Electronics – Free electron gas

1. Perspectives

Thermal conductivity

Thermoelectricity

Coupling between electronic charge and crystal lattice

2. Free electron gas

Electron dispersion Fermi energy E_F Electronic DOS Fermi-Dirac distribution

3. Electronic specific heat

Temperature dependence Quantitative expression Comparison to experiments

Thermal Conductivity

Thermal Conductivity - Setup

Thermal Conductivity: NaF

FIG. 1. Thermal conductivity versus temperature for pure NaF crystals. Curve A, NaF sample, this paper; curve B, NaF sample, Ref. 1; curve C, typical singly grown NaF (smaller cross section).

Important Material Parameters

Waste heat

Waste Heat to Electricity

Figure of Merit - Thermoelectricity

 $zT = \frac{S^2}{T}.$ ρк

- S = Seebeck coefficient
- T = Temperature
- ρ = Resistivity (ohm)
- κ = Thermal conductivity

Figure of Merit – versus time

http://www.sciencedirect.com/science/article/pii/S2352847815000258

Figure of Merit – versus time & T

http://pubs.rsc.org/en/content/articlelanding/2014/ee/c3ee43099e/unauth#!divAbstract

Heat Capacity – YBa₂Cu₃O_{6.5}

http://www.nature.com/nphys/journal/v7/n4/pdf/nphys1921.pdf (2011)

Heavi Fermions

Nature Physics **5**, 422 - 425 (2009)