pi}\left(-p^{2}-i 0\right)^{-\epsilon} e^{\epsilon \gamma_{E}} \frac{\Gamma(1+\epsilon) \Gamma^{2}(-\epsilon)}{\Gamma(2-2 \epsilon)}\left(2-4 \epsilon-\epsilon^{2}\right) \\
S^{(0)}(w) & =-\frac{N_{c} \alpha_{b, 0}}{\pi} m_{b, 0}\left[S_{a}^{(0)}(w) \theta\left(w-m_{b, 0}^{2}\right)+S_{b}^{(0)}(w) \theta\left(m_{b, 0}^{2}-w\right)\right]
\end{aligned}
$$

Endpoint divergences

* Closer inspection shows that the convolution integrals in the factorization formula are divergent for $z \rightarrow 0,1$ (second term) and $\ell_{ \pm} \rightarrow \infty$ (third term)
* Second term is symmetric under $z \leftrightarrow(1-z)$ and it suffices to study the singularity at $z \rightarrow 0$
* Physical origin: overlap of soft and collinear regions, whose boundaries are not separated by the dimensional regulator

Endpoint divergences

* In order to define the two convolutions properly one needs to introduce a rapidity regulator under the integrals:

$$
\begin{aligned}
\mathcal{M}_{b}(h \rightarrow \gamma \gamma)= & \lim _{\eta \rightarrow 0} H_{1}^{(0)}\langle\gamma \gamma| O_{1}^{(0)}|h\rangle+4 \int_{0}^{1} \frac{d z}{z}\left(\frac{-z M_{h}^{2}-i 0}{\nu^{2}}\right)^{\eta} \bar{H}_{2}^{(0)}(z)\langle\gamma \gamma| O_{2}^{(0)}(z)|h\rangle \\
& +g_{\perp}^{\mu \nu} H_{3}^{(0)} \int_{0}^{\infty} \frac{d \ell_{-}}{\ell_{-}} \int_{0}^{\ell_{-}} \frac{d \ell_{+}}{\ell_{+}} S^{\left(\rho \ell_{+} \ell_{-}\right)} \\
& \times\left[\left(\frac{\bar{n}_{2} \cdot k_{2} \ell_{-}-i 0}{\nu^{2}}\right)^{\eta} J\left(\bar{n}_{1} \cdot k_{1} \ell_{+}\right) J\left({ }^{(0)} \bar{n}_{2} \cdot k_{2} \ell_{-}\right)\right. \\
& \left.\left.+\left(\frac{-\bar{n}_{2} \cdot k_{2} \ell_{-}-i 0}{\nu^{2}}\right)^{\eta} J()^{(0)} \bar{n}_{1} \cdot k_{1} \ell_{+}\right) J\left(\bar{n}_{2} \cdot k_{2} \ell_{-}\right)\right]
\end{aligned}
$$

* Endpoint divergences lead to $1 / \eta$ poles, which cancel in the sum of all terms!

Endpoint divergences

* Things are, in fact, even more subtle. For example, in higher orders one finds that:

$$
\bar{H}_{2}^{(0)}(z) \sim z^{-n \epsilon} \quad \text { but } \quad\left\langle O_{2}^{(0)}(z)\right\rangle \sim z^{+m \epsilon}
$$

* Terms with $m=n$ require the rapidity regulator when integrated over $\int_{0}^{1} \frac{d z}{z}$, while those with $m \neq n$ are regularized by the dimensional regulator
* In simpler examples based on SCET-1, the dimensional regulator regularizes all endpoint divergences, but this still leaves the problem of how to deal with the $1 / \epsilon$ poles from the endpoint singularities, which spoil factorization
[Beneke et al., Moult et al. 2018-2020]

