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Introduction

Physics! What exactly is it and what is it useful for? Physics deals with matter, energy,
the principles of motion for particles and waves, and their interactions. It aims to explain
properties and behavior of things at the small level, such as molecules, atoms, nuclei and
quarks; but also at the larger scale, such as gases, liquids, solids, but also plants, stars,
solar systems and star clusters. Physics is the study of the fundamental laws of nature, and
is necessary to understand chemistry, biology, astronomy, cosmology, etc. at a fundamental
level. If you want to understand the basics of how things work, this is the place to be!

These lecture notes cover the basics of classical mechanics for first-year physics students.
We will starts off with some basic concepts like units and dimension and how to describe
motion with kinematics. After that, we will learn about the Newtonian laws that govern
motion using forces. Then we will discuss fluid dynamics, and finally finish off with the
study of waves mechanics.

A good reference and source of materials for the topics discussed here can be found in
Part I of Fundamentals of Physics by David Halliday, Robert Resnick & Jearl Walker. It
contains many more examples and exercises. This book is available in both English and
German.

In case you find any errors or typos, please send an e-mail to izaak.neutelings@uzh.ch
and ben.kilminster@physik.uzh.ch.

Mechanics

Statics Dynamics

Kinematics Kinetics

at rest in motion

geometry, analysis forces, mass, energy, ...

Figure 1: Mechanics and its branches.
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Chapter 1

Units & Dimensions

Before we can start uncovering the underlying principles of Nature we need to understand
the basic ingredients.

1.1 Fundamental definition of units

The basic units that are used in science are defined by the International System of Units
(SI). The system has seven basic units for seven quantities, or dimensions:

• second (s) for time,

• meter (m) for distance or length,

• kilogram (g) for mass,

• Ampere (A) for electrical current,

• Kelvin (K) for temperature,

• mole (mol) for amount of substance, and

• candela (C) for luminous intensity.

This semester, we will focus only on time, distance and mass.
From all of these units, we can derive any other unit we need in physics. Table 1.1

contains some of examples of derived units we need this semester. Table 1.2 lists the official
prefixes in the SI unit system.

Note that the choice of these seven dimensions and their units are in some sense arbi-
trary. Alien scientists on another planets might have chosen a different set of dimensions
or units to base their alien physics on, although we still expect the laws of physics to be
the same.

However, the definition of units needs to be rigorously standardized for scientific, tech-
nological, and financial reasons (such as trade). Before the world was as interconnected
as is today, each village could have its own definition for length, mass or time. They were
often based on the (average) length of some body part, like feet, hands or forearms. Besides
the fact that the average foot length could be larger one village over, how can you convert
between these? How many elbows are there in one foot? At some point, people tried to fix
units more widely with some standards. In the case of the metric system, on which the SI
units are based, this came about after the French Revolution. These standards would be
some physical artefact, or prototype. It could be a bar that set the definition of the meter,

11



12 CHAPTER 1. UNITS & DIMENSIONS

Table 1.1: On top are the basic units of distance, time, and mass. Below are units derived
from these basic units. Careful: the formulas shown are simplified examples, and there
may be a more precise formula needed for a particular problem.

Measurement Symbol Unit
Distance x meter (m)

Time t second (s)
Mass m kilogram (kg)

Velocity v “ x{t m{s
Acceleration a “ v{t m{s2

Momentum p “ mv kgm{s
Force F “ ma Newton (N “ kgm{s2)

Energy E “ Fx Joule (J “ kgm2{s2)

Table 1.2: Metric prefixes to indicated different orders of magnitude.

Name Symbol Base 10 Decimal
peta P 1015 1 000 000 000 000 000
tera T 1012 1 000 000 000 000
giga G 109 1 000 000 000
mega M 106 1 000 000
kilo k 103 1000

hecto h 102 100
deca da 101 10

– – 100 1

deci d 10´1 0.1
centi c 10´2 0.01
milli m 10´3 0.001
micro µ 10´6 0.000 001
nano n 10´9 0.000 000 001
pico p 10´12 0.000 000 000 001

femto f 10´15 0.000 000 000 000 001
atto a 10´18 0.000 000 000 000 000 001

(a) Old definitions. (b) New definitions since May 2019.

Figure 1.1: Definition of SI base units and their interdependence. The fundamental units
are the meter (length), second (time), kilogram (mass), mol (amount of substance), candela
(luminous intensity), Kelvin (temperature) and ampere (current). Taken from Wikipedia.
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or a block of weight that set the kilogram. These would be securely stored in Paris, and
other institutes could request a copy. However, over time this method proved unreliable.

A new approach was chosen, which took effect as of May of 2019. The base units of the
SI system are now all defined to depend on the measurements of fundamental constants,
which have been fixed to one value for ever. Figure Fig. 1.1 summarizes the definition of
the base units with constants of Nature and their interdependence. We will look at some
examples below.

1.1.1 Time

Time used to be defined by the orbit of the earth around the sun. Now, however, we use
a more precise atomic clock. This “clock” is based on the transition rate of Cesium-133
atoms. When a liquid of Cesium isotopes is heated up inside an oven, it will emit a beam
of Cesium atoms in either of two states. A microwave cavity is precisely tuned to switch
between these two states based on the natural oscillation frequency of the Cesium, and
magnets are used to select one of these states, such that when the frequency is perfectly
matched, we get a Cesium beam that is maximally detected as being in one of these states.
Therefore a second is defined exactly as the time it takes for 9 192 631 770 oscillations of
the microwaves in the cavity. The relative precision of such an atomic clock is typically

∆T

T
„

1 s

100My
, (1.1)

so 1 second in 100 million years.

1.1.2 Distance

The meter was defined such that distance from the equator through Paris to the north pole
would be 107 meters. The circumference of the earth is about 40 000 km. Now, the meter
is defined using the definition of the speed of light, c, and the definition of the seconds.
One meter is defined as exactly the distance light travels in

1

299 792 458
seconds, (1.2)

such that
c “ 299 792 458m{s. (1.3)

Notice that this definition of the meter relies on the definition of the second.

1.1.3 Mass

The kilogram used to be defined by a standard object, which was a metal object kept
under vacuum in a vault in Paris. Since May of 2019, it is defined using Planck’s constant
h. This constant relates time and energy via

h “ 6.626 070 15 ˆ 10´34 Js. (1.4)

In a later physics course, you may determine h from Einstein’s equation for the energy E
of a photon with frequency ν,

E “ hν. (1.5)

The kilogram then, is defined by seconds (from the Cesium clock), meters (from c), and
Joules (from h).
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1.2 Dimensional analysis

We know we cannot add seconds to meters, as they have different dimensions, time and
length, respectively. What about

x “
E

F
` vt `

a

v
, (1.6)

with distance x, energy E, force F , velocity v, time t and acceleration a? Is this a valid
equation? From Table 1.1, we know that the units of the first term on the right-hand side
is

„

E

F

ȷ

“
rEs

rF s
“

kgm2{s2

kgm{s2
, (1.7)

while the second term is
rvts “ m{s ¨ s “ m, (1.8)

and the third term,
”a

v

ı

“
ras

rvs
“

m{s2

m{s
“

1

s
. (1.9)

Each term in Eq. (1.6) has different units, so the equation cannot possibly be valid.
This check is called dimensional analysis. Its one of the most powerful tools at the

disposal of a physicist. If you came to a final results after a lot of algebra, it is one way to
test if you made any mistakes along the way. It can also be useful to remember formulas.
In fact, dimensional analysis is even used to guess the form of some unknown equation
as ansatz, if one knows what the possible ingredients (i.e. the possible variables) and
restrictions of your problem are.



Chapter 2

Measurement & Uncertainty

Let’s say we want to measure some distance x. To get a more precise value, it’s often
better to make the measurement several times and take the average:

x “
1

n

n
ÿ

i“1

xi, (2.1)

where xi are n measurements of x. This is our data set. The symbol
ř

stands for sum.
The n in

řn
i“1 means that we have n measurements to sum over, iteratively, starting with

the first one that is labeled i “ 1. The average is sometimes written as the expected value
xxy “ x of x, written with brackets. For example, if we have 3 measurements: 2, 3, and
7, then n = 3, x1 “ 2, x2 “ 3, and x3 “ 5. The average would equal x “ 1

3

řn“3
i“1 xi “

1
3p2 ` 3 ` 7q “ 4.

However, measurements in science are meaningless without some estimate of the un-
certainty, or error, on the result. They are typically denoted with σ. There are two types
of uncertainties that we will see now.

2.1 Statistical uncertainty

In statistics, we typically look at how spread out our data set is. If the real value is x,
then the standard deviation is defined as

σ “
1

n

g

f

f

e

n
ÿ

i

px ´ xiq2. (2.2)

However, we don’t know the true value of x, since this is exactly what we are trying to
measure. So instead we substitute the average, and the formula becomes

Standard deviation.

σ “

g

f

f

e

1

n ´ 1

n
ÿ

i

px ´ xiq2, (2.3)

such that for n Ñ 8, these two definitions are the same. This number gives you an idea
of the “spread”, or variance, of your measurements.

We can also estimate what the uncertainty in our measurement of the average x
is:

15
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Measurement error.

σx “
σ

?
n

“

g

f

f

e

1

npn ´ 1q

n
ÿ

i

px ´ xiq2. (2.4)

This is our measurement error or statistical error in our measurement of x. It is also called
the standard error of the mean. Again, as our data set increases, our uncertainty becomes
smaller.

Example 2.1: Consider the data set of measurements

t21.4, 21.0, 20.9, 21.3, 21.0, 21.3, 21.2, 21.0u. (2.5)

The average is x “ 21.14, the standard deviation of the data set is σ “ 0.18 and the
uncertainty in, or standard error on, x is σx “ 0.07. These numbers are visualized in
Fig. 2.1.

20 21 22

x

σ
σx

Figure 2.1: Visualization of the data set in Example 2.1.

This will be covered in a more detail if you take physics practica courses such as
PHY112.

2.2 Systematic uncertainty

The systematic uncertainty is related to the limited knowledge you have of your measure-
ment instruments. As a rule of thumb, this uncertainty is often estimated as the smallest
unit of measurement. This is your precision. For example, the precision of most high
school rulers is σx “ 1mm, because this is the unit of the smallest lines can read off.

However, most instruments can also have some unknown “shift” from the real value
called the bias. This is referred to as the accuracy of your instrument. By properly
calibrating your device, the systematic uncertainty can be reduced.

For example, if you want to accurately measure the temperature outside, but the ther-
mometer is located next to a light bulb that emits heat, then your thermometer will absorb
this extra heat, and systematically measure the temperature higher than the actual tem-
perature. This would be a systematic uncertainty, and you could estimate its effect by
comparing your outside temperature to one from the weather app on your phone. You
may find that the difference is always less than 0C, so you define your systematic uncer-
tainty to be ˘ 20C. However, you could also do a test and find that the temperature is
1 degree warmer when the light is on than when it is off. Now you could correct for this
systematic uncertainty and eliminate it.

In scientific studies, it is important to consider potential sources of systematic uncer-
tainties and try to correct for the largest ones. A general rule of thumb is to assess and
correct for systematic uncertainties if they are larger than your statistical uncertainties.
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2.3 Propagation of errors

In class we may measure the speed of light by measuring the time t light travels over a
distance x. The speed of light then, simply is

c “
x

t
. (2.6)

Suppose we estimate the precision of the time and distance measurements as σt “ 2 ns and
σx “ 0.01m, and now we want to estimate the uncertainty σc in our result c.

In general, if f “ fpx, y, z, ...q, the uncertainty on the quantity f is given by “propa-
gating” the uncertainties of its arguments.

Propagation of errors.

σf “

d

σx2
ˆ

Bf

Bx

˙2

` σy2
ˆ

Bf

By

˙2

` σz2
ˆ

Bf

Bz

˙2

` ... (2.7)

Here, B is the partial derivative, sometimes called the del symbol. It means that you take
the derivative of the function f with respect to only one of its variables.

One hidden assumption in Eq. (2.7) is that the uncertainties in the variables are com-
pletely uncorrelated. More generally, this is not the case, and Eq. (2.7) will become more
complicated by including terms that reflect the correlation between the uncertainties. In
this course we will only consider fully uncorrelated uncertainties.

The partial derivative
Bf

Bx
(2.8)

is the derivative of f with respect to x, while keeping all other variables of f (i.e. y, z, ...)
constant. Let’s look at a few examples.

Example 2.2: For a simple sum function like

fpx, yq “ x ` y, (2.9)

we find
Bf

Bx
“ 1 “

Bf

By
, (2.10)

Since the function depends linearly on both x and y, Eq.2.7 simplifies to

Uncertainty in a sum or difference.

σf “

b

σ2
x ` σ2

y . (2.11)

This also tells you that if you have multiple (uncorrelated) uncertainties σx,i in some
variable x, you have to add them in “quadrature”:

σx,tot “

b

σ2
x,1 ` σ2

x,2 ` ... (2.12)

Notice that the sign of x or y do not matter because they are added in quadrature, so e.g.,
Eq. (2.11) holds also for a difference fpx, yq “ x ´ y.
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Example 2.3: For a simple quotient function like

fpx, yq “
x

y
, (2.13)

the total uncertainty is given by

σf “

d

ˆ

σx
y

˙2

`

ˆ

´
σyx

y2

˙2

, (2.14)

or,

Uncertainty in a product or quotient.

σf “ |f |
d

´σx
x

¯2
`

ˆ

σy
y

˙2

, (2.15)

This is a good formula to remember. Notice that x and y only contribute via their relative
uncertainties σx{x and σy{y, added in quadrature. It is easy to show that you would obtain
the same formula for the product fpx, yq “ xy.

Example 2.4: For something more complicated like

fpx, y, a, bq “ K
xyn

abm
, (2.16)

with a constant K, we find after some algebra

σf “ |f |
d

´σx
x

¯2
`

ˆ

nσy
y

˙2

`

´σa
a

¯2
`

´mσb
b

¯2
, (2.17)

which is left as an excellent exercise for home. Notice that the relative uncertainty of y
and b contribute more to the overall uncertainty, as they have an extra factor n or m.

Example 2.5: In our measurement of the speed of light, we estimate σx “ 0.01m to be the
uncertainty in the distance x, and σt “ 2 ns in the travel time of light according to our
oscilloscope. The uncertainty in our measurement of c is

σc “ c

c

´σx
x

¯2
`

´σt
t

¯2
“ 0.06m{s. (2.18)

Example 2.6: Suppose we measure gravitational acceleration g from the formula x “ 1
2gt

2,
so that g “

a

2x{t2. If we measure t “ 0.6395 ˘ 0 0001s, and x “ 2.00 ˘ 0 002m, then our
calculation of g will have an uncertainty according to the formula

σg “ g

d

´σx
x

¯2
`

ˆ

2σt
t

˙2

“ 0.01m2{s. (2.19)

Notice that time is a more important uncertainty to measure well.
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2.4 Scientific notation

If you would measure the height of an A4 paper sheet with a simple high school rulers,
you could write your result for example as

h “ 29.8 ˘ 0.1 cm.

Here, the three digits (2, 9 and 8) are your significant digits. The uncertainty is always
written with just one non-zero significant digit (the zeros in front do not count). Typically
you write the value with as many significant digits as your precision. This includes any
trailing zeros, e.g. for the A4 width:

w “ 21.0 ˘ 0.1 cm.

In science, results are often written in terms of powers of ten. This allows you to keep
easier track of the order of magnitude of your results. For example, for our measurement
of c:

c “ p2.98 ˘ 0.06q ˆ 108
m

s
.

With calculators the power of ten can be written with the "e" or "exp" or "E" button, as
in 2.98e8. Notice that the power depends on your choice of units; for our A4 sheet:

h “ p2.98 ˘ 0.01q ˆ 101 cm “ p2.98 ˘ 0.01q ˆ 10´1m,

w “ p2.10 ˘ 0.01q ˆ 101 cm “ p2.10 ˘ 0.01q ˆ 10´1m,

because 1 cm “ 1 ˆ 10´2m.
In the exercises on the homeworks and exams, it is often sufficient to write down only

three significant digits if you have no uncertainty given.
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Chapter 3

Vectors & Reference Frames

A vector is a representation of a quantity that has a certain direction and magnitude.
Vectors are very useful for a couple of things: to indicate, for example, the velocity of
an object (v), or a force acting upon it (F), but also its position with respect to some
point (r), or even differences like displacement (∆r) or change in velocity (∆v). Vectors
are typically indicated with an arrow or overline, but in these notes, we will use the bold
notation.

3.1 Vectors in coordinate systems

The location of an object can be described by a point P in 3D space. In a Cartesian
coordinate system, P has some coordinates px, y, zq, as in Fig. 3.1a. This can also be
written as a vector r. Using unit vectors x̂, ŷ and ẑ that point in each of the three
directions:

r “ xx̂ ` yŷ ` zẑ. (3.1)

Some books also use the convention

r “ x̂i ` ŷj ` zk̂,

or even
r “ xêx ` yêy ` zêz,

but we will stick with Eq. (3.1). In two dimensions, r “ xx̂ ` yŷ, and we simply ignore
the z component.

x

y

z

x̂

ŷ
ẑ

Pθ

(a) Position vector in a 3D Cartesian
coordinate system.

(x, y)

r

x̂

ŷ θ

x = r cos θ

y = r sin θ

(b) Position vector in a 2D Cartesian
coordinate system.

r

xx̂

yŷ

x̂

ŷ

(c) A vector can be broken down into
its x and y vector components.

Figure 3.1: Postition vectors in two dimensions.
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In terms of linear algebra, if tx̂, ŷ, ẑu is our (linearly independent) basis, then we can
identify vectors by its components in a column vector:

r “

¨

˝

x
y
z

˛

‚. (3.2)

3.2 Vector length

The length, also called the magnitude or modulus, of a vector is given by Pythagoras:

|a| “ a “

b

a2x ` a2y ` a2z. (3.3)

Note some books use double bars notation. Unit vectors, denoted by point hats, represent
directions, and have by definition lengths of 1, such as

|x̂| “ 1. (3.4)

If you have some vector a, you can figure out its unit vector, by normalizing it, or dividing
the vector by its magnitude.

â “
a

|a| . (3.5)

A hat (circumflex) always means the vector is normalized to 1.

3.3 Vector sum

Vector summing is very simple: you simply add them component-wise:

a ` b “ paxx̂ ` ayŷ ` azẑq ` pbxx̂ ` byŷ ` bzẑq

“ pax ` bxqx̂ ` pay ` byqŷ ` pay ` byqẑ.

(3.6)
(3.7)

This is shown visually in Fig. 3.2a with the so-called tip-to-tail method. Figure 3.2a shows
the same method for many vectors.

