Solid State Physics

Exercise Sheet 2
Reciprocal Lattice

Prof. Dr. Marta Gibert

Reciprocal lattices

Exercise 1 General properties

1. Show that a reciprocal lattice vector $\vec{G}=h \vec{b}_{1}+k \vec{b}_{2}+l \vec{b}_{3}$ is orthogonal to the lattice plane (hkl).
2. Show that the distance $d_{h k l}$ between two consecutive lattice planes with Miller indices $(h k l)$ is given by $d_{h k l}=\frac{2 \pi}{|\vec{G}|}$.
3. Express $d_{h k l}$ for a cubic, a tetragonal and an orthorhombic lattice.

Exercise 2 Reciprocal lattices

Calculate the primitive reciprocal lattice vectors $\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$ for

1. face-centered cubic (fcc)
2. base-centered cubic (bcc)
3. simple hexagonal (Hint: For simple hexagonal use these primitive vectors:

$$
\left.\overrightarrow{a_{1}}=\frac{\sqrt{3}}{2} a \overrightarrow{e_{x}}+\frac{a}{2} \overrightarrow{e_{y}}, \overrightarrow{a_{2}}=-\frac{\sqrt{3}}{2} a \overrightarrow{e_{x}}+\frac{a}{2} \overrightarrow{e_{y}}, \overrightarrow{a_{3}}=c \overrightarrow{e_{z}}\right)
$$

Exercise 3 Brillouin zones

Graphite is a lamellar crystal in which single layers of carbon atoms (or graphene) are distributed at the points of regular hexagons to form a honeycomb pattern.

1. Characterize this 2D structure by its Bravais lattice and basis
2. Sketch the corresponding reciprocal lattice and the first three Brillouin zones