Endpoint divergences

* All-order cancellation of $1 / \eta$ poles requires that the integrands of the second and third term are the same when evaluated in the singular regions!
* This is ensured by the D-dim. refactorization conditions:

$$
\begin{aligned}
\llbracket \bar{H}_{2}^{(0)}(z) \rrbracket & =-H_{3}^{(0)} J^{(0)}\left(z M_{h}^{2}\right) \\
\llbracket\langle\gamma \gamma| O_{2}^{(0)}(z)|h\rangle \rrbracket & =-\frac{g_{\perp}^{\mu \nu}}{2} \int_{0}^{\infty} \frac{d \ell_{+}}{\ell_{+}} J^{(0)}\left(-M_{h} \ell_{+}\right) S^{(0)}\left(z M_{h} \ell_{+}\right)
\end{aligned}
$$

* We have recently proved these relations using SCET tools:

[2009.06779]

Removing endpoint divergences

* Using these relations, the bare factorization formula can be rearranged in such a way that all endpoint divergences are removed and the limit $\eta \rightarrow 0$ can be taken. We find:

$$
\begin{aligned}
& \mathcal{M}_{b}=\left(H_{1}^{(0)}+\Delta H_{1}^{(0)}\right)\langle\gamma \gamma| O_{1}^{(0)}|h\rangle \\
&+2 \lim _{\delta \rightarrow 0} \int_{\delta}^{1-\delta} d z\left[H_{2}^{(0)}(z)\langle\gamma \gamma| O_{2}^{(0)}(z)|h\rangle-\frac{\llbracket \bar{H}_{2}^{(0)}(z) \rrbracket}{z} \llbracket\langle\gamma \gamma| O_{2}^{(0)}(z)|h\rangle \rrbracket\right. \\
&\left.-\frac{\llbracket \bar{H}_{2}^{(0)}(1-z) \rrbracket}{1-z} \llbracket\langle\gamma \gamma| O_{2}^{(0)}(1-z)|h\rangle \rrbracket\right] \\
&+\left.g_{\perp}^{\mu \nu} \lim _{\sigma \rightarrow-1} H_{3}^{(0)} \int_{0}^{M_{h}} \frac{d \ell_{-}}{\ell_{-}} \int_{0}^{\sigma M_{h}} \frac{d \ell_{+}}{\ell_{+}} J^{(0)}\left(M_{h} \ell_{-}\right) J^{(0)}\left(-M_{h} \ell_{+}\right) S^{(0)}\left(\ell_{+} \ell_{-}\right)\right|_{\text {leading power }}
\end{aligned}
$$

Removing endpoint divergences

* In the space of momentum modes, this amount to the following subtractions in the third term:

"infinity bin" is subtracted twice and must be added back as a hard contribution $\Delta \mathrm{H}_{1}{ }^{(0)}$ to the coefficient of the first term

Renormalized factorization theorem

* So far, the factorization formula is still expressed in terms of bare quantities, but we wish to establish a corresponding renormalized formula:

$$
\begin{aligned}
\mathcal{M}_{b}= & H_{1}(\mu)\left\langle O_{1}(\mu)\right\rangle \\
& \left.+2 \int_{0}^{1} d z\left[H_{2}(z, \mu)\left\langle O_{2}(z, \mu)\right\rangle-\frac{\left.\llbracket \bar{H}_{2}(z, \mu)\right]}{z} \llbracket\left[\left\langle O_{2}(z, \mu)\right\rangle\right]-\frac{\llbracket\left[\bar{H}_{2}(\bar{z}, \mu)\right]}{\bar{z}} \llbracket\left[\left\langle O_{2}(\bar{z}, \mu)\right\rangle\right]\right]\right] \\
& \left.+\left.g_{\perp}^{\mu \nu} H_{3}(\mu) \lim _{\sigma \rightarrow-1} \int_{0}^{M_{h}} \frac{d \ell_{-}}{\ell_{-}} \int_{0}^{\sigma M_{h}} \frac{d \ell_{+}}{\ell_{+}} J\left(M_{h} \ell_{-}, \mu\right) J\left(-M_{h} \ell_{+}, \mu\right) S\left(\ell_{+} \ell_{-}, \mu\right)\right|_{\text {leading power }}\right)
\end{aligned}
$$

* This is non-trivial, because the presence of cutoffs does not commute with renormalization!