3.4 Scalar multiplication

Vectors can be multiplied by a scalar, or in other words, scaled by a real number b P R:

ba “ baxx̂ ` bayŷ ` bazẑ. (3.8)

So each component is scaled by the same number. It is easy to show that the length of the
new vector is simply |ba| “ |b|a. This is the main effect: The length changes, but the new

a

b

a

b

a+ b

(a) Summing two vectors.

a

b
c

d

(b) A bunch of vectors.

a

b

c

d

a+ b+ c+ d

(c) Tip-to-tail method of adding the
vectors of part (b).

Figure 3.2: Adding vectors.
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a

−a

2a

(a) Scalar multiplication ba of vector a with
scalar b, where b “ 2 or ´1.

a

a · x̂ = |a| cos θ
x̂̂x

θ

(b) Scalar product x “ r ¨ x̂ is the projection
of r onto the x axis.

Figure 3.3: Multiplication of vectors.

vector ba will be parallel to a (if b ‰ 0), like in Fig. 3.3a. In case b ă 0, it will “flip” the
direction. A special case of this is where b “ ´1, such that

ba “ ´axx̂ ´ ayŷ ´ azẑ “ ´a, (3.9)

which means that ba is parallel to a, has the same length, but points in the opposite
direction.

3.5 Scalar product

The scalar product, or dot product, is the componentwise product of two vectors:

a ¨ b “ paxx̂ ` ayŷ ` azẑq ¨ pbxx̂ ` byŷ ` bzẑq

“ axbx ` ayby ` azbz.

(3.10)
(3.11)

The result is a number with no direction, as opposed to a vector. Hence the name “scalar”.
A convenient relation is

a ¨ b “ |a||b| cos θ “ ab cos θ, (3.12)

where θ is the angle between a and b. From either of these formulas, it is trivial to show
that the scalar product is commutative, i.e. swapping two vectors gives the same result:

a ¨ b “ b ¨ a. (3.13)

The scalar product is also distributive with vector sum, which means that for any three
vectors a, b and c,

a ¨ pb ` cq “ a ¨ b ` a ¨ c. (3.14)

Notice that a scalar product of a vector with itself gives you its magnitude squared,

a ¨ a “ |a|2. (3.15)

The scalar product is also useful to calculate the projection of one vector onto another.
This is a measure of a magnitude of their overlap. For instance, one can project a vector
onto the unit vector for the x direction, e.g.

a ¨ x̂ “ a cos θ, (3.16)

where θ is the angle between the x axis and a, as shown in Fig. 3.3b. This projection gives
the x component of the vector a.

Since the y and x axes are orthogonal, or normal, to each other, the ŷ unit vector has
no component along x̂ and x̂ ¨ ŷ “ 0. This holds for any two vectors that are orthogonal to
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a× b

a

b θ

(a) The right-hand rule gives the direction of the
vector product.

x̂

ŷ

ẑ

(b) Conventionally, we use a right-handed coor-
dinate system.

Figure 3.4: Right-hand rule like on the CHF 200 bill: Point your flat hand in the direction
of the first vector a. Keeping your index finger along a, point your middle finger along b,
sweeping the smallest angle θ between a and b. Your thumb will point along a ˆ b.

each other. A different way to see this is by realizing the angle between them is θ “ 90˝,
and so cos θ “ 0.

Using the rules of matrix multiplication, one can write the scalar product of two vectors
using the transpose:

a ¨ b “ aTb “
`

ax ay az
˘

¨

˝

bx
by
bz

˛

‚“ axbx ` ayby ` azbz. (3.17)

3.6 Vector product

Lastly, there is the vector product, or cross product, defined as

a ˆ b “ paybz ´ azbyqx̂ ` pazbx ´ axbzqŷ ` paxby ´ aybxqẑ. (3.18)

One way of remembering this formula is by creating the following matrix, of which you
compute the determinant :

a ˆ b “

∣∣∣∣∣∣

x̂ ŷ ẑ
ax ay az
bx by bz

∣∣∣∣∣∣
. (3.19)

This result of the vector product is again a vector, hence the name. The length of the
vector products is given by

|a ˆ b| “ |a||b| sin θ. (3.20)

This is the vector product’s counterpart of Eq. (3.12).
Important to know is that this new vector is orthogonal to the original vectors. It is

easy to show that
a ¨ pa ˆ bq “ 0

b ¨ pa ˆ bq “ 0.

(3.21)
(3.22)

So aˆb is orthogonal to a and b, but in which direction? There are two possibilities, but
the convention is given by the right-hand rule, illustrated in Fig. 3.4. In fact, the Cartesian
coordinate system we conventionally use in 3D is right handed :

x̂ ˆ ŷ “ ẑ. (3.23)
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xO

y

x′O′

y′

x′′
O′′

y′′

x′′′

O′′′

y′′′

Figure 3.5: Here, the same point is shown in different reference frames, labeled as O,
O’, O”, and O”’. Since the reference frames are shifted and rotated with respect to O, the
position vector (in blue) that specifies the point is also different. Transformations between
these reference frames are possible without changing the physics, like translation, reflection
and rotation.

From Eq. (3.20) it is easy to see that the vector product of two non-zero vectors is
zero if and only if sin θ “ 0. This happens when they are aligned (θ “ 0) or back-to-back
(θ “ 180˝). This also makes sense from a geometrical standpoint, as two aligned vectors do
not span a plane anymore, and the vector product has no unique direction to be orthogonal
to them. In terms of linear algebra: The two vectors are not linearly independent.

Finally, unlike the scalar product, the vector product is not commutative:

a ˆ b “ ´b ˆ a, (3.24)

but since swapping the vectors only introduces a minus sign, it is called anticommutative.

3.7 Reference frames

We will see many physics problems in the coming chapters and exercise classes. One
important thing is that the choice of the coordinate system is arbitrary. Where you put
the origin, and in what direction you point the axes is your choice, and the physics (i.e.
the prediction) will be the same. That is not to say, there are no bad choices. Often there
is a natural choice, such as x for the horizontal direction, along the ground, and y along
the vertical. The right choice can spare you a lot of extra algebra.

You can do several types of coordinate transformations without changing the physics:

• Translation: px, yq ÞÑ px1, y1q “ px ` a, y ` bq for constants a, b P R.

• Rotation: px, yq ÞÑ px1, y1q “ px cos θ ` y sin θ, x sin θ ´ y cos θq for angle θ.

• Reflection; e.g. px, yq ÞÑ px1, y1q “ px,´yq.

Some of these are illustrated in Fig. 3.5. In theoretical physics this fact is related to the
deeper concept of symmetry : The physics does not change under these transformations,
just like rotating a circle by any angle gives you the same shape, and therefore the same
description. Namely, it is easy to show that for the equation of a circle after rotating the
coordinates by some angle θ as shown above,

x2 ` y2 “ r2
rotation
ÝÝÝÝÝÑ x12 ` y12 “ x2 ` y2 “ r2. (3.25)

In the same way the equations of motions will not change under coordinate transforma-
tion between reference frames, as long as they are inertial, which means they are not
accelerating.

In Chapter 10 we will learn more about inertial and non-inertial reference frames.
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3.8 Extra: Vector transformations

This is some extra information to make a connection to linear algebra for the interested
reader.

Multiplying a vector by some matrix A,

fpaq “ Aa, (3.26)

is called a linear transformation or linear map. It is easy to show it preserves vector
addition,

fpa ` bq “ fpaq ` fpbq, (3.27)

and scalar multiplication
fpbaq “ bfpaq, (3.28)

hence the name linear. The reflection of the y coordinate we saw above has the transfor-
mation matrix

A “

ˆ

1 0
0 ´1

˙

, (3.29)

such that
ˆ

x1

y1

˙

“

ˆ

1 0
0 ´1

˙ ˆ

x
y

˙

“

ˆ

x
´y

˙

. (3.30)

We will see another example of a linear transformation in the extra Section 10.3.2,
namely rotation which has a transformation matrix

Rpθq “

ˆ

cos θ sin θ
´ sin θ cos θ

˙

. (3.31)

A more general transformation includes a translation, which can be written as

fpaq “ Aa ` b, (3.32)

with matrix A and some constant translation vector b.



Chapter 4

Motion in One Dimension

Movement can be described by the change in coordinates as a function of time. In three
dimensions, an object can move from a point P1 “ px1, y1, z1q to point P2 “ px2, y2, z2q

like in Fig. 4.1. At some time t1 it was at P1, until it arrived at P2 at some time t2. Its
path will be described by some continuous vector functions

rptq “ xptqx̂ ` yptqx̂ ` zptqx̂, (4.1)

where its coordinates x “ xptq, y “ yptq and z “ zptq are again functions of time.
In this course we will study the behavior of motion with some relatively simple functions

such as linear, quadratic, circular, and sinusoidal functions.

4.1 Uniform motion: constant velocity

Let’s start with some basic examples in one dimension (1D). If a point is moving in some
dimension, it means its position x depends on time t,

x “ xptq. (4.2)

Consider a car driving with a constant velocity v. Its position at any time is then given by

xptq “ vt. (4.3)

This is called uniform linear motion, or uniform motion in one dimension. Fig. 4.2a shows
that this looksizaa like a straight line through the origin of a position versus time graph.

x

y

z

r(t1)

P1

r(t2) P2

Figure 4.1: Motion of a point in a 3D. The position vector points to different points
along the point’s path at different times.
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t [s]

x [m] x(t) = v0t

t1

x1

t2

x2

(a) Starting at xp0q “ 0 at t “ 0.

t [s]

x [m]

x(t) = x0 + v0t

t1 t2

x0

x1

x2

(b) Starting at an offset xp0q “ x0 at t “ 0.

Figure 4.2: Uniform motion in one dimension with constant velocity.

The slope of the line is the velocity v. For example, between two points pt1, x1q and pt2, x2q,
the slope of the line is given by

v “
x2 ´ x1
t2 ´ t1

“
∆x

∆t
. (4.4)

A trivial case is when v “ 0: The point does not move at all in time and it stands still in
the same position. To get a feeling for this: If the car started at xp0q “ 0 at t and moved
to xp1 sq “ 5m after t “ 1 s, the car has an average velocity of 5m{s.

Note that in Eq. (4.3) we assumed that the car started at xp0q “ 0 at t “ 0. In general,
the car could have been at some position xp0q “ x0 at t “ 0, as in Fig. 4.2b:

Uniform motion in one dimension.

xptq “ x0 ` vt. (4.5)

4.2 Uniform acceleration

Velocity of course does not have to be constant. It can depend on time as well:

v “ vptq. (4.6)

For example, if velocity increases with time linearly, starting from some initial velocity v0
then

vptq “ v0 ` at (4.7)

with the constant acceleration a, the position xptq will now become a parabola in x-t space.
As velocity has dimensions time over length, acceleration must clearly have dimensions
length over time squared, so units m{s2.

4.2.1 Positive acceleration

Consider again a car which starts from rest (i.e. vp0q “ 0) and speeds up with a constant
acceleration, then its position is given by

xptq “ x0 `
at2

2
, (4.8)

as illustrated in Fig. 4.3a. For simplicity, you could let the car start at xp0q “ x0 “ 0 at
time t “ 0. We will understand in a few sections where this equation comes from better.
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Now consider the car was moving with some initial velocity vp0q “ v0. Its position will
be described by

xptq “ x0 ` v0t `
at2

2
, (4.9)

instead.

4.2.2 Negative acceleration

Another example is when you throw up a ball. Say we start the clock at t “ 0 when you
release it from your hand, and count this height as yp0q “ y0 “ 0. The ball will have some
initial velocity vp0q “ v0 that you gave it. At the same time, gravity is pulling it back
down to Earth, and slows down the ball until it reaches its highest point, the apex, and
comes, or “falls” back down for you to catch it. On the way back, it gained some velocity,
but in the other direction. This is a school example of negative acceleration ´a ă 0:

yptq “ v0t ´
at2

2
. (4.10)

This is graphed in Fig. 4.3b, where the ball reaches its apex at t2. A typical value for
the gravitational acceleration is a “ g « 9.8m{s2, although for quick calculations we can
round to g “ 10m{s2. The velocity is given by the linear function

vptq “ v0 ´ at, (4.11)

graphed in Fig. 4.3c. You can see that it is positive at first, but becomes smaller until it
reaches t2. At t2 the ball has reached its apex and comes to a standstill. After that the
velocity becomes more and more negative, meaning it speeds up in the negative x direction,
or, the ball falls as normal people would say.

Furthermore, notice that in Eq. (4.10) we had chosen the origin at the height where
you release it: yp0q “ 0, but this is somewhat arbitrary. We could have chosen an offset
yp0q “ y0 at t “ 0.

To summarize, constant, or uniform, acceleration in one dimension is given by a
quadratic equation:

Uniform acceleration in one dimension.
$

&

%

xptq “ x0 ` v0t `
at2

2

vptq “ v0 ` at

(4.12)

where x0, v0 and a can be some real number, that can be both positive or negative. If
a “ 0, this formula reduces to Eq. (4.5) again.

As another example, suppose you release a ball from rest from a height h, how long
will it take to reach the ground? At time t “ 0, the height is yp0q “ h and the velocity is
vp0q “ v0 “ 0, while for some time t, yptq “ 0. So we need to solve

yptq “ h ´
gt2

2
“ 0 (4.13)

for t:

t “

d

2h

g
. (4.14)
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t1 t2

x1

x2

t [s]

x [m] x(t) = +
at2

2

∆x
∆t

(a) Positive acceleration, starting
with vp0q “ 0.

t [s]

y [m]

∆y
∆t

t1 t2 t3

y1

y2
y(t) = v0t−

at2

2

(b) Negative acceleration, starting with
vp0q ą 0, and reaching its apex at t2.

t [s]

v
[

m
s

]

t2

v0 slows down

speeds up

(c) Velocity as a function of time for
a constant, negative acceleration.

Figure 4.3: Motion in one dimension with changing velocity due to constant acceleration
is described by a parabola. The average velocity between two points is given by the slope
of the line connecting them (green).

Notice that mathematically there is a negative and a positive solution, but we only choose
the positive one. What will be the ball’s velocity when it hits the ground? By substituting:

vptq “
a

2gh. (4.15)

4.3 Average velocity

Imagine you take the bike from home to Irchel. On your way you speed up several times,
slow down when going uphill, and stop for a red light or pedestrian crossing the road.
So your velocity changed quite a lot. The graph will look much more complicated than
Fig. 4.3c.

In general, we can still define the average velocity, denoted as v, or sometimes vave,
between any two points can be written by:

Average velocity.

v “
∆x

∆t
“

x2 ´ x1
t2 ´ t1

, (4.16)

where ∆x is the total distance traveled and ∆t is the travel time.
The geometric interpretation of this formula is that the average velocity between two

points pt1, x1q and pt2, x2q on the x-t curve is the slope of the straight line connecting them,
as is shown in Figs. 4.3a and 4.3b.

4.3.1 Torricelli’s equation

Here we derive what is known as Toricelli’s equation. Consider the velocity under uniform
acceleration:

vptq “ v0 ` at (4.17)

At some time t “ ∆t, the average velocity is given halfway between v0 and v “ vp∆tq,

v “
v0 ` v

2
“ v0 `

a∆t

2
. (4.18)

Now, say, the object moved a distance ∆x during this time, so from our definition of
average velocity:

x “ x0 ` ∆x “ x0 ` v∆t. (4.19)
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t [s]

x [m] x(t) = +
at2

2

dx
dt

(a) Positive acceleration.

t [s]

y [m]

dy
dt

(b) Negative acceleration.

Figure 4.4: Instantaneous velocity in some point is the slope of the tangent line to the
x-t curve in that point. Compare to Figs. 4.3a and 4.3b and take ∆t “ t2 ´ t1 Ñ 0.

So we again arrive at

x “ x0 ` v0∆t `
a∆t2

2
. (4.20)

This is one way of proving Eq. (4.12), but we will see a more general approach with
derivatives and integrals in Section 4.5

We can also find the velocity as a function of displacement alone without explicit time-
dependence. Rewriting Eq. (4.17) to

∆t “
vptq ´ v0

a
, (4.21)

and plug it back into Eq. (4.20):

Torricelli’s equation.
v2 “ v20 ` 2a∆x. (4.22)

So, if you know the initial velocity v0, and the constant acceleration a, then you can find
the final velocity v for any displacement ∆x using Eq. (4.22).

For example, if you let something fall from rest v0 “ 0, what will the object’s velocity
be after falling a height ∆x “ h? Using Torricelli’s equation with a “ g, we immediately
find

v “
a

2gh. (4.23)

This is consistent with our previous result in Eq. (4.15). There we had to solve two inde-
pendent equations in Eq. (4.12) for t and v, but starting from Torricelli’s equation (4.22)
was quicker.

4.4 Instantaneous velocity

As time ∆t gets shorter, we approach the instantaneous velocity v. As ∆t Ñ 0 in Eq. (4.16),
we find

Instantaneous velocity.

vptq “ lim
∆tÑ0

∆x

∆t
“

dx

dt
. (4.24)
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This should remind you of the definition of the derivative. Instead of slope of the line
connecting two points, this will be the slope of the tangent to the x-t curve in one single
point, as is shown in Fig. 4.4. The instantaneous velocity is again a function of time.

The magnitude of the velocity, is called the speed,

Speed.

speed “ |v| “

∣∣∣∣
dx

dt

∣∣∣∣. (4.25)

Speed is a positive number, while velocity is more like a vector, as it indicates direction,
which can also be negative. A negative velocity means that it points in the negative x
direction.

Example 4.1: Let’s calculate this the “old-fashioned” way with a numerical example. What
is the velocity vptq at some time t for the following position function?

xptq “ 5t2 (4.26)

At some later time, t ` ∆t, the position is

xpt ` ∆tq “ 5pt ` ∆tq2 “ 5t2 ` 10t∆t ` 5∆t2.

The change in position is

∆x “ xpt ` ∆tq ´ xptq “ 10t∆t ` 5∆t2.

The average velocity then is

v “
∆x

∆t
“ 10t ` 5∆t.

And we find the instantaneous velocity as

v “ lim
∆tÑ0

∆x

∆t
“ 10t.

Now, if you just take the derivative of Eq. (4.26), using rules for taking derivatives of
polynomials, you get the exact same answer:

v “
dx

dt
“ 10t.

Before we move on, yet another aside on notation: Here we used the Leibniz notation
for differentiation dx{dt, but others used are Lagrange’s notation x1ptq, or Newton’s dot
notation 9xptq. This last notation is almost exclusively used for time-derivatives in physics.

