Exercise 1 Reciprocal lattice vectors
a) Show that a reciprocal lattice vector $\vec{G}=h \vec{b}_{1}+k \vec{b}_{2}+l \vec{b}_{3}$ is orthogonal to the lattice plane ($h k l$).
b) Show that the distance $d_{h k l}$ of two lattice planes with Miller indices $(h k l)$ is given by

$$
d_{h k l}=\frac{2 \pi N}{\left|h \vec{b}_{1}+k \vec{b}_{2}+l \vec{b}_{3}\right|} .
$$

What is the meaning of N ?

Exercise 2 Reciprocal lattice

Calculate the primitive reciprocal lattice vectors $\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$ for
a) fcc and bcc lattices
b) the hexagonal lattice.

Exercise 3 Ewald sphere

Discuss qualitatively, using the Ewald sphere, what kind of interference pattern is observed in the diffraction of monochromatic light by linear point and line lattices.

Exercise 4 Brillouin zone in the reciprocal lattice

Construct the first four Brillouin zones for a two-dimensional simple rectangular lattice with $a_{2}=2 a_{1}$.

Exercise 5 Atomic form factor

Calculate the atomic form factor f for a homogeneously charged sphere of charge Z and radius R as a function of Δk. Plot f as a function of $\sin (\Theta)$ if we assume $\lambda=R$.
Remember: The atomic form factor for an atom is given by its electron density distribution $n(\vec{r})$ (the charge density is $\rho(\vec{r})=-e n(\vec{r})$) according to

$$
f(\Delta \vec{k})=\iiint n(\vec{r}) e^{i \Delta \vec{k} \cdot \vec{r}} \mathrm{~d}^{3} r
$$

Furthermore the scattering triangle (figure 1) gives the relation between Δk, the wavelength $\lambda=2 \pi / k$ and the scattering angle Θ :

$$
\Delta k=2 \cdot \frac{2 \pi}{\lambda} \sin (\Theta)
$$

Figure 1: The scattering triangle.

Exercise 6 Width of the diffraction maximum
We assume that in a linear crystal on every lattice point $\vec{\rho}=m \vec{a}, m \in \mathbb{Z}$ there is an identical point-like scattering centre. The total amplitude of the scattered radiation is proportional to $F=\sum \exp (-i m \vec{a} \cdot \Delta \vec{k})$. The sum over M lattice points has the value

$$
F=\frac{1-\exp (-i M \vec{a} \cdot \Delta \vec{k})}{1-\exp (-i \vec{a} \cdot \Delta \vec{k})}
$$

when we use the series expansion

$$
\sum_{m=0}^{M-1} x^{m}=\frac{1-x^{M}}{1-x} .
$$

a) The scattered intensity is proportional to $|F|^{2}$. Show that

$$
|F|^{2} \equiv F^{*} F=\frac{\sin ^{2}\left(\frac{1}{2} M \vec{a} \cdot \Delta \vec{k}\right)}{\sin ^{2}\left(\frac{1}{2} \vec{a} \cdot \Delta \vec{k}\right)}
$$

b)For $\vec{a} \cdot \Delta \vec{k}=2 \pi h, h \in \mathbb{Z}$ a diffraction maximum appears. We change $\Delta \vec{k}$ slightly and define ε in $\vec{a} \cdot \Delta \vec{k}=2 \pi h+\varepsilon$ such that ε gives the first zero-crossing of the function $\sin \left(\frac{1}{2} M \vec{a} \cdot \Delta \vec{k}\right)$. Show that $\varepsilon=2 \pi / M$. What does this mean for the width of the diffraction maximum?

Exercise 7 Structure factor

Calculate the structure factor S as a function of $h k l$ for the NaCl structure with the assumption that the atomic form factors f are constant but different for Na and Cl .
What would happen if the two atoms had the same atomic form factor? Which real material with NaCl -structure is close to this assumption?