Renormalized factorization theorem

* Renormalization conditions for the operators:

$$
\left.\begin{array}{rl}
O_{1}(\mu) & =Z_{11} O_{1}^{(0)} \\
O_{2}(z, \mu) & =\int_{0}^{1} d z^{\prime} Z_{22}\left(z, z^{\prime}\right) O_{2}^{(0)}\left(z^{\prime}\right)+Z_{21}(z) O_{1}^{(0)} \\
\text { incompatible with cutoffs } \\
\llbracket O_{2}(z, \mu) \rrbracket & =\int_{0}^{\infty} d z^{\prime} \llbracket Z_{22}\left(z, z^{\prime}\right) \rrbracket \llbracket O_{2}^{(0)}\left(z^{\prime}\right) \rrbracket+\llbracket Z_{21}(z) \rrbracket O_{1}^{(0)}
\end{array}\right] \text { [2009.06779] } \quad \text { [2003.03393] }
$$

with complicated Z factors containing plus distributions

Renormalized factorization theorem

* When the cutoffs are move from the bare over to the renormalized functions, some left-over terms remain, which individually have a rather complicated structure and depend both on the hard scale M_{h} and the soft scale m_{b}
* The most non-trivial part of the derivation of the renormalized factorization theorem was to show that, to all orders of perturbation theory, the sum of the left-over terms takes the form of an additional hard subtraction $\delta H_{1}^{(0)}$ of the Wilson coefficient of the operator $O_{1}^{(0)}$
[2009.06779]

Renormalized factorization theorem

* After this crucial step had been accomplished, we could derive the renormalization conditions for the matching coefficients:

$$
\begin{aligned}
H_{1}(\mu)= & \left(H_{1}^{(0)}+\Delta H_{1}^{(0)}-\delta H_{1}^{(0), \text { tot }}\right) Z_{11}^{-1} \\
& +2 \lim _{\delta \rightarrow 0} \int_{\delta}^{1-\delta} d z\left[H_{2}^{(0)}(z) Z_{21}^{-1}(z)-\frac{\llbracket \bar{H}_{2}^{(0)}(z) \rrbracket}{z} \llbracket Z_{21}^{-1}(z) \rrbracket-\frac{\llbracket \bar{H}_{2}^{(0)}(\bar{z}) \rrbracket}{\bar{z}} \llbracket Z_{21}^{-1}(\bar{z}) \rrbracket\right] \\
H_{2}(z, \mu)= & \int_{0}^{1} d z^{\prime} H_{2}^{(0)}\left(z^{\prime}\right) Z_{22}^{-1}\left(z^{\prime}, z\right) \\
\frac{\llbracket \bar{H}_{2}(z, \mu) \rrbracket}{z}= & \int_{0}^{\infty} d z^{\prime} \frac{\llbracket \bar{H}_{2}^{(0)}\left(z^{\prime}\right) \rrbracket}{z^{\prime}} \llbracket Z_{22}^{-1}\left(z^{\prime}, z\right) \rrbracket \\
H_{3}(\mu)= & H_{3}^{(0)} Z_{33}^{-1}
\end{aligned}
$$