4.5 Instantaneous acceleration

The acceleration is the change in velocity with respect to time. This is just like velocity is
the change in position with respect to time. And analogous to the instantaneous velocity
Eq. (4.24), the instantaneous acceleration is
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Instantaneous acceleration.

aptq “ lim
∆tÑ0

∆v

∆t
“

dv

dt
. (4.27)

This is now the slope of tangent line to v-t graph.
Again, a negative acceleration means that it points in the negative x direction. Impor-

tantly, if the velocity and acceleration have opposite signs, there will be a deceleration. For
instance, if the velocity is positive, v ą 0, but the acceleration is negative, a ă 0, then v
becomes smaller. As illustrated in Figs. 4.3c and 4.5e, a negative acceleration means that
the velocity becomes smaller if v ą 0, or “more negative” if v ă 0.

Example 4.2: To see an example of calculating the acceleration from a velocity function,
we continue the previous Example 4.1,

∆v “ vpt ` ∆tq ´ vptq “ 10pt ` ∆tq ´ 10t. (4.28)

The average acceleration is a “ 10m{s2. This is the same as the instantaneous one:

dv

dt
“ 10m{s2, (4.29)

which is to say, the acceleration is constant with time in this particular case.

Substituting Eq. (4.24), we see immediately that acceleration is the second time-
derivative of position x with respect to time :

aptq “
dv

dt
“

d2x

dt2
, (4.30)

Or in other notations: aptq “ x2ptq “ :xptq.
Remember that the general rule for finding derivatives with functions of the form

xptq “ Ctn is
dx

dt
“ Cntn´1. (4.31)

We also know that integral is the opposite of derivation, and that the integral for a function
of the form aptq “ Ctn is

ż

aptqdt “ C
tn`1

n ` 1
` C 1, (4.32)

with some integration constant C 1. For a constant acceleration (n “ 0), we find as a
general solution

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

xptq “

ż t

t0

vpt1qdt1 “ x0 ` v0pt ´ t0q `
1

2
apt ´ t0q2

vptq “

ż t

t0

apt1qdt1 “ v0 ` apt ´ t0q

aptq “ a

(4.33)

Here, x0 “ xpt0q and v0 “ vpt0q are integration constants. We typically choose t0 “ 0 to
keep these formula neater, as we did previously in Eqs. 4.8 and 4.12. Conversely, if we
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start from xptq and take derivatives with respect to time, we get vptq and aptq:
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

xptq “ x0 ` v0t `
at2

2

vptq “
dx

dt
“ v0 ` at

aptq “
dv

dt
“

d2x

dt2
“ a

(4.34)

Notice that from dimensional analysis, these functions also make sense:

rv0ts “
m

s
s “ m

„

at2

2

ȷ

“
m

s2
s2 “ m

rats “
m

s2
s “

m

s
.

(4.35)

(4.36)

(4.37)

So everything is consistent.
The examples we have seen so far are polynomials. But position can be any other

continuous function. It can also be a piece-wise function, like a train bouncing back and
forth, which we saw in class. The train’s position was given by Fig. 4.5f, where it had
constant velocity, until it hit the end and quickly changed direction. Later, when we study
springs and circular motion, we will also see sinusoidal movement as in Fig. 4.5g. The
velocity and acceleration will also look like sinusoidal curves, but shifted by some phase:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

xptq “ R sinpωtq

vptq “
dx

dt
“ Rω cospωtq

aptq “
dv

dt
“ ´Rω2 sinpωtq

(4.38)

Here, ω is the angular frequency, which we will learn more about later in Section 5.3.
Figure 4.5 summarizes the different x-t curves we have seen, and its first and second

derivatives, velocity vptq and acceleration aptq.
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(g) Periodic one dimensional motion of a mass
on a spring moving back and forth. Velocity is
largest when x “ 0 “ a.

Figure 4.5: Several x-t curves of motion in one dimension, and its derivatives.
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Chapter 5

Motion in Two Dimensions

In this chapter we will explore some of the basics of two dimensional motion. This includes
a lot of nice real-life examples, like the trajectory of a ball you throw, or the orbit a satellite
follows around the Earth.

In one dimension it makes less sense to use vectors, but in this chapter they will come
to good use. We will use it for the position r, but also the velocity v is a vector. In three
dimensions:

v “ vxx̂ ` vyŷ ` vzẑ, (5.1)

which has some direction and a length v “ |v| (the speed). Each component has the
dimensions of velocity and is a velocity in that respective direction. The beautifully useful
thing about vectors is that you can treat their components independently if you choose
the x and y axis wisely, and we will see some examples of this in the next sections.

The logic of deriving position to get the velocity also extends to vectors:

vptq “
dr

dt
“

dx

dt
x̂ `

dy

dt
ŷ `

dz

dt
ẑ, (5.2)

as well as for deriving the velocity to get the acceleration:

aptq “
dv

dt
“

dvx
dt

x̂ `
dvy
dt

ŷ `
dvz
dt

ẑ

“
d2r

dt2

vy = v sin θ

vx = v cos θ

v

vxx̂

vyŷ

x̂

ŷ θ

Figure 5.1: Breaking down a two-dimensional velocity vector into its two x and y com-
ponents.

va

(a) Acceleration aligns: Speed in-
creases, but velocity direction stays
constant.

v

a

(b) Acceleration anti-aligns: Speed
decreases, but velocity direction
stays constant.

v
a

θ

(c) Acceleration does not align: Di-
rection changes. If a is not perpen-
dicular the magnitude

Figure 5.2: Velocity v and acceleration vector a.
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Acceleration a codifies the change in velocity v. It can change both the magnitude and
direction, as shown in Fig. 5.2.

5.1 Parabolic motion

If you throw a rock through the air, its trajectory will describe a nice parabola. Why a
parabola?

Say you throw the rock with some initial velocity v0. If you throw at an angle θ between
0 and 90˝, its velocity will have some x and y component, given by the vector

v0 “ v0xx̂ ` v0yŷ, (5.3)

or in terms of the total initial speed

|v0| “ v0 “

b

v2x ` v2y , (5.4)

and angle θ:
v0 “ v0 cos θx̂ ` v0 sin θŷ. (5.5)

Now we will break down this vector into independent components to study the rock’s
trajectory. We see that it makes sense to choose the coordinates we have since gravity
pulls in the vertical (y) direction, whereas it has no component in the x direction. For
now we neglect air resistance, such that there is no acceleration (or deceleration) in the x
direction, ax “ 0. In the y direction then, there is only the negative acceleration ay “ ´g
due to gravity:

Projectile motion.
$

&

%

xdptq “ x0 ` v0xt

ydptq “ y0 ` v0yt ´
gt2

2

(5.6)

This set of equations will look like the parabola in Fig. 5.3. The velocity is given by
#

vxptq “ v0x

vyptq “ v0y ´ gt
(5.7)

These are the basics of ballistics: the study of the trajectory of projectiles. They are
important to understand if you want to hit your target when shooting bullets, missiles or
rockets from a large distance, or less violently, throw a ball at your friend or in a hoop.

Notice that the y-x graph looks very similar to the y-t graph: Both are parabolic. Why
is this? A simple way to see this is to realise that the y-t parabola is parametrized by time
t. Time depends linearly on the position x, so we can substitute in an expression for t
from ydpxq in Eq.5.6, and determine the formula for y vs. x, in which ydpxq will depend
quadratically on x, taking the same form as ydptq.

5.1.1 Example: Shooting a falling monkey

A monkey has been eating all the apples in our apple orchard! We want to shoot the monkey
with a tranquilizer dart to capture it. We aim the dart gun straight at the monkey. We are
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ready to fire. But the monkey is smart: he is on to us. He knows that he can let gravity
pull him out of the line of sight of the gun. He lets himself drop right when we pull the
trigger. However, he forgot gravity is universal and will pull down the dart as well! Will
the dart hit the monkey after all?

Let’s fix the xy axis as in Fig. 5.4a; the origin is at the foot of the apple tree, with the
y axis pointing vertically along the tree, and the x axis along the horizontal ground. (As
mentioned in Section 3.7, this is an arbitrary choice. We could also have put the origin at
the gun’s nuzzle, or anywhere else.) Say the monkey hangs from a branch at a height h,
and the dart gun’s nozzle is at a horizontal distance d from the tree, so their positions are
given by p0, hq and pd, 0q, respectively.

Neglecting air resistance, the dart moves with constant velocity vx “ v0x in the x
direction. Meanwhile gravity acts on the dart vertically, and accelerates it down in the y
direction with acceleration ay “ ´g. We can write the velocity components in Eq. (5.7) in
terms of the total magnitude and smallest angle θ with the x axis

#

vxptq “ ´v0 cos θ

vyptq “ v0 sin θ ´ gt
(5.8)

The minus sign in the first line appears because the dart travels in the negative x direction.
So starting from Eq. (5.6) and px0, y0q “ pd, 0q, the position is given by

$

&

%

xdptq “ d ´ v0 cospθqt

ydptq “ v0 sinpθqt ´
gt2

2

(5.9)

We assume the monkey lets himself drop from rest, i.e. the monkey has no initial velocity
when it falls from height ymp0q “ h:

$

&

%

xmptq “ 0

ymptq “ h ´
gt2

2

(5.10)

Now we have all the equations set up. Will the dart hit the monkey? To answer this
question, we need to know what the height of the monkey and dart are when the dart
reaches the tree, x “ 0, at time t “ t1. We can find time t1 by setting the following
condition:

xdpt1q “ 0 “ d ´ v0 cospθqt1. (5.11)

t [s]
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vx

vx

vx

(a) x-t diagram.

t [s]

y [m]

vy
vy = 0

vy

(b) y-t diagram.

x [m]

y [m]
v

vy

vx

v = vx

v
vy

vx

(c) y-x diagram.

Figure 5.3: Trajectory of a projectile. In the x direction (left), the projectile moves at
constant velocity with respect to time. In the y direction (center), the projectile slows
down due to gravity, stops, and then its velocity becomes negative. What we actually see,
if we trace the movement of the projectile, is the y vs. x figure (right), where the blue
curve is the trajectory, and the green arrows show the velocity components at different
points along the trajectory.
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This is graphically shown in Fig. 5.4b, where the two curves intersect. Then t1 is given by

t1 “
d

v0 cos θ
. (5.12)

At that same time, the height of the dart will be

yd “ d tan θ ´
g

2

ˆ

d

v0 cos θ

˙2

, (5.13)

and that of the monkey:

ympt1q “ h ´
g

2

ˆ

d

v0 cos θ

˙2

. (5.14)

You may recognize d tan θ from trigonometry. Looking at the triangle in Fig. 5.4a,

h “ d tan θ. (5.15)

So yd “ ym at time t1 as in Fig. 5.4c. The dart hits the monkey! The poor monkey is not
as smart as it thinks.

What this experiment nicely shows is the you can “decouple” the motion into two
perpendicular directions. You break down the velocity into two components, which you
treat independently from each other. This is a very import idea that we will use in most
problems we will see.

Notice that whether or not you hit the monkey is independent of the blow dart’s initial
velocity and angle, as long as it is large enough to reach the tree without hitting the ground
first. The is the case as long as the dart is positive when reaching the tree, so if ympt1q ě 0,
or,

h ě
g

2

ˆ

d

v0 cos θ

˙2

. (5.16)

This is the condition on v0x “ v0 cos θ for the dart to reach the tree before hitting the
ground.

5.2 Interlude: Radians & polar coordinates

Before looking at circular motion, remember some of the basics of circles.
A circular arc is a line segment along a circle. Say it has some length ∆s, then the

angle ∆θ subtended by the arc in units of radians is defined by

∆s “ r∆θ, (5.17)
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Figure 5.4: The monkey drops itself from a branch at height h, when a dart is shot at
a distance d from the tree, and with an initial velocity v0. The dart hits the monkey at
time t1.
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Figure 5.5: Some circle basics.

where r is the radius of the arc like in Fig. 5.5a. This allows for a more natural units for
angles. The unit circle has radius r “ 1, such that its circumference is 2π, therefore in one
full rotation,

360˝ “ 2π rad « 6.283 rad. (5.18)

So

1 rad “
180˝

π
« 57.296˝, (5.19)

The definition of arc length is consistent: The total circumference of a circle is simply the
length of an arc spanning 360˝: ∆s “ 2πR.

A different way to describe a point P “ px, yq in a Cartesian coordinate system, is with
polar coordinates, here indicated with a semicolon:

P “ px, yq “ pr cos θ, r sin θq “ pr; θq. (5.20)

This is illustrated in Fig. 5.5b. The position vector in 2D points from the origin to P is

r “ xx̂ ` yŷ

“ r cos θ x̂ ` r sin θ ŷ.

(5.21)
(5.22)

However, we can also choose any two other unit vectors that are not parallel (i.e. linearly
independent) to each other. For this chapter, it’s convenient to define the polar unit
vectors, such that

r “ rrr̂ ` rθθ̂ “ rr̂. (5.23)

Here the direction of the unit vectors depend on the angle θ: r̂ points radially along the
position vector, while θ̂ points perpendicular to r̂ in the counterclockwise direction. In
case of the position vector r, only the radial component is nonzero rr “ r, while rθ “ 0.

Table 5.1: Angles in radians and degrees.

θ rrads θ r˝s sin θ cos θ tan θ

0 0 0 1 —
1 180{π 0.841 0.540 1.557

π{6 30
?
3{2 1{2

?
3

π{4 45
?
2{2

?
2{2 1

π{3 60 1{2
?
3{2

?
3{3

π{2 90 1 0 —
π 180 0 ´1 0

3π{2 270 ´1 0 —
2π 360 0 1 0
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Namely, θ is defined as the angle with the positive x axis in the counterclockwise direction.
Written in terms of our trusty x̂ and ŷ:

r̂ “ cos θx̂ ` sin θŷ

θ̂ “ ´ sin θx̂ ` cos θŷ,

(5.24)

(5.25)

such that they both indeed have length 1:

|̂r| “ |θ̂| “

a

cos2 θ ` sin2 θ “ 1, (5.26)

and are perpendicular to each other:

r̂ ¨ θ̂ “ 0. (5.27)

5.3 Uniform circular motion

Consider motion in a circle, like a satellite in orbit around the earth. Speed is the constant
along its orbit, but the direction of its velocity is changing so it is always tangential to
the orbit as in Fig. 5.6a. A change in velocity means there must be an acceleration. The
acceleration that keeps the satellite in a circular orbit is called the centripetal acceleration.
It is orthogonal to the velocity vector, so it does not affect its length: The change is only
a “rotation” of the vector with respect to the center of the orbit.

If the velocity were constant in one direction, the satellite would move in a straight line.
In that case, it would have travelled a distance d “ vt after some time t. From Fig. 5.6b,
we see it has “fallen” a distance h instead, because of the centripetal acceleration. What is
h? Notice from this figure that there is a right triangle, with sides about which Pythagoras
tells us that

pvtq2 ` r2 “ pr ` hq2 (5.28)

if the orbit is at a radius r. Rewriting,

pvtq2 “ 2rh ` h2. (5.29)

For a very small time t, the fall height h is very small as well. We can therefore make the
approximation h2 ! hr, such that

pvtq2 “ 2rh. (5.30)

We can solve for h:

h «
1

2

ˆ

v2

r

˙

t2. (5.31)
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(a) A constant centripetal acceleration is perpen-
dicular to the velocity and changes it direction.
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(b) A satellite orbiting the Earth due to gravity
creating a centripetal force.

Figure 5.6: Uniform circular motion.



5.3. UNIFORM CIRCULAR MOTION 43

Compare this to our familiar equation for a falling object

x “
1

2
at2, (5.32)

and we recognize that

a “
v2

r
(5.33)

This is known as the centripetal acceleration. This equation says that if the satellite would
move at twice the speed (2v), it would need four times the acceleration to stay in orbit at
the same radius r. On the other hand, for the same velocity v, but half the radius (r{2),
it would need double the acceleration.

The direction of the acceleration points from the satellite’s position towards the center,
so we can use the ´r̂ unit vector, as in Fig. 5.5b:

Centripetal acceleration.

ac “ ´
v2

r
r̂ “ ´rω2r̂, (5.34)

The satellite completes one full circle in one period T . The distance travelled is 2πr,
so it has a speed

v “ |v| “
2πr

T
. (5.35)

The period then can be expressed as

Period for uniform circular motion.

T “
2πr

v
. (5.36)

The number of times the satellite completes a full orbit per unit time is the frequency
f :

Frequency for uniform circular motion.

f “
1

T
“

v

2πr
. (5.37)

Remember the period has units of seconds, so frequency has units 1{s.
The angular velocity, or sometimes angular frequency, is the amount of radians, ∆s

covered per unit time. One full rotation is ∆s “ 2π, so

Angular velocity.

ω “ 2πf “
2π

T
“

dθ

dt
(5.38)
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Notice it can also be understood as the time derivative of the angle, analogous to position
x and velocity v. At a constant angular velocity,

ω “
dθ

dt
“

θ ´ θ0
t ´ t0

. (5.39)

Assuming that θpt0q “ θ0 “ 0 at t0 “ 0, we see that

Uniform rotation.
θptq “ ωt. (5.40)

This indeed look familiar to uniform linear motion in Eq. (4.5): x “ vt.
For uniform circular motion, the angular frequency is

Angular velocity for uniform circular motion.

ω “
v

r
. (5.41)

This allows us to express the velocity also as

v “ rω. (5.42)

The centripetal acceleration then, can be rewritten as

a “ rω2 (5.43)

We can derive Eq. (5.34) in a different way, starting from the position

Uniform circular motion.

rptq “ r cospωtqx̂ ` r sinpωtqŷ, (5.44)

where |r| “ r and ω are constant in time, and rp0q “ rx̂. The velocity they is given by

vptq “
dr

dt
“ ´rω sinpωtqx̂ ` rω cospωtqŷ. (5.45)

Similarly, the acceleration is

aptq “
dv

dt
“

d2r

dt2

“ ´rω cospωtqx̂ ` ´rω sinpωtqŷ.

So we find,
aptq “ ´ω2rptq “ ´ω2rr̂ptq, (5.46)

such that the magnitude of the acceleration is

a “ ω2r (5.47)
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vat

ac
a

θ

(a) The tangential acceleration at points
along v, while the tangential acceleration ac
is perpendicular.

r

r

ac

at

ac at

v

v

(b) A random path with curvature. The centripetal ac-
celeration changes the direction of the velocity, while the
tangential acceleration changes its speed.

Figure 5.7: The acceleration vector a can be broken into centripetal acceleration ac and
tangential acceleration at.

Example 5.1: A satellite moves around the earth, close to the surface, just 100 km above.
How long does it take to go around? The radius of the earth is

rC “ 6370 km. (5.48)

The radius of the satellite’s orbit therefore is r “ 6470 km. There is an acceleration due to
gravity, so the velocity to stay in orbit must be

v “
?
rg “ 7.97 km{s. (5.49)

Then the period is

T “
2πr

v
« 5100 s (5.50)

Which corresponds to about 85min . The actual International Space Station is at an
average height of about 400 km and takes 92 minutes to fully orbit the Earth.

