

Spectral properties of hybrid bilayer graphene

Tudor E. Pahomi¹, Alexey A. Soluyanov², Manfred Sigrist¹, Jose L. Lado^{1,3}

¹Institute of Theoretical Physics, ETH ²Physik-Institut, UZH ³Aalto University, Finland

Motivation and strategy

- Flat band superconductivity in experimentally tunable systems, using superstructures of weakly correlated 2D materials
- Experimental tools

→ twist angle (Bistritzer & MacDonald, PNAS2011)
 → atomic defects (Lopez-Bezanilla PRM2019, Ramires PRB2019)

- Compare physics of superlattices: defects vs. moiré
- Enhance DOS in order to suppress the kinetic term
 → possibly high correlations → unconventional SC

Moiré pattern and van Hove singularities

$$r=1$$

$$\cos \theta(m,r) = \frac{3m^2 + 3mr + r^2/2}{3m^2 + 3mr + r^2}$$

$$\begin{bmatrix} \mathbf{t}_1 \\ \mathbf{t}_2 \end{bmatrix} = \begin{bmatrix} m & m+r \\ -(m+r) & 2m+r \end{bmatrix} \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \end{bmatrix}$$
Neto PRB2012

Moiré pattern and van Hove singularities

BZ folding flattens the bands at low energy

$$r=1$$

$$\cos \theta(m,r) = \frac{3m^2 + 3mr + r^2/2}{3m^2 + 3mr + r^2}$$

$$\begin{bmatrix} \mathbf{t}_1 \\ \mathbf{t}_2 \end{bmatrix} = \begin{bmatrix} m & m+r \\ -(m+r) & 2m+r \end{bmatrix} \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \end{bmatrix}$$
Neto PRB2012

Institute for Theoretical Physics

Moiré pattern and van Hove singularities

Neto PRB2012

Superconductivity in TBG

Superfluidity in system with fermion condensate

V.A. Khodel' and V.R. Shaginyan

I. V. Kurchatov Institute of Atomic Energy, Moscow; B. P. Konstantinov Institute of Nuclear Physics, Academy of Sciences of the USSR

(Submitted 4 April 1990) Pis'ma Zh. Eksp. Teor. Fiz. **51**, No. 9, 488–490 (10 May 1990)

The properties of Fermi systems beyond the phase transition point, at which the group velocity of the quasiparticles changes sign on the Fermi surface, are analyzed. A Fermi condensate arises in the new phase: The energies $\epsilon(\mathbf{p})$ of quasiparticles with momenta $p_{1c} <math>(p_{1c} < p_F, p_{2c} > p_F)$ turn out to be identical and equal to the chemical potential μ . If a Cooper pairing can occur in this phase the gap Δ is a linear function of the pairing constant λ .

BCS:
$$\Delta \propto e^{-1/\mathcal{D}(0)\lambda}$$

Tudor Pahomi | 01.11.2019 | 9/21

Institute for Theoretical Physics

Other mechanism which flattens the low-energy bands

Other mechanism which flattens the low-energy bands

The UC has 4x4x2-6=28 atoms
The position of the removed hexagon in the UC is irrelevant

- Low-energy ~ graphene spectrum
 Renormalized t
 - Weaker valley polarization
- Combined with a pristine layer ?

Hybrid TBG

Small-angle hybrid TBG

increasing moiré supercell

The Energy difference between the cones is almost constant

- \rightarrow related to the coupling strength and the vacancy concentration
- \rightarrow the degeneracy of the cones can be restored using an electric field

Degenerate cones?

$$H = t_{\uparrow} \sum_{\langle i,j \rangle \in \uparrow} c_i^{\dagger} c_j + t_{\downarrow} \sum_{\langle i,j \rangle \in \downarrow} c_i^{\dagger} c_j + \sum_{i \in \uparrow, j \in \downarrow} t_{\perp} (\mathbf{r}_i - \mathbf{r}_j) c_i^{\dagger} c_j + E \sum_{i \in \{\uparrow,\downarrow\}} z_i c_i^{\dagger} c_i$$

- Apply electric field *E* to restore the degeneracy of the Dirac points

- The states tend to localize in the upper layer as the interlayer coupling becomes stronger

- At small angles the Electric field is innefective because of the weak layer polarization.

Tudor Pahomi | 01.11.2019 | 16/21

Toy model

2 honeycomb layers, no vacancies

- → Displacement of the two pairs of Dirac cones using an electric field
- \rightarrow Reduced Fermi velocity using a smaller t in the upper layer

Toy model: spectra

Institute for Theoretical Physics

Toy model: DOS vs angle

Yet to understand: hybrid bilayer vs. toy model

Institute for Theoretical Physics

Thank you for your attention!