Renormalized factorization theorem

* Renormalized matrix elements, with $L_{m}=\ln \left(m_{b}^{2} / \mu^{2}\right)$:

$$
\begin{aligned}
\left\langle O_{1}(\mu)\right\rangle= & m_{b}(\mu) g_{\perp}^{\mu \nu} \\
\left\langle O_{2}(z, \mu)\right\rangle= & \frac{N_{c} \alpha_{b}}{2 \pi} m_{b}(\mu) g_{\perp}^{\mu \nu}\left\{-L_{m}+\frac{C_{F} \alpha_{s}}{4 \pi}\left[L_{m}^{2}(\ln z+\ln (1-z)+3)\right.\right. \\
& \left.\left.-L_{m}\left(\ln ^{2} z+\ln ^{2}(1-z)-4 \ln z \ln (1-z)+11-\frac{2 \pi^{2}}{3}\right)+F(z)+F(1-z)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)\right\} \\
J\left(p^{2}, \mu\right)= & 1+\frac{C_{F} \alpha_{s}}{4 \pi}\left[\ln ^{2}\left(\frac{-p^{2}-i 0}{\mu^{2}}\right)-1-\frac{\pi^{2}}{6}\right]+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
S(w, \mu)=- & -\frac{N_{c} \alpha_{b}}{\pi} m_{b}(\mu)\left[S_{a}(w, \mu) \theta\left(w-m_{b}^{2}\right)+S_{b}(w, \mu) \theta\left(m_{b}^{2}-w\right)\right] \quad L_{w}=\ln \left(w / \mu^{2}\right) \\
& \left.\quad-4 \ln \left(1-\frac{1}{\hat{w}}\right)\left(L_{m}+1+\ln \left(1-\frac{1}{\hat{w}}\right)+\frac{3}{2} \ln \hat{w}\right)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

Renormalized factorization theorem

* Renormalized matrix elements, with $L_{m}=\ln \left(m_{b}^{2} / \mu^{2}\right)$:

$$
\begin{aligned}
&\left\langle O_{1}(\mu)\right\rangle= m_{b}(\mu) g_{\perp}^{\mu \nu} \\
&\left\langle O_{2}(z, \mu)\right\rangle= \frac{N_{c} \alpha_{b}}{2 \pi} m_{b}(\mu) g_{\perp}^{\mu \nu}\left\{-L_{m}+\frac{C_{F} \alpha_{s}}{4 \pi}\left[L_{m}^{2}(\ln z+\ln (1-z)+3)\right.\right. \\
&\left.\left.-L_{m}\left(\ln ^{2} z+\ln ^{2}(1-z)-4 \ln z \ln (1-z)+11-\frac{2 \pi^{2}}{3}\right)+F(z)+F(1-z)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)\right\} \\
& J\left(p^{2}, \mu\right)= 1+\frac{C_{F} \alpha_{s}}{4 \pi}\left[\ln ^{2}\left(\frac{-p^{2}-i 0}{\mu^{2}}\right)-1-\frac{\pi^{2}}{6}\right]+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& S(w, \mu)=-\frac{N_{c} \alpha_{b}}{\pi} m_{b}(\mu)\left[S_{a}(w, \mu) \theta\left(w-m_{b}^{2}\right)+S_{b}(w, \mu) \theta\left(m_{b}^{2}-w\right)\right] \quad L_{w}=\ln \left(w / \mu^{2}\right) \\
& \hat{w}=w / m_{b}^{2}
\end{aligned}
$$

Renormalized factorization theorem

* Renormalized matching coefficients, with $L_{h}=\ln \left(-M_{h}^{2} / \mu^{2}\right)$:

$$
\begin{aligned}
& H_{1}(\mu)=\frac{N_{c} \alpha_{b}}{\pi} \frac{y_{b}(\mu)}{\sqrt{2}}\left\{-2+\frac{C_{F} \alpha_{s}}{4 \pi}\left[-\frac{\pi^{2}}{3} L_{h}^{2}+\left(12+8 \zeta_{3}\right) L_{h}-36-\frac{2 \pi^{2}}{3}-\frac{11 \pi^{4}}{45}\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)\right\} \\
& H_{2}(z, \mu)=\frac{y_{b}(\mu)}{\sqrt{2}} \frac{1}{z(1-z)}\left\{1+\frac{C_{F} \alpha_{s}}{4 \pi}\left[2 L_{h}(\ln z+\ln (1-z))+\ln ^{2} z+\ln ^{2}(1-z)-3\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)\right\} \\
& H_{3}(\mu)=\frac{y_{b}(\mu)}{\sqrt{2}}\left[-1+\frac{C_{F} \alpha_{s}}{4 \pi}\left(L_{h}^{2}+2-\frac{\pi^{2}}{6}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right]
\end{aligned}
$$