5.4 Motion along a general path

The acceleration vector along a random path can be broken up into two components as
shown in Fig. 5.7b: the tangential acceleration at, and the radial acceleration ar. Because
the velocity vector is always tangential to the path, the tangential component appears
when the speed v “ |v| along the path changes. The radial component on the other hand,
is always perpendicular to the velocity (and the tangential acceleration), and causes the
velocity to change direction. This corresponds to the centripetal force in circular motion.
One can always calculate the centripetal acceleration of a turn by measuring the radius of
curvature, as shown in the dashed lines in Fig. 5.7b.



46 CHAPTER 5. MOTION IN TWO DIMENSIONS



Chapter 6

Laws of Motion & Forces

6.1 Momentum

The measure of motion an object has depends on its mass and velocity, and is known as
its momentum, which is defined as:

Linear momentum (one dimension).

p “ mv “ m
dx

dt
(6.1)

If you have two object of different mass moving with the same velocity, the one with the
largest mass will have more momentum. The dimensions clearly are mass times length
divided by time, so one can use units kgm{s.

Just like velocity, it can be expressed as a vector with several components:

Linear momentum (vector).

p “ mv “ m
dr

dt
. (6.2)

6.2 Newton’s laws of motion

An unopposed force changes the direction of a mass, as prescribed by Newton’s laws of
motion. Forces have a direction and magnitude, and are therefore represented by vectors.
The unit of force is named after Isaac Newton (1643–1727):

N “
kgm

s2
. (6.3)

The total force, also net or resultant force, on some object is the sum of all forces acting
on it:

Ftot “
ÿ

i

Fi. (6.4)

Now we are ready to look at Newton’s laws of motions that form the foundation of
classical mechanics. Newton formulated these laws of motion in the Philosophiæ Naturalis
Principia Mathematica around 1687. These laws allows us to understand motion of masses
and better define what forces actually are.

47
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Newton’s laws of motion.

1. Law of inertia: An object either remains at rest, or continues to move in a
straight line at a constant velocity, unless acted upon by a net force. If the net
force is zero, then :

dp

dt
“ 0. (6.5)

2. A non-zero net force Fnet will change the momentum of an object, according to

Ftot “
ÿ

i

Fi “
dp

dt
(6.6)

3. Law of action and reaction: When one object exerts a force F12 on a second
object, the second object simultaneously exerts a force F21 equal in magnitude
but opposite in direction to the first object,

F12 “ ´F21 (6.7)

Notice that the way that we have written these laws, the first law is really just a specific
case of the second law, in which there is no net force and therefore a “ 0. A particle with
no net force acting on it is a free particle. The first law implies that the momentum of a
free particle is constant in time. This law encapsulates the concept of inertia, which is the
resistance of any object with a mass to any change in its velocity. Some typical examples
are quickly pulling away a table cloth, without dragging everything on top of it with you.
Or breaking off one sheet of toilet paper without having the whole roll unravel. It explains
why objects in circular motion would fly off in a straight path, tangential to the circle,
if the centripetal acceleration is suddenly removed. Finally, it is also the reason why you
should never attach a trailer to your car with a rope.

If all the forces on an object cancel, we get an equilibrium:

Mechanical equilibrium.
Ftot “

ÿ

i

Fi “ 0. (6.8)

At equilibrium, the first law tells us that that the object will stay at rest, or its velocity
will be constant. A book that lies on a flat table is at equilibrium (see next section). A
ladder leaning on a wall is at equilibrium. If you jump out of an airplane, very high up,
the air resistance will grow with your speed until it balances the force of gravity, and you
reach a terminal velocity, which is constant. At this point, the force of gravity and the
force of wind resistance would cancel out, and you would be moving as a free particle with
constant velocity.

We know that p “ mv, such that in general

Ftot “
dp

dt
“ m

dv

dt
`

dm

dt
v. (6.9)

In most cases, m is constant, so the second term, which is the time derivative of the mass,
vanishes, and we find the most well-known form of F “ ma:
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Newton’s second law for constant mass.

Ftot “ m
dv

dt
“ m

d2r

dt2
“ ma. (6.10)

The third law is all about action and reaction. When you push on a wall, the wall
pushes back. If your force acting on the wall is F12, then the wall pushes on you with
a force F21 “ ´F12. Similarly, when you ride a skateboard, and you push the ground
backwards with your foot, the ground pushes you forward in return. Another example is
recoil : When you shoot a bullet, the gun will push you back as it repels the bullet and hot
gas and metal go forward.

6.2.1 Interlude: Algorithm to solving force problems

Students who just learn about forces and Newton’s laws often do not know where to
start on a physics problem with forces. Typically you can use the following algorithm to
systematically solve them:

1. Make a drawing and understand what is going on: What are the moving parts (degrees
of freedom like positions and angles)? What are the forces on what object? Is there
an equilibrium between the forces? Is there motion, acceleration? Use Newton’s first
law.

2. Write down for each mass the total force
ř

Fi and apply Newton’s second law.
Choose a coordinate system or positive direction to simplify breaking down the force
vector into components.

3. Note what is given and known, and what is unknown. Typically you need at least
n independent equations to solve for n unknowns. Often you can use geometric
equations to solve for angles or lengths.

4. Finally, sanity check and interpretation: Does the answer make sense? How does it
depend on other variables? What is the physical interpretation of the result?

Similar steps can be used for a lot of other basic physics problems. Now let’s look at some
examples.

6.3 Gravitational force

The most common force in our lives is called weight, and results from the force of grav-
ity,

Weight.
weight “ Fg “ mg. (6.11)

Here on Earth, the gravitational acceleration is around g « 9.8m{s2. We can write it as a
vector:

Fg “ mg. (6.12)

Where F and g both point downward to the center of the earth, like in Fig. 6.1a.
In general, however, two points of mass m and M attract each other with a force that

acts along the line connecting them, and according to
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m

y
Fg = −mgŷ

(a) Weight Fg “ ´mgŷ close to Earth’s sur-
face due to gravity.

r

m1

m2

F21
F12

r̂12
r̂21

(b) The attractive gravitational forces be-
tween masses m1 and m2.

Figure 6.1: Gravitational force.

Newton’s law of universal gravitation.

Fg “
GmM

r2
, (6.13)

where r is the distance between the mass points, and G “ 6.674ˆ 10´11m3 kg´1 s´2 is the
gravitational constant. The attractive force depends on the inverse of the distance squared:
Gravity is four times weaker at double the distance, etc.

The vectorial form illustrated in Fig. 6.1b can be written as

F21 “ ´
Gm1m2

r2
r̂21, (6.14)

where F21 is the force of mass m2 acting on m1, and r̂21 is the unit vector pointing from m2

to m1. The minus sign indicates attraction between the masses. Similarly, the force F12

is the force of mass m1 acting on m2, which by Newton’s third law has equal magnitude,
but points in the opposite direction: F12 “ ´F21.

By comparing Eq. (6.11) to (6.11) to, we see that actually

g “
MG

r2
. (6.15)

So the size of g actually depends on the distance r to the center of the Earth, and the
Earth’s mass M . At Earth’s surface, r is the Earth’s radius, and it is easy to compute
that g « 9.8m{s2. In practice, it also depends on the shape and mass density around you.
Typically we assume that the Earth is spherically symmetric, which is good enough as a
first-order approximation. It even allows us to approximate the Earth as a simple mass
point with no radius at large scales.1

6.3.1 Force fields

Gravity is a nice example of a force field. A field in physics is a quantity (with units) that
have some value in every point of space. A field can be a scalar field or a vector field. A
scalar field fpx, y, zq “ fprq takes on a single scalar value everywhere in space, with no
direction, and we will see some examples in later chapters on potential energy. A vector
field also has some direction in each point.

Close to Earth’s surface, the magnitude of the gravitational force remain mostly con-
stant and points in one direction only: downward. This is the simple case of a uniform
field. The Earth’s gravitational field can be expressed as

g “ ´gẑ, (6.16)
1In reality, the Earth is slightly “flattened” and bulges a bit at around the equator due to its rotation.

Furthermore, land masses tend to be more dense and stick further out of the “ideal surface” of an oblate
spheroid. We will learn later more about mass distributions of general bodies and centers of gravity later.
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z

g = −gẑ

(a) Close to the Earth’s surface, the field is
uniform (constant magnitude and direction).

g = −gm

r2
r̂

r

(b) At a large scale, the field depends on the
distance r to the center of the Earth.

Figure 6.2: Gravitational force field g.

where ẑ points down. The vector field g acts on masses. But this is only an approximation.
At a larger scale, the earth creates a gravitational field

gprq “ ´
MG

r2
r̂, (6.17)

which only depends on the distance from Earth’s center.

6.4 Normal force

When an object with mass m rests on a table, something must counter the gravitational
force to hold it in place. This is the normal force FN (or just N in some textbooks) the
table’s surface exerts on the mass. Because the objects stays put, all forces on the object
must cancel:

ÿ

i

Fi “ FN ` Fg “ 0. (6.18)

It is called “normal” because it is orthogonal to the surface. In the simplest case of Fig. 6.3a,
this is a one-dimensional problem, so fixing the y axis along the vertical, we have

FN “ FNŷ

Fg “ ´mgŷ.

(6.19)
(6.20)

So
FNŷ ´ mgŷ “ 0, (6.21)

or simply,

FN ´ mg “ 0. (6.22)

So the normal force is simply the weight!

FN “ mg. (6.23)

For example, if your mass is 80 kg, the normal force is about 784N. On the moon, where
gK “ 1.625m{w2 “ 0.167g, you would weigh 130N, i.e. any scale calibrated to Earth’s
gravity would read 13 kg.

Remember that due to the third law, the book also pushes on the table, so the table
experiences a force ´mgŷ from the book.

m
yFN

Fg = −mgŷ

(a) The forces on a mass m at rest: The surface exerts a
normal force FN, and the Earth a gravitational one, Fg.

FN Fg = −mgŷ

(b) The normal and gravitational force
vectors create a balance.

Figure 6.3: Normal force.
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(a) A person pulls up a
mass with force F.

FN

F
Fg = −mgŷ

(b) At equilibrium,
the forces cancel.

F
Fg = −mgŷ

ma

(c) Forces not canceling
cause an acceleration.

Applied force F

N
or
m
al

fo
rc
e
F
N

F
N =

F ≤
m
g

FN = 0 ≤ mg ≤ F

mg

mg
static kinetic

(d) The normal force becomes smaller
as the applied F becomes larger.

Figure 6.4: Normal force.

Now, let’s make it a bit more complicated. Imagine you slowly start pulling up the
mass with a force F , as in Fig. 6.4a. You build up the force, and before applying enough
to lift it up from the ground, you still maintain an equilibrium:

ÿ

i

Fi “ FN ` Fg ` F “ 0, (6.24)

or
FN ´ mg ` F “ 0, (6.25)

where we assumed F is in the positive vertical directions. This time, the normal force is
less than the weight mg:

FN “ mg ´ F. (6.26)

When you reach enough force to lift the mass from the ground, the normal force disappears.
This is shown in Fig. 6.4d. At this points, the forces do not balance anymore, and you get
an acceleration upward, given by

ÿ

i

Fi “ Fg ` F “ ma. (6.27)

6.5 Springs & Hooke’s law

A spring pulls when extended, and pushes when compressed. It always “wants” to return
to its rest length ℓ0. It does so with a force F , that is proportional to the change in length
x shown in Fig. 6.5:

Hooke’s law.
F “ ´kx. (6.28)

The constant of proportionality k is the spring constant, which depends on the spring in
question. This constant is a measure of the “stiffness” of the spring. The larger k, the
stronger the spring will try to return to its rest length. The minus sign indicates that the
spring’s force points towards x “ 0. Not all springs follow Hooke’s law; those that do are
called Hookian. Still, Hooke’s law is often a very good approximation, and we will assume
all springs in this course follow Hooke’s law.

x
0

`0

m

(a) Rest length ℓ0.

x
0

`0
x

m

F

(b) Extension x ą 0.

x
0

`0
x

m F

(c) Compression x ă 0.

Figure 6.5: Spring with a mass.
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`0

(a) Without a mass, the spring has length ℓ0.

m

F

mg

`0

∆`

(b) Elongation ∆ℓ due to gravity.

Figure 6.6: Hanging spring with rest length ℓ0.

6.5.1 Example 1: Vertical spring

Consider a mass hanging on a string as in Fig. 6.6. The weight from the mass will cause
the spring to be extended a little bit to some length ℓ0 ` ∆ℓ. At equilibrium, the spring
force and weight balance

ÿ

i

Fi “ F ` mg “ 0, (6.29)

or,
0 “ k∆ℓ ´ mg, (6.30)

such that the extension is given by
∆ℓ “

mg

k
. (6.31)

6.5.2 Example 2: Double spring

Say you have a mass on a frictionless surface connected to two springs on either ends with
different spring constants k1 and k2 as in Fig. 6.7. Assume the system is at rest, and the
springs are not exactly at their own rest length ℓ0. What then, are their relative changes
in length?

First choose as convention the positive x direction to the right, as indicated in Fig. 6.7.
This means that a positive x1 corresponds to an extension of spring k1, and negative x1
actually means a compression, and vice versa with x2 for spring k2.

For the system to be at rest, their forces must balance,
ÿ

i

Fi “ ´k1x1 ´ k2x2 “ 0. (6.32)

The rest position of the system is therefore given by

x1 “ ´
k2
k1

x2. (6.33)

The minus sign indicates that the springs are either both extended as in Fig. 6.7a (x1 ą 0,
x2 ă 0), both compressed as in Fig. 6.7b (x1 ă 0, x2 ą 0), or not extended at all
(x1 “ 0 “ x2). As expected, the forces the springs exert on the mass are opposite. The
spring with the largest constant, has the largest change in length.

x
0

`0 `0
x1 x2

k1 k2
m

−k1x1−k1x1 −k2x2−k2x2

(a) Both springs are extended.

x
0

`0 `0
x1 x2x2

k1 k2
m

−k1x1−k1x1−k2x2−k2x2

(b) Both springs are compressed.

Figure 6.7: Double spring at rest. Both springs have rest length ℓ0.
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m

T

−mgŷ

(a) The forces acting on a suspended mass.

T1

T2

(b) Piece of string, zoomed in: T1 “ ´T2.

Figure 6.8: Tension force on a mass suspended by a string.

6.6 Tension

Suppose a mass m hangs at the end of a string or rope, which is suspended from the ceiling
like in Fig. 6.8a. The string pulls the mass with a force called the tension. Tension is very
similar to the normal force, as it holds the mass in place:

ÿ

i

Fi “ T ` Fg “ 0. (6.34)

What is special about tension is that it it the same everywhere through the string. If
you zoom into one piece of string, you see it experiences two forces on either end, as in
Fig. 6.8b. If at rest:

ÿ

i

Fi “ T1 ` T2 “ 0. (6.35)

So the tension has the same magnitude in both directions:

0 “ T1 ´ T2. (6.36)

Therefore we typically use one symbol T or T that is the same along a string. Furthermore,
we typically assume that the mass of the string is negligible to simplify our problems.

This is where the fun of endless physics problems begins. Next, we will look at some
examples of setups with pulleys, which redirect the tension in strings.

6.6.1 Example 1: Falling mass on a pulley

Consider a mass m1 that can slide on a frictionless surface and is connected by a string to
another mass m2 hanging downward over a pulley as in Fig. 6.9a.

As mentioned above, the tension is the same everywhere in the string. The pulleys
makes the string change direction by exerting a normal force on the piece of string it is in
direct contact with. So the force T1 of the string pulling mass m1 to the right, and the
force T2 if it pulling mass m2 up is of the same magnitude:

T “ T1 “ T2. (6.37)

We do not care about the vertical forces on m1 in this case; the interesting direction is
that of motion. Assuming no friction, m2 will fall down, pulling mass m1 to the right. We
will treat this “direction of motion” as one axis x as indicated in Fig. 6.9a, even though it
changes “true” direction due to the pulley. We can write down Newton’s second law for
each mass in this direction of motion:

#

m1a1 “ T1 (mass 1)
m2a2 “ m2g ´ T2 (mass 2)

(6.38)

Because the two masses are connected by the string they will have the same acceleration:
If the m1 moves by a distance ∆x, m2 moves by a distance ∆x, if the m1 moves at a speed
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m

m

x

x

T1

T2

−mgx̂
(a) Mass on a frictionless table is pulled by
a hanging mass.

m m

T1 T2

−mgŷ −mgŷ
(b) Atwood machine with two pulleys: Two hanging
masses are connecting by a string over two pulleys.

Figure 6.9: Setup of some simple pulley problems.

v, m2 moves at a speed v, and the same goes for the acceleration. This works as long as
we assume the string is not “stretchy”. So a “ a1 “ a2. We then find that

$

&

%

m1a “ T

a “
m2

m1 ` m2
g

(6.39)

So in case m1 “ m2, a “ g{2.

6.6.2 Example 2: Two masses balancing over pulleys

An Atwood machine, shown in Fig. 6.9b, has two masses hanging by a string that connects
them over two pulleys. This time, we write:

#

m1a “ T ´ m1g (mass 1)
m2a “ m2g ´ T (mass 2)

(6.40)

Here we again have chosen the positive direction by setting an axis that follows the rope
from m1 to m2. (Alternatively, we could have chosen the vertical y axis and set a1 “ ´a2,
which means that if one mass accelerates in direction, the other accelerates in the opposite.)
Given m1, m2 and g, we have two unknowns: T and a. But we have two equations, so we
can solve it easily:

$

’

’

&

’

’

%

a “
T

m1
´ g “ g

T “
2m1m2

m1 ` m2
g

(6.41)

In case m “ m1 “ m2, T “ mg and a “ 0, which makes sense.

6.6.3 Example 3: Three unequal masses

Finally, look at Fig. 6.10a: Three masses are connected by strings, suspended by pulleys.
We assume this system is in equilibrium. There are three tensions,

T1 “ m1g

T2 “ m2g

T3 “ m3g.

(6.42)
(6.43)
(6.44)

The interesting point is where the three strings meet, as in Fig. 6.10b:

T1 “ ´T1 sin θ1x̂ ` T1 cos θ1ŷ

T2 “ ´T2ŷ

T3 “ T3 sin θ3x̂ ` T3 cos θ3ŷ.

(6.45)
(6.46)
(6.47)
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−m1gŷ −m2gŷ

−m3gŷ

(a) Setup of the masses, strings and pulleys,
and the forces acting on each mass.

T1

T3

T2

θ1 θ3

(b) Forces on the point where
the three strings meet.

(4 kg)g

T1

(3 kg)g T3

(5 kg)g

T2

(c) The tensions form a right
triangle for 5 : 4 : 3 ratios.

Figure 6.10: Third example of masses with strings and pulleys.

