

Solid State Physics Exercise Sheet 3 Scattering and Diffraction

HS19 Prof. Dr. Marta Gibert

Assistant: Gabriele De Luca

Received on 4th October

Due on 11th October

Exercise 1 Atomic form factor

There is an atom in which the density distribution of one electron around the nucleus at the distance of \vec{r} is given by $n(\vec{r})$.

- 1. Calculate the atomic form factor f as a function of the scattering vector $\Delta \vec{k}$
- 2. Derive a generalized equation for the structure factor S of an atom containing Z electrons

Figure 1: The scattering triangle.

Note that the scattering triangle (Figure 1) gives the relation between $\Delta \vec{k}$, the wavelength $\lambda = 2\pi/k$, and the scattering angle Θ :

$$\Delta k = 2\pi \frac{2\sin(\Theta)}{\lambda}.\tag{1}$$

Exercise 2 Geometrical structure factor

Calculate the structure factor S as a function of hkl for the GaAs structure with the assumption that the atomic form factors f are constant but different for Ga and As. What would happen if the two atoms had the same atomic form factor, as in the case of silicon/diamond?

Exercise 3 Crystal structure of BaTiO₃

Barium titanate crystallizes in a perovskite structure; i.e. a structure where the Ba atoms sit at the corners of a cube with a Ti atom at the cube's center and the O atoms in the centers of its faces (see Sheet #1, Exercise 3). Determine the intensity relationship between the (100), (110), (111) and (200) Bragg reflections assuming that $f_{Ba} = 7f_O$ and $f_{Ti} = 3f_O$.

Exercise 4 Three phases of iron

Iron can exist in three different phases that are all cubic, the α -phase (below 910°C), the γ -phase (between 910°C and 1403°C), and the δ -phase (between 1403°C and 1535°C). In powder x-ray diffraction experiments with a wavelength of 0.15418 nm, diffraction peaks were observed

- α -phase at 513K: $2\Theta = 44.67^{\circ}$, 65.02° and 82.32°
- γ -phase at 1565K: $2\Theta = 42.66^{\circ}$, 49.67° , 72.88° and 88.29°
- δ -phase at 1705K: $2\Theta = 43.72^{\circ}$, 63.55° and 80.32°
- 1. Index all the diffraction peaks and determine the Bravais lattice of each phase
- 2. Evaluate the lattice constants of the three phases at the measured temperatures (Hint: remember the structures we observed for Sheet #0...)

Questions

1. In diffraction experiments, what does the (000) reflection correspond to?