Resummation of large logarithms

Liu, Mecaj, MN, Yang: 2009.04456 \& 2009.06779
Liu, MN: 2003.03393 (JHEP)
Liu, Mecaj, MN, Yang, Fleming: 2005.03013 (JHEP)

Resummation of large logs

* The renormalized factorization formula

$$
\begin{aligned}
\mathcal{M}_{b}= & H_{1}(\mu)\left\langle O_{1}(\mu)\right\rangle \\
& +2 \int_{0}^{1} d z\left[H_{2}(z, \mu)\left\langle O_{2}(z, \mu)\right\rangle-\frac{\llbracket \bar{H}_{2}(z, \mu) \rrbracket}{z} \llbracket\left\langle O_{2}(z, \mu)\right\rangle \rrbracket-\frac{\llbracket \bar{H}_{2}(\bar{z}, \mu) \rrbracket}{\bar{z}} \llbracket\left\langle O_{2}(\bar{z}, \mu)\right\rangle \rrbracket\right] \\
& \left.+\left.g_{\perp}^{\mu \nu} H_{3}(\mu) \lim _{\sigma \rightarrow-1} \int_{0}^{M_{h}} \frac{d \ell_{-}}{\ell_{-}} \int_{0}^{\sigma M_{h}} \frac{d \ell_{+}}{\ell_{+}} J\left(M_{h} \ell_{-}, \mu\right) J\left(-M_{h} \ell_{+}, \mu\right) S\left(\ell_{+} \ell_{-}, \mu\right)\right|_{\text {leading power }}\right)
\end{aligned}
$$

provides a complete scale separation and allows us to resum large logarithms in the decay amplitude to all orders of perturbation theory!

Resummation of large logs

* RG equations for matrix elements:

$$
\begin{aligned}
\frac{d}{d \ln \mu}\left\langle O_{1}(\mu)\right\rangle & =-\gamma_{11}\left\langle O_{1}(\mu)\right\rangle \\
\frac{d}{d \ln \mu}\left\langle O_{2}(z, \mu)\right\rangle & =-\int_{0}^{1} d z^{\prime} \gamma_{22}\left(z, z^{\prime}\right)\left\langle O_{2}\left(z^{\prime}, \mu\right)\right\rangle-\gamma_{21}(z)\left\langle O_{1}(\mu)\right\rangle \\
\frac{d}{d \ln \mu} J\left(p^{2}, \mu\right) & =-\int_{0}^{\infty} d x \gamma_{J}\left(p^{2}, x p^{2}\right) J\left(x p^{2}, \mu\right) \\
\frac{d}{d \ln \mu} S(w, \mu) & =-\int_{0}^{\infty} d x \gamma_{S}(w, w / x) S(w / x, \mu)
\end{aligned}
$$

Resummation of large logs

* RG equations for matching coefficients:

$$
\begin{aligned}
\frac{d}{d \ln \mu} H_{1}(\mu)= & D_{\text {cut }}(\mu)+\gamma_{11} H_{1}(\mu) \\
& +2 \int_{0}^{1} d z\left[H_{2}(z, \mu) \gamma_{21}(z)-\frac{\llbracket \bar{H}_{2}(z, \mu) \rrbracket}{z} \llbracket \gamma_{21}(z) \rrbracket-\frac{\llbracket \bar{H}_{2}(\bar{z}, \mu) \rrbracket}{\bar{z}} \llbracket \gamma_{21}(\bar{z}) \rrbracket\right] \\
\frac{d}{d \ln \mu} H_{2}(z, \mu)= & \int_{0}^{1} d z^{\prime} H_{2}\left(z^{\prime}, \mu\right) \gamma_{22}\left(z^{\prime}, z\right) \\
\frac{d}{d \ln \mu} H_{3}(\mu)= & \gamma_{33} H_{3}(\mu)
\end{aligned}
$$