What are these angles θ1 and θ3? We can write down Newton’s law to obtain two equation
that can be solved for these two unknown angle if the masses are given:

#

0 “ ´T1 sin θ1 ` T3 sin θ3

0 “ T1 cos θ1 ´ T2 ` T3 cos θ3
(6.48)

As we saw in class, a special combination is when m1 “ 4 kg, m2 “ 5 kg and m2 “ 3 kg,
in which case the two top strings will form a right angle, because the tension vectors will
form a right triangle with sides of 5 : 4 : 3 ratios.

6.6.4 Example 4: Block & tackle

Pulleys are useful to lift heavy loads. When a person lifts up a mass from the ground,
they also have to lift their own body weight to stand up. Consider the simple setup in
Fig. 6.11a. Because the pulley on the ceiling redirects the tension in the rope downward,
the person can now use their own body weight to their advantage to lift the mass. To lift
the mass at a constant speed is, they have to pull with a force T “ mg.

An even better setup is a “block and tackle” with two pulleys, shown in Fig. 6.11b. The
pulley on the mass is sometimes called a “snatch block”. This time, the force needed to lift
the mass at a constant speed v is given by

0 “ T ŷ ` T ŷ ´ mgŷ. (6.49)

In other words, T “ mg{2. It has halved with respect to the simple setup! Note that to
lift the mass by a height h, the person has to pull the rope by a length 2h.

Their are many variations one can make by winding the rope several times through the
pulleys, or simply adding more pulleys.

m

vv

T

T

−mgŷ

(a) Lifting a mass with help from your
body weight. The force is T “ mg.

m

v
2v

T

T T

T

−mgŷ
(b) A block and tackle system to halve
the force, T “ mg{2.

Figure 6.11: Using pulleys to lift masses with more ease.
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6.7 Centripetal force

If you hold a bucket with water upside down, the water will pour out. But if you spin it
around vertically and fast enough, the water will stay in the bucket. This is a consequence
of the first law: The water has some velocity and because of its inertia, it wants to move
in a straight line. However, there is a non-zero net force that “pushes” the water to change
direction to stay in a circle path. This is the bottom of the bucket pushing the water. This
is called the centripetal force Fc, which provides the centripetal acceleration we have seen
in Section 5.3. To keep a mass m in a circle with radius r and tangential velocity v “ rω,
the net centripetal force according to Eq. (5.34) has to be

Centripetal force.

Fc “ ´m
v2

r
r̂ “ ´mrω2r̂, (6.50)

where the unit vector r̂ points radially from the center of the circle to the mass.
Other examples include the Earth orbiting the sun, where gravity acts as the centripetal

force, or a mass m on a string you sling around very fast around your head. If it is the
only force, the mass will move with a constant speed v in a circle with constant radius r.
This is illustrated in Fig. 6.12.

You may have heard about the centrifugal force. This is the force the water “feels” when
it is being swung around, and you might also experience it when a car takes a sharp turn,
or you ride a roller coaster. This is however not a real force, but rather a pseudoforce. It is
the consequence of being accelerated, while your inertial mass wants to move in a straight
line. In the frame of reference of the water or car passenger, it seems like there is a force
pulling it. We will talk more about inertial frame of references in Section 8.4.

6.7.1 Example: Mass on a string

Suppose you have a mass m hung on a string being slowly swung around in circles of radius
r like in Fig. 6.13a. What is the angle of the string with the horizontal as a function of
the string’s length L and the angular frequency ω? There are two forces, the tension and
gravitational force:

ÿ

F “ T ` mg “ ma. (6.51)

We know the velocity changes direction, because the centripetal force “pulls” the mass into
a circular motion. So a is not zero. Choosing the coordinate system as in Fig. 6.13a, the
forces can be decomposed into

$

&

%

m
v2

r
“ T sin θ

0 “ T cos θ ´ mg

(6.52)

r

mFc

a

vω

Figure 6.12: A constant centripetal force keeps a mass moving in a circle with constant
radius r, angular velocity ω, and tangential velocity v “ rω.
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(a) A mass m on a string of length L swings
in circles of radius r. There are two forces: the
tension and weight.

m

Ty

Tx

T

−mgŷma

θ T−mgŷ

ma

θ

(b) Breakdown of the forces on the mass: They
do not balance and the tension causes a cen-
tripetal acceleration a.

Figure 6.13: Example of a mass on a string.

Here we have used the fact that that the tension in the string will balance the gravitational
force in the y direction to hold it at the same height (or equivalently, at the same angle θ),
and simultaneously provide a centripetal force in the x direction:

a “ axx̂ ` ayŷ

“
v

m
x̂.

(6.53)

(6.54)

By comparing the two formula in Eq. (6.52), we find that

v2

r sin θ
“

g

cos θ
. (6.55)

Therefore,

tan θ “
v2

rg
“

rω2

g
, (6.56)

where we have used v “ rω. We can find yet another independent equation by looking at
the right-angled triangle made by the string with the horizontal:

tan θ “
r

h
. (6.57)

Comparing Eqs. (6.56) and (6.57), we get

ω2 “
g

h
. (6.58)

To find θ, we can substituting in h “ L cos θ,

ω2 “
g

L cos θ
, (6.59)

or

θ “ acos
´ g

ω2L

¯

. (6.60)

The acos function is a monotone decreasing function, so this equation says the faster the
mass swings around (larger ω, smaller 1{ω2), the larger the angle θ, which makes intuitive
sense.
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(a) Pushing a mass.
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(b) Pulling a mass.
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(c) Two regimes of friction Ff , depending
on the applied force F .

Figure 6.14: Frictional force Ff counteracts the applied force F. Once F ą µsFN, the
friction cannot balance the applied force, and the mass starts moving with a constant
friction Ff “ µkFN.

6.8 Friction

Up until now we have assumed that our surfaces were frictionless. In reality, most surfaces
are not infinitely smooth, so there will be a frictional force Ff (sometimes just f), pointing
in the opposite direction of motion. Imagine you push or pull a mass across the ground
with a force F , then friction will counteract the force of your push or pull. It turns out
that friction is proportional to the normal force: If the block’s mass is twice as large, the
frictional force is twice as large as well. There will be a constant of proportionality µ that
depends on the materials involved:

Friction during motion.
Ff “ µFN. (6.61)

The direction will always be parallel to the surface and in the opposite direction of motion.
The constant µ is the unitless coefficient of friction, and takes values between 0 and 1.
µ “ 0 corresponds to no friction, and µ “ 1 to maximal friction. Each combination of
two materials has two coefficients: the static coefficient of friction µs, and the kinetic
coefficient of friction µk. Table 6.1 lists some concrete values of familiar materials. The
static coefficient is only important if the object is pushed from rest to motion. Once in
motion, the kinetic coefficient comes into play. Typically µs ą µk: Once there is motion,
the friction becomes a reduced a little bit. In case the force F ă µsFN, the block stays at
rest, and

Friction at rest.
Ff “ F ă µsFN. (6.62)

This is plotted in Fig. 6.14c.

Table 6.1: Static and kinetic coefficient of friction for several combinations of materials.

Materials µs µk

Wood on wood 0.25–0.5 0.2
Steel on steel 0.74 0.57
Teflon on steel 0.04 0.04

Ice on ice 0.1 0.03
Synovial joint 0.01 0.003
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m

θ

x

y FN

Ff

mg sin θ

−mg cos θ
mg

θ

(a) There are three forces on the mass: the nor-
mal force, friction and weight.

−mg cos θ

mg sin θ

mg

FN

Ff

θ

(b) The forces on the mass balance, as long as
friction cancels the x component of the weight.

Figure 6.15: Frictional force on a mass on an inclined plane.

6.8.1 Example: Friction on an inclined plane

Now, let’s look at an example where the table if inclined with some angle θ with respect
to the horizontal. If the angle is small, friction will hold the block of mass in place, but if
the angle is large enough, the block will start to slide down, due to gravity. What is the
critical angle θc at which this happens? First we identify the three forces acting on the
mass:

ÿ

Fi “ Fg ` Ff ` FN. (6.63)

This is clearly a two dimensional problem, so we break down the vectors into their com-
ponents. It is convenient to use a coordinate system with the x axis pointing downward
along the table’s plane, and the y axis perpendicular to it, like in Fig. 6.15a. The y axis
now makes an angle θ with the vertical, so gravity will have a x and y component:

Fg “ Fgxx̂ ` Fgyŷ

“ mg sin θx̂ ´ mg cos θŷ.

(6.64)
(6.65)

Notice that if θ “ 0, the x component disappears, just as expected. Assume θ is small
enough for the block to stay at rest. Then

#

0 “ Fg ´ mg cos θ

0 “ FN ` mg sin θ ´ Ff

(6.66)

are the conditions for equilibrium. Because the normal force FN is pointing upward and
perpendicular to the table, and the friction Fg point opposes the x component of gravity
that would make the object slide. To stay at rest, we have the condition

mg cos θ “ Fg ă µsFN. (6.67)

This defines the critical point at which the block starts sliding:

mg cos θc “ Fg “ µsFN. (6.68)

Substituting this into Eq. (6.66), we find

µ “ tan θc. (6.69)

This result allows us to measure µs for any combination of materials by measuring the
critical angle θc when the block starts sliding. The larger µs, the larger the critical angle
θc at which the mass starts to move.
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6.8.2 Drag

Drag is the frictional force due to air resistance.
Consider an airplane flying at a constant velocity. Simplified, it experiences four forces:

• Gravity Fg pulling the plane downward, as usual.

• Thrust Fthrust by the engines propelling the airplane forward.

• Drag Fdrag opposing the thrust due to air resistance.

• Lift Flift by the wings, pushing the airplane upward.

What is special about the drag force is that it depends on the velocity. In simple cases, it
is proportional to the cross-sectional area of the plane and the velocity squared:

Fdrag9Av2. (6.70)

Take for example two planes with the same engine (so the same thrust), but one with an
area two times as large, A1 “ 2A2. Flying at constant speeds, what will their velocities be
relative to each other? Since the thrust are the same, the drag forces have to be the same.
We can therefore find that

Fdrag,1 “ Fdrag,2

CA1v
2
1 “ CA2v

2
2

A1v
2
1 “

1

2
A1v

2
2

where C is some constant that is the same between both planes. So v2 “
?
2v1. If the

“wider” plane is moving with a speed v1 „ 800 kmh, the smaller plane with the same thrust
will fly at v2 „ 1130 kmh.
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Chapter 7

Work & Energy

7.1 Work

In this chapter, we are going to discuss the relationship between force and energy. Recall
the units of force are

N “
kg ¨ m

s2
, (7.1)

which is easy to remember using F “ ma. Now, the units of energy are Joules:

J “
kg ¨ m2

s2
“ N ¨ m (7.2)

In fact, the amount of energy that is transferred to an object by a force F by moving it
over a distance ∆x can be defined as

W “ F∆x. (7.3)

This is the work performed by the force F , see Fig. 7.1a. And indeed, work allows us
to define the amount of energy that objects can possess. Next semester we will also see
another type of energy transfer, namely by heat in thermodynamics.

Equation (7.3) is a simple case where the displacement is parallel to the force. Work
can be positive or negative: It is positive if the force,F , points in the same direction as the
displacement, and negative if they are opposite. More generally, the force vector F and
displacement vector ∆x may not be parallel, as in Fig. 7.1b:

Work. The work done by a force F to move another object by a displacement ∆x
is

W “ F ¨ ∆x “ F∆x cos θ, (7.4)

where θ is the angle between F and ∆x.

Notice that F cos θ can be interpreted as the component of F that is along the ∆x direction,
which is why the scalar product is so useful here. We see that if 0 ă θ ă π{2, the work
will be positive because cos θ ą 0 (Fig. 7.1b), while if π{2 ă θ ă 3π{2, the work will
be negative (cos θ ă 0, see Fig. 7.1c). If the force and displacement are perpendicular to
each other, W “ F ¨ ∆x “ 0, the work will be zero: The force F cannot not cause any
displacement in the ∆x direction.

63
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m ∆x
F

(a) The force and displacement
are aligned.

m ∆x
F cos θ

F
θ

(b) The work is positive if the force and
displacement are in the same direction.

m ∆x
−F cos θ

F θ

(c) The work is negative if the force and
displacement are in the opposite direction.

Figure 7.1: A force F can transfer energy to an object by moving it by a displacement
∆x. In that case it does work W “ F ¨ ∆x. We are interested in the component of the
force parallel to the displacement.

7.2 Kinetic energy

Newton’s second law says that an unbalanced force or sum of forces causes an acceleration:
ř

F “ ma. Remember Torelli’s equation (4.22) to find the final velocity from the initial
velocity v0, acceleration a, and displacement ∆x without caring about the time it took:

v2 “ v20 ` 2a∆x. (7.5)

So we can express the acceleration as

a “
v2 ´ v20
2∆x

. (7.6)

Therefore, in one dimension:

F∆x “

ˆ

m
v2 ´ v20
2∆x

˙

∆x

“
mv2

2
´

mv20
2

.

(7.7)

(7.8)

We see that there are two quantities before and after, which we define as the kinetic energy
K:

Kinetic energy.

K “
mv2

2
. (7.9)

This is the amount of energy due to the movement of an object. It has no direction; it is
a scalar. It only depends on the total velocity squared and its mass. We also find another
important result,

Work-energy theorem. The total work done on an object causes a change in
kinetic energy:

W “ ∆K “ Kf ´ Ki

“
mvf

2

2
´

mvi
2

2
.

(7.10)

(7.11)

Here the subscript “f” refers to “final”, and “i” to “initial”. Total means that we need to
consider the sum of all forces: The work-energy theorem only works for the total force,
since we used Newton’s second law in the derivation. It is best to look at an example.
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m

F

mĝ ∆y

Figure 7.2: Arnold lifts up a weight of mass m to a height h with a constant force F .
The displacement vector is ∆y “ hŷ.

7.2.1 Example: Lifting a weight

Consider Arnold lifting a block mass m “ 5 kg by a height h “ 2m with a force F “ 500N.
There are two forces: the one by Arnold, and the weight due to gravity, see Fig. 7.2. Several
questions come up:

1. What is the work done by Arnold?

2. What is the work done by gravity?

3. What is the final velocity of the block?

The answers are simple enough:

1. Arnold’s force is parallel to the displacement, θ “ 0, so WA “ Fh cos θ “ 1000 J.

2. Gravity opposes the displacement, θ “ 180˝, so Wg “ mgh cos θ “ ´100 J.

3. The total work on the block is Wtot “ 900N “ ∆K, so the final velocity upwards is

vf “

c

2Wtot

m
“ 19

m

s
. (7.12)

If Arnold moved the block with a constant force F , then this would be the final velocity
vf at height h.

7.2.2 Work integral over a path

So far we have only looked at a constant force F . In this case the work, W “ F∆x, can
be thought of as the blue area in Fig. 7.3a. If the force F “ F pxq varies as a function of
displacement x, we can use an integral

W “

ż x2

x1

Fdx. (7.13)

Even more generally, the moved object can follow a three-dimensional path where the
direction of the displacement and force varies as illustrated in Fig. 7.4a. Let’s call s the

W

xx1 x2

F
∆x

(a) A constant force F .

W

xx1 x2

F

dx

(b) A general force F .

Figure 7.3: Work is the integral of F ¨ x̂ over dx.
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B

(a) A general path.

a

b
A

B

(b) A closed path.

Figure 7.4: Integral.

distance along the path, and the vector ds a small displacement that is tangential to the
path.1 In three dimensions,

ds “ dxx̂ ` dyŷ ` dzẑ. (7.14)

The work done by the vector Fpsq is the integral along the path

Work along a path.

W “

ż s2

s1

F ¨ ds , (7.15)

with ds as the differential element. This is a line integral. Notice that we are actually only
interested in the component of the force F that is parallel to the displacement ds,

F ¨ ds “ Ft ds , (7.16)

where Ft is the component of F that is tangential to the path. And of course, ds is also
parallel to the path, with ds being the length of ds.

Let’s demonstrate the work-energy theorem for this general path. We want to arrive
at Eq. (7.11), so we need to retrieve the velocity from somewhere. We can use Newton’s
second law:

Fpsq “ ma “ m
dv

dt
, (7.17)

where v is the velocity along the path, such that

v “
ds

dt
. (7.18)

Remember from Section 5.4 that only the tangential acceleration changes the magnitude of
the velocity vector. The tangential acceleration at is caused by the tangential component
Ft, so:

Ftpsq “ mat “ m
dv

dt
. (7.19)

We can now solve the integral (7.15) by substituting ds with dv using the chain rule

dv

dt
“

dv

ds

ds

dt
“

dv

ds
v. (7.20)

So
Ftpsq ds “ mv dv . (7.21)

and we solve the integral

W “

ż vf

vi

mv dv

“
mvf

2

2
´

mvi
2

2
,

(7.22)

(7.23)

1Not to be confused with the rptq, the radial distance to the origin, and rptq, the accompanying position
vector, which points from the origin to a point along the path.
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where we integrate over v and set the limits to vi “ vps1q and vf “ vps2q. We have shown
that the work-energy theorem also holds for our path integral:

Work-energy theorem for a general path.

W “

ż s2

s1

F ¨ ds “
mvf

2

2
´

mvi
2

2
. (7.24)

Again, because we used Newton’s second law in the derivation, W has to be the total work
done by the total force.

Sometimes it might be useful to write this integral in a time dependent way. Using
Eq. (7.18),

Work time-integral.

W “

ż t2

t1

F ¨ v dt. (7.25)

This can be used if F ptq and vptq are known as a function of time.

7.3 Conservative & non-conservative forces

Suppose we want to move a mass from point A to B. There might be several paths we can
take, as illustrated in Fig. 7.4b. Ask yourself: Is the total work different on different paths?
The answer depends on the type of force: A force is called conservative if the work is the
same for any path between two points. Otherwise, if the work is different for different
paths, the force is called non-conservative.

So for a conservative force, the work Wa and Wb along paths a and b in Fig. 7.4b,
respectively, is the same:

Wa “ Wb. (7.26)

This implies we can move back in a loop, such that the total work is zero!

Wtot “ Wa ´ Wb “ 0 (7.27)

For any path:

Work of conservative force on a closed path.

W “

¿

F ¨ ds “ 0. (7.28)

The circle on the integral symbol indicates the path is closed. Let’s make it a bit more
concrete by looking at some examples.
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(a) A closed path in a gravitational
force field.
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(b) A closed path in a non-conservative
field.

Figure 7.5: Paths in force fields.

7.3.1 Example 1: Gravity

As discussed in Section 6.3, gravity provides a uniform vector field for a mass m:

Fg “ ´mgŷ. (7.29)

It is constant in size and direction everywhere. Suppose you follow a closed path as in
Fig. 7.5a. It has four segments: moving left (a), up (b), right (c) and down (d). It is easy
to compute the work performed by gravity in this rectangular loop. We can break up the
loop integral into its four segments:

W “

¿

F ¨ ds

“

ż x2

x1

F ¨ x̂ dx `

ż y2

y1

F ¨ ŷ dy `

ż x1

x2

F ¨ x̂ dx `

ż y1

y2

F ¨ ŷ dy .

