
Course	overview

Crystal	lattice	phenomena’s

-- Crystal	structures	(	Real	and	reciprocal	space)
-- Scattering	theory	(	Bragg’s	law,	Form	Factor,	Structure	factor)
-- Crystal	bindings	(	Equilibrium	lattice	constants,	binding	energies)
-- Lattice	vibrations	(	Phonon	dispersions,	density	of	state,	heat	capacity)

Electronic	phenomena’s

-- Free	electron	gas	(	Fermi	Dirac	distribution,	density	of	states)
-- Band	structure	(	electronic	masses,	Fermi	surfaces)
-- Electronic	measurements	(	Heat	capacity,	resistivity,	Hall	effect,	quantum	oscillations)
-- Electronic	phases	(	metals,	semi-metals,	 semi-condductors,	band	insulators)



Exam	Structure

10	min	– Presentation:
Topics:	 (1)	Crystal	structures,	(2)	Crystal	Bindings,	(3)	Reciprocal	lattice+	scattering	theory,

(4)	Crystal	vibrations	(Phonons),	(5)	Heat	capacity	(6)	Band	structure	
(7)	Semiconductors	

5	min	- evaluation	

End	Exam

5	min	– Results:	Passed	/	failed,	grade	will	be	known	at	a	later	point.			

20	min	– Discussion:
(a)	Questions	to	the	lecture	material
(b)	Questions	to	the	exercises

MY	AVAILABILITY	BEFORE	EXAM:
30th-31th	May	
1st	and	6th of	June	 johan.chang@physik.uzh.ch



Solid State Physics

Exercise Sheet 1
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Prof. Dr. Johan Chang

Discussion on 26

th
February Due on 2

nd
March

Exercise 1 Crystal lattice

Why is there no tetragonal base-centred crystal lattice? (Draw a figure!)

Exercise 2 Cubic lattice system

For simple cubic, bcc, and fcc lattices with lattice constant a, calculate the following quantities

expressed in units of a:

• Volume of the conventional unit cell

• Number of primitive lattice points per unit cell

• Volume of the primitive cell

• Number of nearest neighbours (coordination number)

• Distance between nearest neighbours

• Packing density for spherical and touching atoms

Exercise 3 Lattice constant of gold

Gold has a cubic fcc lattice and a density of 19.3 g/cm3
. Calculate the lattice constant, the

distance between nearest neighbours and the radius of a gold atom if they were touching spheres.

Exercise 4 Wigner-Seitz cell

Construct the Wigner-Seitz cell of the orthorhombic base-centred lattice for a1 : a2 : a3 = 4 :

2 : 3.

Exercise 5 Sphere packings

Calculate the ratio c/a of an ideal hexagonal dense sphere packing (hcp) and its packing density.

Compare the packing density to that of an fcc lattice and explain your findings.



Question 1: Here, the electrons are modelled as a Fermi gas, a gas
of particles which obey the quantum mechanical ________.
(1) Dirac delta function
(2) Fermi–Dirac statistics
(3) Boltzmann distribution
(4) Maxwell–Boltzmann distribution
Question 2: This structure can be investigated using a range of 
crystallographic techniques, including ________, neutron diffraction
and electron diffraction.
(1) X-ray crystallography
(2) Atom
(3) Protein
(4) Protein structure
Question 5: Phonons are also necessary for understanding 
the lattice heat capacity of a solid, as in the Einstein model
and the later ________.
(1) Copper
(2) Debye model
(3) Zinc
(4) Carbon

http://quiz.thefullwiki.org/Solid-state_physics
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Questions for Chapter 2 

2.1(a) What structure does the compound caesium iodide crystallise in? 

2.1(b) What does the term "coordination number" mean, and what is its value for the lattice 
representing your answer to part (a)? 

2.1(c) What type of bonding does CsI have? 

2.1(d) What is the electronic configuration of the two constituents of the compound when they 
are in solid form? 

2.2 An atom has a partially filled outer shell, but can easily accept more electrons to fill it. 
How would you describe this atom? 

2.3 What type of bonding do silicon and diamonds have in common? 

2.4 Name two types of non-directional bonding. 

2.5 The cohesive energy of a solid is 9 eV/atom. What does this tell you about the solid? 

2.6 What types of bonding are present in a graphite crystal? 

2.7 What type of bonding do freshwater fish need to be thankful for, and why? 

2.8 List all the different crystal systems - without looking them up! 

2.9 Assuming iron (Fe) has a lattice parameter, a, of 0.287 nm, what is the atomic radius and 
atomic density of an iron crystal? 