* where:

$$
D_{\mathrm{cut}}(\mu)=-\frac{N_{c} \alpha_{b}}{\pi} \frac{y_{b}(\mu)}{\sqrt{2}}\left[\frac{C_{F} \alpha_{s}}{4 \pi} 16 \zeta_{3}+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} d_{\mathrm{cut}, 2}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right] \ni \alpha_{b}\left(\alpha_{s} L_{h}\right)^{n}
$$

Logarithms in the 3-loop amplitude

* From a perturbative solution of the RGEs, we have obtained predictions for the terms of order $\mathcal{O}\left(\alpha_{s}^{2} L^{k}\right)$ with $k=6,5,4,3$ in the 3-loop decay amplitude in the on-shell scheme, finding:

$$
\begin{aligned}
\mathcal{M}_{b}= & \frac{N_{c} \alpha_{b}}{\pi} \frac{m_{b}^{2}}{v} \varepsilon_{\perp}^{*}\left(k_{1}\right) \cdot \varepsilon_{\perp}^{*}\left(k_{2}\right) \\
\times & \left\{\frac{L^{2}}{2}-2+\frac{C_{F} \alpha_{s}\left(\hat{\mu}_{h}\right)}{4 \pi}\left[-\frac{L^{4}}{12}-L^{3}-\frac{2 \pi^{2}}{3} L^{2}+\left(12+\frac{2 \pi^{2}}{3}+16 \zeta_{3}\right) L-20+4 \zeta_{3}-\frac{\pi^{4}}{5}\right]\right. \\
& \left.\quad+C_{F}\left(\frac{\alpha_{s}\left(\hat{\mu}_{h}\right)}{4 \pi}\right)^{2}\left[\frac{C_{F}}{90} L^{6}+\left(\frac{C_{F}}{10}-\frac{\beta_{0}}{30}\right) L^{5}+d_{4}^{\mathrm{OS}} L^{4}+d_{3}^{\mathrm{OS}} L^{3}+\ldots\right]\right\}
\end{aligned}
$$

* Find perfect agreement with recent numerical results!
[Czakon, Niggetiedt 2020]

Series of subleading logs

* We have reproduced the series of leading double logs (LL) and obtained a new result for the NLL logs to all orders in α_{s} :

$$
\begin{aligned}
& \qquad \mathcal{M}_{b}^{\mathrm{NLL}}=\frac{N_{c} \alpha_{b}}{\pi} \frac{y_{b}\left(M_{h}\right)}{\sqrt{2}} m_{b} \varepsilon_{\perp}^{*}\left(k_{1}\right) \cdot \varepsilon_{\perp}^{*}\left(k_{2}\right) \frac{L^{2}}{2} \sum_{n=0}^{\infty}(-\rho)^{n} \frac{2 \Gamma(n+1)}{\Gamma(2 n+3)} \\
& \quad \times\left[1+\frac{3 \rho}{2 L} \frac{2 n+1}{2 n+3}-\frac{\beta_{0}}{C_{F}} \frac{\rho^{2}}{4 L} \frac{(n+1)^{2}}{(2 n+3)(2 n+5)}\right],
\end{aligned}
$$

* The subleading terms disagree with earlier results in the literature!

Resummation in RG-improved PT

* Ultimate goal is to resum all large logarithms and exponentiate them (RG-improved perturbation theory)
* Particularly important for Sudakov problems, where leading logs are formally larger than $O(1)$
* In RG-improved perturbation theory one supplies the matching conditions for all component functions in the factorization theorem at matching scales where they are free of large logs; these functions and then evolved to a common scale solving their RG equations \rightarrow all large logs exponentiate!