(7.30)

(7.31)

The horizontal segments, a and c, are perpendicular to gravity, so do not contribute. Only
the vertical ones remain, but cancel each other:

W “ ´mgpy2 ´ y2q ´ mgpy1 ´ y2q “ 0. (7.32)

So the total work done on a mass making a loop is zero. Therefore, gravity is a conservative
force.

7.3.2 Example 2: F “ yx̂ ` x2x̂

Now consider the vector field
F “ yx̂ ` x2ŷ. (7.33)

Is this force conservative? Let’s look at an arbitrary loop in the xy plane. Consider path
a following y “ 2x, and path b following y “ x2. They both start at A “ p0, 0q and meet
in B “ p4, 2q. To compute the work, one can integrate over each component separately,
using the fact that ds “ dxx̂ ` dyŷ, so we get two terms for the work in the x direction
and in the y direction:

W “

ż 2

0
y dx `

ż 4

0
x2 dy

First compute the work along path a by rewriting the integral using the constraint y “ 2x
or x “ y{2:

Wa “

ż 2

0
2x dx `

ż 4

0

´y

2

¯2
dy “

28

3
.
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Compare to the work along path b with relation y “ x2:

Wb “

ż 2

0
x2 dx `

ż 4

0
y dy “

32

3
.

They are not the same! The work done depends on the path that was taken. We have
proven by counterexample that this force is not conservative.

7.4 Potential energy

When defining work, we mentioned that energy is transferred to the moved object. In
fact, for conservative forces, you can “store” energy in an object, which can be reused later.
Notice that potential energy is negative of the work done by the force. This type of energy
is called potential energy.

Potential energy.
∆U “ Uf ´ Ui

“ ´W “ ´

ż s2

s1

F ¨ ds

(7.34)

(7.35)

7.4.1 Gravitational potential energy

Gravity is the classic example. When Arnold lifts up the mass in Fig. 7.2, gravity as a
conservative fore will do negative work, so it will add positive gravitational potential energy
to the mass. Arnold lifted the mass from a lower to a higher potential. The difference,
from the formula for potential energy, is

∆U “ ´

ż h

0
p´mgqdy “ mgh. (7.36)

The minus sign in the integrand indicates that the gravity opposes the vertical displace-
ment. Like the example in Section 7.3.1, only the height difference h is important.

Gravitational potential energy difference.

∆U “ mgy2 ´ mgy1 “ mgh, (7.37)

where h “ y2 ´ y1. This is also clear by performing an indefinite integral;

Upyq “

ż

mgdy “ mgy ` U0, (7.38)

where U0 is an integration constant. In a nice box:

Gravitational potential energy.

Upyq “ mgy ` U0, (7.39)
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This constant U0 is somewhat arbitrary and can be set to anything you like. In the problem
with Arnold, it is natural to choose the ground for setting

U0 “ Up0q “ 0. (7.40)

Here, y “ 0 is our chosen reference level where we set Up0q “ 0. It is clear that Upyq ą 0
is positive as long as y ą 0, and negative if y ă 0.

We can calculate the potential energy more generally for a gravitational force. Remem-
ber the force between two masses is

Fgprq “ ´G
mM

r2
r̂. (7.41)

The only interesting direction is radial, and clearly

r̂ ¨ ds “ dr. (7.42)

The work a mass does to attract another mass from distance r1 to r2 by means of gravity
is positive if r2 ă r1 because the force and displacement are aligned:

W “

ż r2

r1

G
mM

r2
dr “ G

mM

r1
´ G

mM

r2
. (7.43)

Note this result also holds for r2 ą r1, when the work becomes negative. It is very
convenient to set a reference point r1 at infinity, such that the first term disappears:

lim
rÑ8

G
mM

r
“ 0. (7.44)

So for this common choice,

Gravitational potential energy.

Uprq “ ´G
mM

r
. (7.45)

Notice that this form of the potential energy is always negative, because it is always lower
than the reference level at infinity.

7.4.2 Spring energy

As discussed in Section 6.5, the force by a spring is

F “ ´kxx̂. (7.46)

The potential energy to move a mass from the rest length x “ 0 to an extension x is

U “ ´

ż x

0
p´kxqdx “

1

2
kx2. (7.47)

We choose a reference level Up0q “ 0 for when the spring has zero extension or compression,
x “ 0, which is a natural choice.

Potential energy of a spring.

Upxq “
1

2
kx2, (7.48)
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7.5 Energy conservation

If we consider all sources of energy, then the sum of energies is conserved before and after
any situation.

Law of conservation of energy. Energy can neither be created nor destroyed,
only converted from one form of energy to another:

Ebefore “ Eafter. (7.49)

If there are only conservative forces in play, we only have to consider mechanical energy,
the sum of kinetic and potential energy:

Conservation of mechanical energy (for conservative forces).

pK ` Uqbefore “ pK ` Uqafter. (7.50)

7.5.1 Example 1: Ramp

Consider dropping a mass from rest at a height H on a frictionless ramp. The mass will
gain speed and jump off at a height h ă H, just like in Fig. 7.6. What is the final velocity
v at the jump-off point? First write down the energy before and after :

Ki ` Ui “ Kf ` Uf

0 ` mgH “
mv2

2
` mgh.

(7.51)

(7.52)

The initial kinetic energy is zero if it starts at rest. Notice the final kinetic energy equals
the difference in potential energy,

Kf “
mv2

2
“ mgpH ´ hq. (7.53)

The final velocity does not depend on the mass, which cancels out:

v “
a

2gpH ´ hq. (7.54)

This is the velocity’s magnitude. The angle of the velocity depends on the shape of the
ramp.

H

h

v

m

m

Figure 7.6: A closed path in a gravitational force field.
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(a) Pendulum released from rest at an angle θmax.

L

v
m

(b) Pendulum has the maximum speed at θ “ 0.

Figure 7.7: Pendulum.

7.5.2 Example 2: Pendulum

Pendulums are a favorite example for physicists. Suppose a pendulum with mass m is
released from rest at an angle θ “ θmax. What is its speed at θ “ 0? Solving this
problem with forces and our kinematic equations is cumbersome, since the acceleration
is not constant. The important component is the tangential one due to gravity, which
depends on the angle θ. Instead, energy conservation offers a quick solution. Comparing
before at θ “ θmax and after at θ “ 0:

Ki ` Ui “ Kf ` Uf

0 ` mgh “
mv2

2
` 0,

(7.55)

(7.56)

From the triangle in Fig. 7.7a, we see that

h “ L ´ L cos θmax, (7.57)

so the velocity at θ “ 0 is

v “
a

2gLp1 ´ cos θmaxq. (7.58)

Since all the potential energy is converted into kinetic energy at θ “ 0, this will be where
the maximum speed is reached.

7.6 Energy loss due to friction

Friction is not a conservative force. When present, it always opposes the movement of an
object, so it always performs negative work. This causes a loss in energy Eloss. Energy
conservation still holds in the universe as a whole, but the energy is dissipated into a new,
“unusable” form of energy, like heat or sound.

For example, if the ramp in the last section had some friction, we would rewrite the
law of energy conservation as

Energy conservation with friction.

pK ` Uqbefore “ pK ` Uqafter ` Eloss. (7.59)

So the mass-ramp system has more mechanical energy before than after:

pK ` Uqbefore ą pK ` Uqafter. (7.60)
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If we only look at the mass-ramp system, mechanical energy is not conserved, but if
we factor in the energy that was dissipated to the surroundings in other forms, energy
conservation does still hold.

In a simple case where a mass moves a distance ∆x over a surface, the work done by
friction is

W “ ´µkFN∆x. (7.61)

So the energy loss is

Energy loss due to friction.

Eloss “ µkFN∆x. (7.62)

Recall the mass on an inclined plane in Section 6.8.1. If it is let go from rest at a height
h and there is no friction, the energy before equals the energy after:

mgh “
mv2

2
, (7.63)

and the final velocity is similar to that of the mass from the ramp:

v “
a

2gh. (7.64)

But if the surface has some friction, there will be an energy loss:

Eloss “ µk pmg cos θq

ˆ

h

sin θ

˙

“ µkmgh cot θ, (7.65)

with cotangent cot “ cos θ{ sin θ. The new condition for energy conservation is

mgh “
mv2

2
` µkmgh cot θ. (7.66)

The final velocity is
v “

a

2p1 ´ µk cot θqgh. (7.67)

7.7 Power

When Arnold lifts up the mass, does the amount of work he does depend on how fast he
does it? No. From the integral, we see that the total work only depends on the path taken,
as long as the force is constant. So what is different?

We could define the integrand of work as

dW “ F ¨ ds . (7.68)

But remember from Eq. (7.18) that velocity is the time-derivative of s, so we can write the
displacement infinitesimal as

ds “ vdt, (7.69)

so as we did to derive the time-integral Eq. (7.25),

dW “ F ¨ vdt. (7.70)

This leads to a time derivative of work
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Power.
P “

dW

dt
“ F ¨ v, (7.71)

called power P , which has units of Watts,

W “
J

s
“

kg ¨ m2

s3
. (7.72)

Power is useful to quantify how much energy you spend per unit of time to perform some
work. It can also be used to quantify how much energy you lose, for example via friction.

For example, if Arnold hoists up a mass of 1 kg to a height of 10m in 10 s with a
constant force exactly opposing gravity F “ mg, his power output depends on the product
of force and velocity :

P « 10W. (7.73)

The faster Arnold picks up the mass, the higher the power.
The typical incandescent light bulb uses 60W of electrical power to produce light,

most of which was “wasted” in the form of heat. Only about 5% is turned into visible light.
Nowadays, energy-saving light bulbs need only about 15W for the same light output, and
the equivalent LED light would need only about 10W. Table 7.1 lists some other typical
power values of object and natural phenomena.

Table 7.1: Some typical power values of some objects or phenomena. Note that some of
these numbers of objects include energy that is put out as heat, not just “useful” electrical
or mechanical energy that can do work.

Object of phenomena Power P rWs

Supernova at peak 5 ˆ 1037

The sun 4 ˆ 1026

Nuclear power plant 3 ˆ 109

Car („ 100 hp) 8 ˆ 104

Clothes dryer 4000
Hair dryer 1200
Horsepower (hp) 735.5
Refrigerator 100–400
Desktop computer and monitor 200-400
Heat from person at rest 100
Incandescent light bulb 30–100
Human heart 10
Phone charger 2–6
Phone 0.1–0.5



Chapter 8

Conservation of Momentum

Suppose you have two trains colliding on a rail. Newton’s third law states that their forces
are equal, but opposite, so

F12 “ ´F21, (8.1)

or in terms of momentum, using Newton’s second law,

dp1
dt

“ ´
dp2
dt

. (8.2)

Rewriting this, it’s clear that the sum of momentum is constant with time,

d

dt
pp1 ` p2q “ 0. (8.3)

So the total momentum of the two trains is the same before and after the collision,

pp1 ` p2qbefore “ pp1 ` p2qafter . (8.4)

or, assuming the trains remain in one piece,

pm1v1 ` m2v2qbefore “ pm1v1 ` m2v2qafter , (8.5)

This is conservation of (linear) momentum. It holds no matter how complicated the forces
are between them.

It is easy to generalize this to a bunch of masses interacting in three-dimensions. Say
the total momentum of all interacting masses is ptot “

ř

pi. Due to Newton’s third law,
all internal forces will cancel each other when we consider these masses as one system. So
we only need to consider the total external force F. Then Newton’s second law says that
the change of momentum in time is given by

F “
dptot

dt
, (8.6)

or as an integral over some time period

∆ptot “

ż ∆t

0
Fdt. (8.7)

As long as there are no external forces, F “ 0, we call this an isolated system, and we see
that the change in total momentum is zero:

∆ptot “ 0. (8.8)

So total momentum is conserved in an isolated system.
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Law of conservation of linear momentum.
´

ÿ

pi

¯

before
“

´

ÿ

pi

¯

after
. (8.9)

This holds assuming the ensemble of masses is isolated: There is no interaction with some
external force, and none of the masses leave the system, and no new masses enter.

If there are multiple external forces acting on different masses inside the system, but
they still add up to zero in total, F “ 0, then momentum will still be conserved, but there
could be an overall change in “rotation”. We will see this in more detail in the next chapter
on torque and angular momentum (as opposed to linear momentum).

Notice that the momentum is a vector, so momentum is conserved in each of the
three spatial direction independently, so we could have three equations for momentum
conservation. Most examples of collisions we will see involve only two masses colliding,
and so we can often reduce the problem to two dimensions.

Now, sometimes things break or merge after a collision, so the number of masses before
and after can change. However, in an isolated system the total mass before and after will
be the same, as matter can not be created nor destroyed,1

´

ÿ

mi

¯

before
“

´

ÿ

mi

¯

after
. (8.10)

So for a isolated system with constant mass, we can rewrite Eq. (8.9) in terms of the masses
and their respective velocities:

Conservation of linear momentum of a group of masses.
´

ÿ

mivi

¯

before
“

´

ÿ

mivi

¯

after
. (8.11)

8.1 Elastic & inelastic collisions

In elastic collisions, both the total mechanical energy and momentum are conserved:

Elastic collision.
$

&

%

pK ` Uqbefore “ pK ` Uqafter
´

ÿ

pi

¯

before
“

´

ÿ

pi

¯

after

(8.12)

(8.13)

Notice that in three dimensions, this will give you four equations. For a two dimensional
problem, it will just be three. If the total potential energy is unchanged before and after
the collision, then

Ui “ Uf , (8.14)

and the total kinetic energy must also be unchanged before and after,

Ki “ Kf . (8.15)

1Conservation of mass is assumed in classical physics, but since Einstein’s theory of special relativity we
know this is no longer the case. Mass can be converted into energy and vice versa. However, momentum
is still conserved, but simply in a different form: Massless particles like light particles (photons) have
momentum. This fact is relevant in nuclear and particles physics.
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We will see a lot of examples of this case.
In inelastic collisions, some energy gets lost in the form of heat, sound and deformation.

In this case, momentum is still conserved, but mechanical energy is not.

Inelastic collision.
$

&

%

pK ` Uqbefore ‰ pK ` Uqafter
´

ÿ

pi

¯

before
“

´

ÿ

pi

¯

after

(8.16)

(8.17)

8.1.1 Example 1: Two masses colliding elastically in 1D

Consider the masses about to collide in Fig. 8.1a. If the collision is elastic and there is no
potential energy to be considered, then their total kinetic energy and linear momentum
are conserved:

$

&

%

m1v
2
1

2
`

m2v
2
2

2
“

m1v
12
1

2
`

m2v
12
2

2
m1v1 ` m2v2 “ m1v

1
1 ` m2v

1
2

(8.18)

(8.19)

where prime 1 indicates the velocities after the collision. Given the masses m1 and m2, and
initial velocities v1 and v2, we have two unknowns, the final velocities v1

1 and v1
2, which can

be solved for because there are two independent equations.
Notice we have not included negative signs to indicate some direction before and after

the collision. In Fig. 8.1a, the initial velocity of mass 1 is negative, v1 ă 0, and that of mass
2 is positive, v2 ą 0, if we define the positive x direction to the left. After the collision in
Fig. 8.1b, v1

1 ą 0 and v1
2 ă 0. It is important to know that it does not matter if you assume

the velocity vi is negative, or instead put a negative sign in the equation for momentum
equation, as long as you are consistent.

One of the simplest case of this problem is when m1 “ m2 and v1 “ ´v2. Then all we
need is conservation of momentum,

0 “ mv1 ` mv2 “ mv1
1 ` mv1

2, (8.20)

to find that the final velocities are v1
2 “ ´v1

1.
But what if m2 “ 2m1 and v2 “ ´v1{2, such that the total momentum is zero?

0 “ mv1 ` 2mv2 “ mv1
1 ` 2mv1

2, (8.21)

and

v1
2 “ ´

v1
1

2
. (8.22)

Using conservation of kinetic energy, we can also find v1
1 given m and one of the intitial

velocities.

v1 v2
m1 m2

(a) Two masses approach before
head-on collision.

v′
1 v′

2
m1 m2

(b) After an elastic collision, mechanical
energy and momentum are conserved.

v′m1 m2

(c) After a fully inelastic collision,
the masses stick together.

Figure 8.1: One-dimensional collision of two masses.



78 CHAPTER 8. CONSERVATION OF MOMENTUM

8.1.2 Example 2: Two masses colliding inelastically in 1D

Let’s look at the same problem, but now assume that the collision is fully inelastic. Fully
would mean that after the collision the masses stick together as in Fig. 8.1c. Luckily,
momentum is still conserved, so we can write

m1v1 ` m2v2 “ pm1 ` m2qv1, (8.23)

where v1 is the final velocity of the merged mass m1 ` m2. In this simple case, there is
only one unknown, v1, so we will not miss our energy equation. The solution for v1 given
the initial masses and velocities is

v1 “
m1v1 ` m2v2
m1 ` m2

. (8.24)

8.1.3 Example 3: Walking on ice

Conservation of momentum does not always involve collisions. Suppose Brian is standing
on a plank on frictionless ice. At first, both he and the plank are at rest. When he
starts walking, he pushes the the plank backwards. Without outside forces like friction,
momentum is conserved. At the beginning, the total momentum is zero, so once Brian
starts walking with some velocity vB, the plank has to compensate:

0 “ mpvp ` mBvB. (8.25)

So,

vp “
mB

mp
vB. (8.26)

8.1.4 Example 4: Two masses colliding inelastically in 2D

Let’s look at a collision in two dimensions. The simplest case is a fully inelastic one.
Consider to cars colliding at an intersection. After the collision the get stuck together, and
ignoring friction completely for now, they keep moving with some constant velocity v1, as
in Fig. 8.3. With this choice of x and y axes, the initial momenta before and after are

#

p “ m1v1x̂ ` m2v2ŷ

p1 “ pm1 ` m2qv1
xx̂ ` pm1 ` m2qv1

yŷ

(8.27)
(8.28)

CM

(a) Before: Brian and the plank are at rest. The
total momentum is zero.

vh

vp

pB
pB

(b) After: Brian starts walking, and the plank
“recoils”. The total momentum is still zero.

Figure 8.2: Brian stands on a wooden plank on frictionless ice. The center of mass
(Section 8.3) is closest to Brian’s center, who is much heavier than the plank. As Brian
walks, the center of mass stays constant in space.
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y

x

v′

m1
m2

θv1

v2

m1

m2

Figure 8.3: Two cars collide at an intersection and get stuck together.