2.10 Calculate the packing fraction of the face-centered cubic structure. 

2.11 Calculate the atomic density of a simple orthorhombic crystal with a = 1.046 nm, 
b = 1.288 nm and c = 2.448 nm. 

2.12 What is a compound with multiple structures known as? 

2.13 What does the term "polycrystalline" mean? 
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4.9(c) Fluorite has a Mohs hardness value of 4, while feldspar has a Mohs value of 6. Which 
material is the hardest? 

4.10(a) What are alloys of copper and zinc commonly known as? 

4.10(b) Name two types of commonly used composite materials. 

4.10(c) Annealing and quenching are both types of what? 

4.10(d) What do you need to do to work harden (cold work) a crystalline material? 

4.10(e) What type of defect does work hardening produce? 
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Questions for Chapter 5 

5.1(a) State the Bragg law. 

5.1(b) What do each of the terms represent? 

5.2 The intensity of a diffracted beam is much greater from crystal A than from crystal B. If 
you ignored any potential differences in intensity due to crystal structure, what could you 
deduce about the individual atoms that make up crystals A and B? 

5.3 You are carrying out an X-ray diffraction experiment on a crystal that has the face 
centred cubic structure. Would you expect to see diffraction from the (111) plane? 

5.4(a) What types of radiation other than X-rays are commonly used to obtain diffraction 
patterns? 

5.4(b) What do the initials LEED stand for? 

5.4(c) Calculate the lowest neutron energy that will allow Bragg diffraction from the {110} 
planes of a silicon crystal with a lattice parameter, a, of 0.542 nm. 

5.5 You obtain two X-ray diffraction patterns from a metal sample. The first pattern is 
recorded prior to the metal being work hardened, and the second is taken after the 
treatment. If you were to compare the before and after patterns, what is likely to be the 
main difference between them and why do we see this difference? 

5.6(a) Is a sound wave longitudinal or transverse? 

5.6(b) What is another description for the type of wave you did not choose as your answer in 
part 5.6(a)? 

5.7 Which statement - (a), (b) or (c) - best describes a phonon?  
(a) A large amplitude atomic vibration;  
(b) A quantized packet of vibratory energy;   
(c) The sound equivalent of an electron. 

5.8(a) What does the symbol ΘD stand for? 

5.8(b) What is the significance of this quantity? 
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Questions for Chapter 6 

6.1 What are insulators also known as? 

6.2(a) Are ionic solids good or bad electrical conductors? 

6.2(b) Why is this? 

6.3 Are covalent solids good or bad electrical conductors? 

6.4 Which physical property of solids has the widest range of values? 

6.5 Are polymers insulators, conductors or semiconductors? 

6.6(a) Does the resistivity of a metal increase or decrease with temperature? 

6.6(b) Why is this? 

6.6(c) What other non thermal factors contribute to the resistivity? 

6.7(a) For metals and alloys, what is unusual about dividing the thermal conductivity of each 
solid by its electrical conductivity? 

6.7(b) Your answer to part (a) is a law named after its discoverers.  What is its name? 

6.8(a) Which principle do electrons in a Fermi gas obey? 

6.8(b) Briefly, what does the principle state? 

6.8(c) In Pauli’s quantum free electron model, what does the Fermi energy, FE , represent? 

6.8(d) According to this theory, does an electron have to be (i) above or (ii) below the Fermi 
energy to take part in conduction? 

6.9(a) How will a particle with a negative effective mass behave in the presence of an applied 
electric field? 

6.9(b) What is the "particle" in  6.9(a) commonly known as? 
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Today’s	program
Physics 481: Condensed Matter Physics - Midsemester test

Friday, March 4, 2011

Problem 1: Structure determination (70 points)

Debye-Scherrer X-ray di↵raction is used to study a powder specimen of a monoatomic substance
that is known to crystallize in a cubic Bravais lattice structure with primitive vectors ~a1 =
(a, 0, 0), ~a2 = (0, a, 0) and ~a3 = (0, 0, a). The wavelength of the X-rays is 1.4 Å.

a) Find the primitive vectors of the reciprocal lattice. (15 points)

b) Find the four shortest possible lengths of reciprocal vectors. (20 points)

c) The first di↵raction ring is at an angle of # = 17.9� from the incident direction. Determine the
lattice constant a. (20 points)

d) Find the angles of the next three di↵raction rings. (15 points)