Resummation in RG-improved PT

* We have not yet performed a complete resummation, but we have resummed the most difficult contribution T_{3} at LO in RG-improved perturbation theory, finding:
[2009.04456]

$$
\begin{aligned}
T_{3}^{\mathrm{LO}}= & \frac{\alpha}{3 \pi} \frac{y_{b}\left(\mu_{h}\right)}{\sqrt{2}} \int_{0}^{M_{h}} \frac{d \ell_{-}}{\ell_{-}} \int_{0}^{M_{h}} \frac{d \ell_{+}}{\ell_{+}} m_{b}\left(\mu_{s}\right) e^{2 \mathcal{S}\left(\mu_{s}, \mu_{h}\right)-2 \mathcal{S}\left(\mu_{-}, \mu_{h}\right)-2 \mathcal{S}\left(\mu_{+}, \mu_{h}\right)}\left(\frac{-M_{h} \ell_{-}}{\mu_{-}^{2}}\right)^{a_{\Gamma}^{-}}\left(\frac{-M_{h} \ell_{+}}{\mu_{+}^{2}}\right)^{a_{\Gamma}^{+}}\left(\frac{-\ell_{+} \ell_{-}}{\mu_{s}^{2}}\right)^{-a_{\Gamma}^{s}} \\
& \times\left(\frac{\alpha_{s}\left(\mu_{s}\right)}{\alpha_{s}\left(\mu_{h}\right)}\right)^{\frac{12}{23}} e^{-2 \gamma_{E} a_{\Gamma}^{+}} \frac{\Gamma\left(1-a_{\Gamma}^{+}\right)}{\Gamma\left(1+a_{\Gamma}^{+}\right)} e^{-2 \gamma_{E} a_{\Gamma}^{-}} \frac{\Gamma\left(1-a_{\Gamma}^{-}\right)}{\Gamma\left(1+a_{\Gamma}^{-}\right)} e^{4 \gamma_{E} a_{\Gamma}^{s}} G_{4,4}^{2,2}\left(\begin{array}{ccc}
-a_{\Gamma}^{s},-a_{\Gamma}^{s}, 1-a_{\Gamma}^{s}, 1-a_{\Gamma}^{s} & \frac{m_{b}^{2}}{0,} 1, \quad 0, & 0
\end{array} \frac{-\ell_{+} \ell_{-}}{0,}\right)
\end{aligned}
$$

with:

$$
a_{\Gamma}^{i}=-\frac{8}{23} \ln \frac{\alpha_{s}\left(\mu_{i}\right)}{\alpha_{s}\left(\mu_{h}\right)}, \quad \mathcal{S}\left(\mu_{i}, \mu_{h}\right)=\frac{12}{529}\left[\frac{4 \pi}{\alpha_{s}\left(\mu_{i}\right)}\left(1-\frac{1}{r}-\ln r\right)+\frac{58}{23} \ln ^{2} r+\left(\frac{2429}{207}-\pi^{2}\right)(1-r+\ln r)\right]
$$

* dynamical matching scales:
$r=\alpha_{s}\left(\mu_{h}\right) / \alpha_{s}\left(\mu_{i}\right)$

$$
\mu_{s}^{2} \sim \ell_{+} \ell_{-} \quad \mu_{ \pm}^{2} \sim M_{h} \ell_{ \pm} \quad \mu_{h} \sim M_{h}
$$

Conclusions

* We have derived the first SCET factorization theorem for an observable appearing at subleading order in power counting
- Generic features:
- several SCET operators exist \rightarrow several terms in factorization formula
- these operators mix under renormalization
- endpoint divergences in convolutions cancel between the different terms; cancellation ensured by D-dim. refactorization conditions
- endpoint divergences can be removed by performing subtractions and rearranging the various terms
* Our results are an important step towards establishing SCET as a complete EFT admitting a consistent power expansion!