So invoking momentum of conservation for each component,
#

m1v1 “ pm1 ` m2qv1
x

m2v2 “ pm1 ` m2qv1
y

(8.29)
(8.30)

So the final velocity if given by

v1 “
m1

m1 ` m2
v1x̂ `

m2

m1 ` m2
v2ŷ. (8.31)

8.1.5 Example 5: Ballistic pendulum

Another example of a fully example we have seen in class. We shoot a bullet at high
velocity into a block suspended from the ceiling by a string. There are two parts to this
problem: conservation of momentum in the inelastic collision, followed by conservation of
energy when the block-plus-bullet swing upward. In the first part, the total momentum
before and after is given by the momentum of the bullet.

mv “ pm ` Mqv1. (8.32)

The bullet may be very light, but has a very high velocity, so it has a considerable mo-
mentum. This gives us the final velocity

v1 “
m

m ` M
v. (8.33)

In the next part, energy is conserved, and we can follow our derivation in Section 7.5.2.
The total mechanical energy before the block moves and after the block reaches its highest
point is

pm ` Mqv12

2
“ pm ` Mqgh. (8.34)

L

M
v

m

(a) Before: Bullet is shot at a pen-
dulum at rest.

L

v′

(b) After: Bullet gets stuck into
the block.

h

Lθmax

(c) Later: Pendulum reaches is
highest point θ “ θmax.

Figure 8.4: Ballistic pendulum: A bullet is shot into a block suspended from the ceiling.
This is an inelastic collision.
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So, the maximum height is given by

h “
v12

2g
“

ˆ

m

m ` M

˙2 v2

2g
. (8.35)

8.2 Impulse

Newton’s second law says that a force acting on a mass changes its momentum:

F “
dp

dt
. (8.36)

The force causes an acceleration. The change in momentum depends on how long the force
acts on the mass. If the force is constant,

∆p “ Fdt. (8.37)

However, the forces involved in a collision are often more complicated than just a constant
force. Typically, the force changes continuously with time. In that case, the change of
momentum is given by

Impulse.

I “ ∆p “

ż t2

t1

Fptqdt. (8.38)

which is called an impulse I.
The impulse is the area under the F -t graph, as in Fig. 8.5a. The time-averaged force

F gives the same impulse as a constant force, which is useful for simplifying problems.

I “ F∆t. (8.39)

If a material is soft, it can deform under a force. This typically takes a bit of time, so
inelastic materials like pillows and bouncy balls tend to “soften” the blow of a hard force.

This is why cars have airbags. Without an airbag, your face with slam very hard into
the steering wheel in a very short time (Fig. 8.5b). An airbag will quickly inflate to catch
your head before it hits the steering wheel, and then deflate to apply a smaller force over
a relatively longer period of time in order to minimize your injury (Fig. 8.5c). However,
airbags also have a large surface area, so in addition, it will spread out the force over your
whole body, and not just you head.

t

F

t1 t2

F

Fmax

(a) Force changes with time.

t

F

t1 t2

F

(b) Short, hard hit, like a car collision.

t

F

t1 t2

F

(c) Long, soft hit, like an airbag.

Figure 8.5: Impulse is the integral of force versus time. It can be approximated with a
constant force, that is the time-averaged force F .
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8.3 Center of mass

Consider a bomb at rest as in Fig. 8.6b. When it explodes, the fragments go in all directions
like in Fig. 8.6c, but assuming no external forces, the total momentum, which is zero, is
conserved:

0 “
ÿ

pi “
ÿ

mi
dri
dt

, (8.40)

where mi are the bomb fragments after the explosion. Assuming the masses are constant,

0 “
d

dt

´

ÿ

miri

¯

. (8.41)

Here, miri is called the moment of mass mi. So the sum of moments is constant in time.
This leads to the definition of the center of mass (CM), which is this sum normalized by
the total mass M “

ř

mi.

Center of mass.

rcm “

ř

miri
ř

mi
. (8.42)

The center of mass is like the “averaged position” of mass.
If there are no external forces, such that momentum is conserved, then the center of

mass will always be in the exact same point in space. Notice that the point is constant, but
the vector rcm does depend on the choice of coordinate system. In case of Brian walking
on the plank in Section 8.1.4 and Fig. 8.2, the center of mass is also constant. The center
of mass of a human standing straight is typically just under the navel, but once they start
moving their limbs, the center of gravity will shift. This is an important element in the
physics of sports like martial arts and dance.

Similarly, we can define a center-of-mass velocity and momentum

y

x

m1

m2

m3

m4

CM

r1

r2

r3

r4

rcm

(a) A system of masses in two dimen-
sions.

(b) A bomb at
rest an its CM.

(c) The fragments
have the same CM.

(d) The center of mass of the fragments
follows the same trajectory.

Figure 8.6: Center of mass (red dot) is like the mass-averaged position of a group of
masses, or continuous body. If momentum is conserved, the center of mass is constant in
space. If there is a non-zero external force, the center of mass will move as if all the mass
is concentrated in it and the external force act only on it.
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Center-of-mass velocity and momentum.

vcm “
drcm
dt

“

ř

mivi
ř

mi

pcm “
ÿ

mivcm “
ÿ

mivi.

(8.43)

(8.44)

But what if you throw the bomb in a gravity field instead (Fig. 8.6d)? Momentum is
not conserved anymore. However, it turns out that the center of mass will still follow a
parabola, as it would if the bomb never exploded! To see this, notice that treating the
fragments as one system, the total force is

F “
d

dt

ÿ

pi “
dpcm

dt
, (8.45)

so there will be an acceleration on the center of mass

F “
d

dt

ÿ

miai “ M
dacm
dt

, (8.46)

defined in a similar way as the center-of-mass velocity. So to summarize:

The center of mass of a system of masses mi moves in the same way as a single
point with mass M “

ř

mi moves under a force F “
ř

Fi, where Fi is the total force
on mass mi.

The center of mass of a spherical planet like the Earth is in its center by geometrical
symmetry. This is why in a lot of problems, we can simplify the Earth as a mass point.

The definition of the center of mass can be extended for a continuous body employing
integrals, which is the limit of the sum over infinitesimal small masses.

Center of mass of a continuous body.

rcm “

ş

r dm
ş

dm
, (8.47)

where the denominator is the total mass of the body. To solve this integral, the infinitesimal
dm often can be rewritten in terms of the mass density ρprq and Cartesian px, y, zq or
spherical coordinates pr, θ, ϕq in three dimensions, or polar pr, θq in two dimensions. We
will see some examples of such integrals over dm in the next chapter.

8.3.1 Example: Two mass in 1D

Consider the two masses m1 and m2 in Fig. 8.7. What is the center of mass? First set the
origin x “ 0 in the middle between the masses. Then the center of mass is given by

xcm “ ´
d

2
m1 `

d

2
m2 “

d

2
pm2 ´ m1q. (8.48)

x0
d

m1 m2
CM

Figure 8.7: Center of mass (red dot) of two masses in one dimension.
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xO

y

r
x′CM

y′

r′
vcm

rcm

Figure 8.8: The center-of-mass frame moves with a constant velocity vcm in the lab
frame. A point in the center of mass frame has a different position vector r1 than in the
lab frame, r).

8.4 Inertial frames of reference

In most problems we have seen so far, we always chose a coordinate system that was
not moving, a frame of reference that is “fixed” with respect to its surroundings. This is
called the laboratory frame of reference, because the “laboratory” where the experiment is
performed is at rest.

However, sometimes it is convenient to choose our coordinate system such that the
center of mass in this frame is fixed to zero:

Center-of-mass frame of reference.

r1
cm “ 0. (8.49)

Using this trick, the total momentum will be zero in this frame of reference for an isolated
system:

p1
cm “

ÿ

mivi “ 0. (8.50)

A coordinate system with the above property is called the center-of-mass frame of reference.
From Fig. 8.8, we can see that the new position vector in the center-of-mass frame can be
written as

r1 “ r ´ rcm, (8.51)

where the position vector r and center-of-mass rcm are defined with respect to the origin
of the lab frame. The prime symbol 1 indicates that the r1 is defined in a frame other than
the lab frame, pointing from the origin of the center-of-mass frame (which is the center of
mass r1

cm “ 0). It is not to be confused with the first derivative.
Often, the center-of-mass frame is moving with respect of the lab frame. If the center-

of-mass frame started at the lab frame’s origin rcm “ 0 at time t “ 0 and is moving at
a constant velocity vcm, then its origin is given by rcm “ vcmt in the lab frame. The
transformation of the position vector going from the center-of-mass frame to lab frame is
given by:

Galilean transformation (to a center-of-mass frame).

r1 “ r ´ vcmt. (8.52)
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If the center-of-mass velocity is only in the x direction for simplicity, vcm “ vcmx̂, the
coordinates of the position vector in the center-of-mass frame are given by

$

’

&

’

%

x1 “ x ´ vcmt

y1 “ y

z1 “ z

(8.53)
(8.54)
(8.55)

This is a called a Galilean transformation, and can be used to relate the coordinates
between any two frames of reference that are moving relative to each other with some
constant velocity v. In this section, we focused on the center-of-mass frame with v “ vcm.

We will see in Section 10 what happens if a frame of reference is accelerated.



Chapter 9

Torque & Angular Momentum

9.1 Torque

To get a wheel rotating around its axis, you need to apply a force somewhere on the wheel.
To describe how it starts rotating, we need to know the force F, but also where on the
wheel it acts. This is encapsulated by the concept of torque

Torque.
τ “ r ˆ F, (9.1)

where r points from the origin to the point where F acts, as in Fig. 9.1. Because this is
a product involving a distance to a reference point, it is also sometimes called moment of
force. From Section 3.6, we know the length of the cross product is

τ “ rF sin θ, (9.2)

where θ is the smallest angle between the F and r vectors. The torque vector τ is perpen-
dicular to both the F and r, and its direction of the torque is given by the right-hand rule
(Fig. 3.4).

One important thing to note here, is that position vector r appears in Eq. (9.1). Clearly,
the definition of torque depends on the chosen origin. In two reference frames with different
origins, you will have a different torque. However, there is again a natural choice, which
is putting the origin on the axis of rotation. In the case of a flat wheel, this choice is

F
τ

rr

(a) Force and position vector
are perpendicular. The torque τ
points out the paper.

τ = 0

FF
rr

(b) Force and position vector are
parallel. The torque τ is zero, be-
cause sin θ “ 0

F

Ft

τ

rtrt rr

θ

θ

(c) Force and position vector are
make an angle θ. The torque τ
points into the paper.

Figure 9.1: Torque τ “ r ˆ F on a bicycle wheel by a force acting on the tyre. The axis
of rotation is fixed to the wheel’s own axis.
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putting the origin in the wheel’s center that is assumed to be fixed. If you apply a force
perpendicular to the position vector and in the plane of rotation (i.e. perpendicular to the
axis or rotation as well), as in Fig. 9.1a, you will apply maximum torque for some force
(sin θ “ 1), and cause maximum rotation. If you instead just push on the wheel directly
towards the axis of rotation, there is no torque (sin θ “ 0), and nothing will happen, as
in Fig. 9.1b. More generally, the force can make some angle pushing or pulling the wheel
at some point, as in Fig. 9.1c. In this case, only the tangential component Ft that is
perpendicular to the axis of rotation and position vector is important. Its magnitude is
exactly Ft “ F sin θ. Another way to consider torque is to consider the component of the
position vector that is perpendicular to the force vector. This rt is called the lever arm.
The size of the torque can thus be written in either way:

τ “ rtF “ rFt (9.3)

Torque has units of Nm, which is the same units as energy. But do not think of torque
as an energy, think of it as the rotational analogue of force.

9.2 Angular acceleration

Let’s look again at the circular motion of a mass as in Fig. 5.6. In Section 5.3 we considered
uniform circular motion, where the angular velocity ω and radius r was constant:

θptq “ θ0 ` ωt. (9.4)

What if the angle is being accelerated, due to a torque? Just like the angular velocity is
the change of the angle in time,

ω “
dθ

dt
, (9.5)

the angular acceleration α is the change of angular velocity in time,

α “
dω

dt
“

d2θ

dt2
. (9.6)

If the acceleration and radius are constant, then we have a similar formula to linear motion
with uniform acceleration (Eq. (4.12)):

Circular motion with uniform acceleration.
$

&

%

θptq “ θ0 ` ω0t `
1

2
αt2

ωptq “ ω0 ` αt.

(9.7)

(9.8)

The angular velocity is the same for every point on a rotating object, but the velocity
depends on the how far the point is from the center of rotation,

v “ rω. (9.9)

Also, the distance a point on the edge of a rotating object travels depends on the angle it
rotates, but also its distance from the center of rotation (see Section 5.2),

s “ rθ. (9.10)
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ω

ω

Figure 9.2: Right-hand rule for the direction of ω: Curl the fingers of your right hand
around the axis of rotation, pointing in the direction of motion. Your right-hand thumb
will point along ω.

ωα

(a) If α aligns with ω, then |ω| in-
creases, but its direction stays con-
stant. If |ω| is positive, so is |α|.

ω

α

(b) If α is opposite to ω, |ω| decreases,
and ω would eventually point in the
opposite direction. At the start, if |ω|
is positive, |α| is negative.

ω
α

θ

(c) α does not align with ω, so the
object would change the direction
of its rotation if it is free to do so.

Figure 9.3: Angular velocity ω and angular acceleration vector α. Compare this to linear
velocity and acceleration Fig. 5.2.

Likewise, the acceleration of a point on the object relates to the angular acceleration
alpha by

a “ rα. (9.11)

It is useful to define the vectors ω and α for the angular velocity and angular accelera-
tion, respectively. The angular velocity vector is conventionally defined to point along the
axis of rotation, with the direction given by the right-hand rule in Fig. 9.2. The angular
acceleration vector α in turn, indicates a change in size and/or direction of ω, as illustrated
in Fig. 9.3c: If ω and α align in the same direction, the angular velocity will increase, and
decrease if ω and α anti-align.

9.3 Rotational equilibrium & moment of inertia

Let’s look at a simple case where a force F is applied to a single point mass m that
is constrained to move in a circle of constant radius r, as in Fig. 9.4. If the force is
unbalanced, Newton’s second law and Eq. (9.11) tell us that

Ft “ ma “ mrα. (9.12)

FFt

m

rt

r

θ

θ

τ

Figure 9.4: A force F acting on a single mass point m moving in a circle of constant
radius r creates a torque τ “ r ˆ F.
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Multiplying both sides by r, we retrieve the torque:

τ “ rFt “ mr2α, (9.13)

or
τ “ Iα, (9.14)

with the moment of inertia I of mass m at a distance r from the axis of rotation.

Moment of inertia of a single mass point.

I “ mr2 (9.15)

The direction of the angular acceleration α is given by the direction of the torque τ :

Newton’s second law for rotation.

τ “ Iα (9.16)

Notice the similarity to F “ ma: Torque τ acts as a force, moment of inertia I acts as
inertial mass, and α acts as the acceleration.

Just like with forces, several torques can act on a body at the same time. They may
want to rotate the body in different directions. If we want to know the actual rotation
that will happen in that case, we are interested in the total torque,

ÿ

τ i “
ÿ

pri ˆ Fiq “ Iα. (9.17)

The torque may act on different parts of the body, as given by the position vector ri So if
all torques balance, there will be no rotation.

Rotational equilibrium.
τ tot “

ÿ

τ i “ 0. (9.18)

Like with linear motion, you need to define an origin and a positive direction. Clockwise
(cw) and counterclockwise (ccw) torques have opposite sign, so at equilibrium, they must
balance:

ÿ

τ cw
i “

ÿ

τ ccw
i . (9.19)

Equation (9.15) is the moment of inertia I of a single mass point. What about more
complicated massive bodies? Moment of inertia is actually an additive quantity, so for N
mass points,

Moment of inertia of a group of points.

I “

N
ÿ

i

mir
2
i . (9.20)

Just like the center of mass, we can extend this to a continuous body,
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Moment of inertia of a continuous body.

I “

ż

r2dm. (9.21)

Typically, the infinitesimal dm can be expressed in terms of some mass volume density
ρprq. For a three-dimensional integral,

dm “ ρprqdV , (9.22)

where dV is an infinitesimal element of volume. The density ρ has units kgm´3. If you
have a thin surface with some mass, we would compute a two-dimensional integral. We
can use the area mass density σprq with units kgm´2 instead,

dm “ σprqdA, (9.23)

where dA is is the infinitesimal element of surface area. Finally, in one dimension, we use
the linear mass density λprq with units kgm´1,

dm “ λprqdx. (9.24)

If the body is homogeneous, or uniformly distributed, then these density distributions are
constant in space. For volume, this means that the volume mass density is the total mass
divided by the total volume, ρ “ M{V . Similarly, for a surface with total area A and total
homogeneous mass M , σ “ M{A, and for a line of total length L, λ “ M{L.

Notice that moment of inertia is defined as a sum or integral. One interesting property
that follows immediately, is that it is additive. If you combine two objects with moment
of inertia I1 and I2, defined with respect to the same rotation axis, then the total moment
of inertia is simply

I “ I1 ` I2. (9.25)

9.3.1 Example 1: Balancing two masses on a seesaw

Consider the seesaw in Fig. 9.5, where two masses m1 and m2 are balanced on a plank.
There are three forces: normal force FN of the pivot on the plank, and the gravitational
forces m1g and m2g on the masses. The pivot point is the point of rotation, so the total
torque is

ÿ

τ i “ τ1 ´ τ2 “ r1m1g ´ r2m2g, (9.26)

where we have defined the positive direction of the angle θ counterclockwise. In terms of
Eq. (9.19),

r1m1g “ r2m2g. (9.27)

m1 m2r1 r2

m1g m2g

FN

τ 1 τ 2

+θ

Figure 9.5: A seesaw: The torques on the masses on either end counteract. If they
balance, there will be no rotation (if they start from rest). By convention, the positive
direction of rotation is counterclockwise.
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m m
r r

(a) Axis though the middle point be-
tween the masses.

m m
r

(b) Axis though one of the
masses.

m m

(c) Axis though both masses.

Figure 9.6: Moment of inertia of two heavy masses m connected by a rod of negligible
mass. The moment of inertia depends on the axis of rotation.

The normal force creates no torque with respect to the pivot point, as r “ 0. To balance,
the torques must cancel, so the condition for equilibrium is

r1
r2

“
m1

m2
. (9.28)

This makes sense: If m1 “ m2, then the distance of each mass to the pivot must be equal,
r1 “ r2. If one mass is twice as large, take m2 “ 2m1, then it must be twice as close to
the pivot to balance the other mass, r2 “ r2{2.

We recognize the center of mass from Eq. (9.26):

rcm “ r1m1 ´ r2m2 “ 0, (9.29)

which is zero in case of rotational equilibrium. This is an example of an unstable equi-
librium, which we will study in more detail later. Even though the forces balance if the
center of mass is at the pivot, rcm “ 0, a small push will cause the seesaw to tip.