Problem 2: One-dimensional Morse solid (80 points points)

Consider N identical atoms of mass M whose motion is restricted to the x-axis. Nearest neighbor
atoms are coupled by the so-called Morse potential

V

M

(r) = D

⇣
1� e

�↵(r�r0)
⌘2

�D

where r is the distance between them and D, ↵, and r0 are positive constants.

a) Calculate V

M

(0), V
M

(1) and qualitatively sketch the Morse potential. (10 points)

b) Find the equilibrium distance between the atoms at zero temperature and the cohesive energy.
(10 points)

c) Determine the harmonic approximation to the total potential energy V =
P

j

V

M

(x
j+1 � x

j

) by
expanding to quadratic order in the displacements u

j

from the rest positions. (15 points)

d) Write down the classical equations of motion for the displacements in harmonic approximation.
(15 points)

e) Calculate the dispersion (frequency-wavenumber) relation of the phonons, assuming periodic
boundary conditions. (20 points)

f) Calculate the speed of sound in terms of the potential parameters D, ↵, r0 as well as the mass
M . (10 points)

Problem 3: Phonons of a square lattice (50 points)

Consider a two-dimensional solid of identical atoms of mass M on a square lattice of lattice constant
a. In this problem, we investigate vibrations perpendicular to the lattice plane. The equations of
motion for the displacements u

j,l

read

Mü

j,l

= K(u
j+1,l � u

j,l

) +K(u
j�1,l � u

j,l

) +K(u
j,l+1 � u

j,l

) +K(u
j,l�1 � u

j,l

)

Here, j and l index the atom position in the x and y directions, respectively.
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Here, j and l index the atom position in the x and y directions, respectively.

a) Determine the dispersion relation (! as a function of ~q) of the phonons for a wave with a wave
vector ~q = (q

x

, q

y

). (30 points)

b) Calculate the speed of sound in terms of K and M . Does it depend on the direction of ~q? (20
points).

BONUS: The chain of problem 2 is stretched by a small external tension force T . Calculate the
change in length �L. (15 BONUS points)
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d) Let’s assume that the phonon velocity of an acoustic branch is 4meV per reciprocal
lattice unit (2⇡/a) in the long wavelength limit k ! 0. What is the phonon energy at
Q = (2.1,0,0) (where Q is in reciprocal units)?

e) If we fix the analyser at our triple axis instrument to measure neutrons with energy
7meV, what should be the energy of the incident neutrons to measure the phonon at
Q = (2.1,0,0)?

Exercise 3 Singularity in density of states

(a) From the dispersion relation derived in the lecture for a monoatomic linear lattice of N
atoms with nearest neighbour interactions, show that the density of modes is

D(!) =
2N

⇡
· 1p

!2
m � !2

, (4)

where !m is the maximum frequency.
(b) Suppose that an optical phonon branch has the form !(K) = !0 � AK2, near K = 0 in
three dimensions. Show that D(!) =

�
L
2⇡

�3 � 2⇡
A3/2

�
(!0 � !)

1
2 for ! < !0 and D(!) = 0 for

! > !0. Here the density of modes is discontinuous.

Van	Hove	Singularity



Electronic	Density	of	States



Physics 481: Condensed Matter Physics - Test prep homework

Problem 1: Tightly bound electrons in 1D (10 points)

Consider a one-dimensional electron system with lattice constant a in tight binding approximation.
The energy-momentum relation reads

✏(k) = �2t cos(ka) .

a) Calculate the electronic density of states D(✏).

b) Does it have van-Hove singularities? If so, discuss their character!

c) Calculate the Fermi energy for 0.5, 1, and 2 electrons per unit cell.

d) For one electron per unit cell, calculate the low-temperature specific heat (per cell)!

Problem 3: Two-dimensional band structure (10 points)

Consider a two-dimensional crystal with a rectangular unit cell of length a = 5Å and width b = 3Å.

a) Determine the 1st Brillouin zone.

b) For free electrons, calculate the Fermi wavevector for 1, 2, 3 electrons per unit cell. Sketch the
projected Fermi surfaces in the extended and reduced zone schemes.

c) Now assume a weak periodic potential. Where will gaps open in k-space? Sketch the Fermi
surfaces for nearly free electrons for 1, 2, 3 electrons per unit cell.