9.3.2 Example 2: Moment of inertia of two masses

But what if the torques do not balance, and the total torque is non-zero? Then there will
be an angular acceleration α, and thus a rotation. To know α, we need to compute the
moment of inertia of the seesaw.

Let’s approximate the seesaw as a massless rod connecting two mass points m, as shown
in Fig. 9.6a. Say the distance from the center to either masses is r, then the moment of
inertia is simply the sum,

I “ I1 ` I2

“ mr2 ` mr2 “ 2mr2.

(9.30)

(9.31)
The angular velocity then is given by

α “
τ

I
. (9.32)

Suppose we move the masses closer to the middle, at a new distance r1 “ r{2, then the
moment of inertia changes to

I 1 “ mr12 “
I

4
. (9.33)

So for a given torque τ , the angular acceleration of these two configurations will be different:

α1 “
τ

I 1
“ 4α1. (9.34)

This means that for the same torque, the angular acceleration will be larger the closer the
masses are to the point of rotation.

This result is very similar to a ice skater pulling her arms to her body to spin faster.
With arms spread out, the ice skater’s moment of inertia is larger, and her speed of rotation
is less, than when they are close to her body.
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z

R
dθ

dm
R dθ

r

(a) Homogeneous ring with radius
R, mass M .

RR

r

z

drdr

(b) Homogeneous hollow cylinder with
radius R, length L and mass M .

z

dm

dz

r dθ

RR

(c) Homogeneous disk of radius R
and mass M .

Figure 9.7: Computing the moment of inertia with respect to the axis of radial symmetry
by integration over dm.

9.3.3 Example 3: Moment of inertia of a ring

Let’s look at a ring of radius R with its mass M distributed homogeneously along its length
(Fig. 9.7a). We neglect its thickness. The ring has a linear density of

λ “
M

2πR
, (9.35)

based on its circumference s “ 2πR. An infinitesimal segment on the ring, subtended by
an angle dθ, has an arc length R dθ. This small segment therefore has a mass dm “ λR dθ.
The full integral (9.21) over the ring can thus be written as

I “

ż 2π

0
R2

ˆ

M

2πR

˙

pR dθq “ MR2. (9.36)

9.3.4 Example 4: Moment of inertia of a hollow cylinder

Now consider a hollow cylinder of radius R, length L and uniform mass M , as in Fig. 9.7b.
The surface density is the mass divided by the total surface A “ 2πRL,

σ “
M

2πRL
. (9.37)

A small piece of the surface can be expressed in cylindrical coordinates pr, θ, zq, in which
case it has sides r dθ and dz, such that its area is

dA “ R dθ dz. (9.38)

So the moment of inertia with respect to the cylinder’s axis as rotation axis becomes

I “

ż L

0

ż 2π

0
R2

ˆ

M

2πRL

˙

pR dθ dzq “ MR2. (9.39)

This is the same result as for a simple mass point and a ring! The length L does not
matter. The simple reason for this is that each mass point on the cylinder’s surface is at
a constant distance R from the axis of rotation.
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9.3.5 Example 5: Moment of inertia of a solid cylinder

Take again a cylinder rotating about its axis, but assume it is solid. If it is homogeneous,
it has volume mass density

ρ “
M

πR2L
. (9.40)

A small block of volume can also be expressed in cylindrical coordinates. It will have a
top area dA “ r dθ dz and a thickness dr,

dV “ dAdr “ r dθ dr dz. (9.41)

So the integral becomes

I “

ż L

0

ż R

0

ż 2π

0
r2

ˆ

M

πR2L

˙

pr dθ dr dzq “
MR2

2
. (9.42)

9.3.6 Example 6: Moment of inertia of a disk

Now let’s look at a homogeneous disk. It has a surface mass density

σ “
M

πR2
. (9.43)

distributed over the area πR2. One method to solving the integral is using a small piece
at radius r ă R, dA “ r dθdr. However, since the disk is assumed homogeneous, it is
easier to divide the disk into concentric rings of thickness dr, such that each ring has an
area dA “ 2πrdr1, which we get from taking the integral of the area. The integral for I
becomes

I “

ż R

0
r2

ˆ

M

πR2

˙

p2πrdrq “
MR2

2
. (9.44)

This is the same as for a cylinder!

9.3.7 Example 7: Moment of inertia of a hollow sphere

Let’s look at a hollow sphere. If the mass M is homogeneously distributed over the spherical
surface with area A “ 4πR2, it has area mass density

σ “
M

4πR2
. (9.45)

A spherical area element of sides R sin θ dϕ and R dθ can be expressed in spherical coordi-
nates (Fig. 9.8)

dA “ R2 sin θdθ dϕ . (9.46)

The moment of inertia is

I “

ż 2π

0

ż π

0
R2

ˆ

M

4πR2

˙

pR2 sin θdθ dϕq “
2MR2

3
. (9.47)

1Because the integrand does not depend on θ, this is actually the same as integrating over dθ between
0 and 2π.
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x
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z

r

r sin θ
r sin θ

r sin θ dφr sin θ dφ

r dθ

φ dφdφ

θ
dθdθ

Figure 9.8: Spherical coordinates pr, θ, ϕq and an infinitesimal area element with sides
r sin θ dphi and r dθ. Radius r is always positive, running form 0 to `8, while the polar
angle θ runs from 0 to π, and azimuthal angle from 0 to 2π.

9.3.8 Example 8: Moment of inertia of a solid sphere

Now consider a homogeneous, solid sphere with volume V “ 4πR3{3 and volume mass
density

ρ “
M

4πR3{3
. (9.48)

A small block of volume at radius r can again be expressed in spherical coordinates.

dV “ dAdr “ r2 sin θdθ dϕ dr. (9.49)

So the integral becomes

I “

ż R

0

ż 2π

0

ż π

0
r2

ˆ

M

4πR3{3

˙

pr2 sin θdθ dϕ drq “
2MR2

5
. (9.50)

9.3.9 Example 9: Large wheel/disk

Suppose you have a mass m suspended by a string that goes over a pulley and then is
winded around a large, wheel of radius R and mass M , as in Fig. 9.9. The mass is let go
from rest, and falls down, such that the wheel starts spinning counterclockwise. For the
mass m, the second law is

ÿ

i

F “ mg ´ T “ ma. (9.51)

The wheel will stay at the same origin, but will start to rotate as the string starts pulling.
Therefore, we will use Newton’s second law for torques:

ÿ

i

τ “ TR “ Iα. (9.52)

The wheel has a mass M and radius R, with the mass distributed evenly across the disk, so
the moment of inertia is 1

2MR2. Each point on the string has an acceleration a, therefore
each point at the edge of the disk has an angular acceleration of

α “
a

R
. (9.53)
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Therefore, the right side of Eq. (9.52) becomes

TR “

ˆ

1

2
MR2

˙

´ a

R

¯

“
1

2
MRa, (9.54)

such that the tension is T “ 1
2Ma. Using Eq. (9.51),

a “
m

m ` 1
2M

g. (9.55)

So the larger M , the smaller the acceleration α or a. This makes sense because a disk with
more mass, means more moment of inertia.

9.4 Kinetic energy of rotation

Say we have an object rotating at some angular velocity ω. What is its kinetic energy?
First, we assume the object can be divided into many small masses mi that are each moving
around the axis of rotation at the same angular velocity ω. In the familiar linear motion,
each mass mi with velocity vi has a kinetic energy

Ki “
1

2
mv2i . (9.56)

If a part of the mass mi is at a distance ri from the axis of rotation, we can calculate the
total kinetic energy of a rotating body using the fact that vi “ riω:

K “
ÿ

i

1

2
mipriωq2 “

1

2

˜

ÿ

i

mir
2
i

¸

ω2, (9.57)

where we have regrouped the terms. We recognize the moment of inertia in the parentheses,
so

Kinetic energy of rotation.

K “
1

2
Iω2. (9.58)

So what is the work to move the mass mi over some arc length dsi? Say this work is
done by the force Fit that is tangential to the circle, then

dW i “ FiTdsi, (9.59)

or because dsi “ ridθ and Eq. (9.3),

dW i “ τ dθi . (9.60)

So in general,

Work delivered by torque.

W “

ż θ2

θ1

τdθ. (9.61)

The power, which is the time derivative of W , is then given by
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RR

M

τ
r

T

Figure 9.9: A hanging mass m is connected by a string to a large, disk of radius R and
mass M . The string is wound several times around the disk, such that it is free to spin
due to a torque from the tension.

Power by torque.

P “ τ
dθ

dt
“ τω. (9.62)

This looks indeed similar to P “ Fv, with the analogies of force with torque, and velocity
with angular velocity.

9.4.1 Example: Large wheel connected to a suspended mass

Look back at Example 4 and Fig. 9.9. What is the angular velocity ω of the disk after
the mass m falls some height h from rest? This can easily be solved in terms of energy,
assuming there is no friction. In the beginning, the wheel and mass are at rest, so there
is only some potential energy stored in mass m. Once it has fallen over a height h, it
will have lost that potential energy, which will be converted into kinetic energy of its own
motion and of the rotation of the disk:

mgh “
1

2

ˆ

1

2
MR2

˙

ω2 `
1

2
mv2, (9.63)

where v is the velocity of the falling mass, which has to be v “ Rω, as this is also the
velocity of any point on the edge of the disk, and the mass is connected to the disk by the
string. We can now solve for ω:

ω “

d

2mgh

R2p12M ` mq
. (9.64)

9.4.2 Kinetic energy of a system of particles

Say you have a group of particles, each with a mass mi and velocity vi, then the total
kinetic energy of this system is simply the sum

K “
ÿ

i

1

2
miv

2
i , (9.65)

representing the magnitude squared as v2 “ v ¨ v “ v2 (see Eq. (3.15)). Let’s rewrite this
a bit, using the particles’ velocity with respect to the center of mass

vi “ vcm ` vi,cm, (9.66)
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where vcm is the center-of-mass velocity, and vi,cm is the velocity of particle i with respect
of the center of mass, or equivalently, in the center-of-mass frame, see Fig. 8.8. The total
kinetic energy is therefore

K “
ÿ

i

1

2
mi pvi,cm ` vcmq

2 . (9.67)

Using the fact that the scalar productive is distributive with vector sum (see Eq. (3.14)),

K “
ÿ

i

1

2
miv

2
cm `

ÿ

i

1

2
miv

2
i,cm ` 2vcm ¨

ÿ

i

mivi,cm (9.68)

Now remember from Section 8.3 that in the center-of-mass frame, all momenta adds up to
zero, so

0 “
ÿ

i

pi “
ÿ

i

mivi,cm. (9.69)

In other words, we can write the total kinetic energy of these mass particles as

Kinetic energy of a system of particles.

K “
1

2
Mv2cm `

ÿ

i

1

2
mv2i,cm, (9.70)

where M “
ř

imi is the total mass. The first term is the total kinetic energy due to the
linear motion of the center of mass. The second term

Krel “
ÿ

i

1

2
mv2i,cm (9.71)

is the sum of kinetic energy due to the motion vi,cm of the particle relative to the center
of mass.

If all particles are rotating around the center of mass with some angular velocity ω,
then vi,cm “ ri,cmω, and we can rewrite Eq. (9.70) in terms of moment of inertia I with
respect to the center of mass:

Total kinetic energy of a rotating rigid body.

K “
1

2
Mv2cm `

1

2
Iω2

“ Ktrans ` Krot.

(9.72)

(9.73)

So the total kinetic energy of this system is the translational plus the rotational kinetic
energy. We can effectively “decouple” the two types motions and treat them separately.

9.5 Parallel axis theorem

It is important to remember that the moment of inertia is defined with respect to a some
rotation axis. It can therefore depend not only on the direction of the axis, but also the
position with respect to the body of mass. In most examples we have see before, the axis
goes through the center of mass of a highly symmetric object, like a ring, disk, cylinder or
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(a) A rigid body of mass.
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I
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(b) Center-of-mass frame of (a).
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I
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r

rcm

r′
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(c) With position vectors.

Figure 9.10: Parallel axis theorem: The moment of inertia with respect to an axis parallel
to an axis through the center of mass is I “ Icm ` Md2, where d is the distance between
the axes.

sphere, and we can therefore exploit the symmetry to simplify our calculations. Another
trick we can deploy is the so-called parallel axis theorem, which we will derive now.

Consider some rigid body with mass M that is rotating around some axis that does
not go through the center of mass, but is at a distance d from this point, as illustrated
in Fig. 9.10a. If the body rotates with an angular velocity ω, then the center of mass has
a velocity vcm “ dω. In the center-of-mass frame as in Fig. 9.10b, each piece of mass in
the body rotates around the center of mass with a velocity vi,cm “ ri,cmω, so Eq. (9.70)
becomes

Kcm “
1

2
Mpdωq2 `

1

2

ÿ

i

mipri,cmωq2. (9.74)

Now we can rewrite this in terms of the moment of inertia Icm “
ř

imir
2
i,cm with respect

to the center of mass:

K “
1

2

`

Icm ` Md2
˘

ω2. (9.75)

We have a useful result:

Parallel axis theorem (Steiner’s theorem).

I “ Icm ` Md2 (9.76)

This theorem is very useful to calculate the moment of inertia. If we know the moment
of inertia with respect to an axis of rotation through the center of mass, Icm, we can always
find the moment of inertia I with respect to any other axis that is parallel; all we have to
do is add the term Md2, where d is the distance between the parallel axes.

Notice the parallel axis theorem implies that the moment of inertia is minimal if it is
with respect to a rotation axis through the center of mass for a given direction. It can only
be larger if a parallel axis does not go through the center of mass, because Md2 is always
a positive quantity.

9.5.1 Extra: Alternative proof

Most sources give an alternative proof with integrals over an infinitesimal mass dm in
a continuous body. Let’s look at the position vectors in Fig. 9.10c. Like Eq. (8.51) in
Section 8.4,

r “ r1 ` rcm. (9.77)
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Icm
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CM

RR

Figure 9.11: Applying the parallel axis theorem to a massive ring with d “ R.

then

I “

ż

r2dm “

ż

pr1 ` rcmq2dm (9.78)

which, thanks to the distributive property Eq. (3.14), becomes

I “

ż

r12dm `

ż

rcm
2dm ` 2rcm ¨

ż

r1dm. (9.79)

The first integral is exactly the moment of inertia defined with respect to the parallel axis
through the center of mass, Icm. Because r2cm “ d2 is constant, the second integral reduces
to Md2 with the total mass M “

ş

dm. Finally, the last integral is the center of mass in
the center-of-mass frame, which is by definition zero according to Eq. (8.49). Again, we
find

I “ Icm ` Md2. (9.80)

9.5.2 Example 1: Moment of inertia of two masses (revisited)

Remember that for the moment of inertia of two masses rotating around an axis through
their center of mass shown in Fig. 9.6b was Icm “ 2mr2. What is the moment of inertia I 1

if the axis is through one of the masses as in Fig. 9.6a? Applying the parallel axis theorem
with d “ r,

I “ 2mr2 ` 2mr2 “ 4mr2. (9.81)

So it the total rod has length L “ 2r, I “ mL2. This is consistent with our definition
(9.20) for the moment of inertia of a single mass point m.

9.5.3 Example 2: Moment of inertia of a ring (revisited)

As an example: What is the moment of inertia I for a rotating ring through its edge, as
in Fig. 9.11? We know that the moment of inertia of a ring with respect to a rotation axis
through its center and perpendicular to the plane the ring lays in, is Icm “ MR2 Therefore,
if the new axis of rotation is at the ring’s edge, h “ R, and the new moment of inertia is

I “ 2MR2. (9.82)

9.6 Rolling

Consider a cylinder rolling over a flat surface as in Fig. 9.12a. Say it traveled some distance
s. If the cylinder was rolling without slipping, it simultaneously rotated by an angle θ that
is related to the distance as

s “ Rθ, (9.83)
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(a) Condition for rolling without slipping is that the
linear distanced s equals the arc length (thick dark
blue) of the rotated angle θ.
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(b) A cylinder is released from rest off a
ramp. To compute its final velocity, we sim-
ply need energy conservation.

Figure 9.12: Cylinder rolling without slipping.

because it should be the same as the arc length. The velocity of the center of mass then
has to be the time-derivative

v “
ds

dt
“ R

dθ

dt
. (9.84)

This gives us the condition

Condition of rolling without slipping.

v “ rω (9.85)

So without slipping, any rolling object with mass M and moment of inertia I has a total
kinetic energy

Kinetic energy of a rolling object.

K “
1

2
Mv2 `

1

2
Iω2, (9.86)

with ω “ v{r. The first term is due to its linear motion, and the second due to its rotation,
as in Eq. (9.72).

9.6.1 Example: Rolling off a ramp

Consider a cylinder with radius R and mass M that is let go from a ramp. How fast will it
move at the bottom of a ramp with inclination θ, if it starts from rest at a height h? We
can now easily solve this with energy conservation. At the top, the cylinder has a potential
energy mgh, and at the bottom it only has kinetic energy,

Mgh “
1

2
Mv2 `

1

2
Iω2. (9.87)

We know that I “ MR2{2 for a solid cylinder and ω “ v{r for rolling without slipping, so
the last equation becomes

Mgh “
1

2
Mv2 `

M

4
v2. (9.88)

and we find

v “

c

4

3
gh. (9.89)

If we instead roll a hollow cylinder of the same mass, we need to plug I “ MR2 into
Eq. (9.87), and find

v “
a

gh. (9.90)
So the hollow cylinder will roll down slower, which is to be expected as it has larger moment
of inertia.
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9.7 Angular momentum

In linear motion, we have p “ mv and

ÿ

i

F “
dp

dt
. (9.91)

If there is no net external force,
ř

i Fi “ 0, then

dp

dt
“ 0, (9.92)

and we say momentum is conserved. This means that in an isolated system, the initial and
final momentum are always equal, pi “ pf .

In rotational motion we can define something similar, starting from the definition of
torque

τ “ r ˆ F “ r ˆ
dp

dt
. (9.93)

Notice that the time derivative of the cross product of r ˆ p can be found using the fact
that the cross product respects the product rule for derivatives

d

dt
pr ˆ pq “

dr

dt
ˆ p ` r ˆ

dp

dt
. (9.94)

The first term on the right-hand side is zero because the cross product of two parallel
vectors is zero, vˆp “ 0. The second term on the right is the torque from Eq. (9.93). We
obtain then

τ “
d

dt
pr ˆ pq . (9.95)

The quantity in the parentheses is the rotational equivalent of momentum, and is appro-
priately called the angular momentum,

Angular momentum of a point particle.

L “ r ˆ p. (9.96)

For a single mass point, the angular momentum with respect to some given origin is

L “ r ˆ mv. (9.97)

From the derivation above, we also learn that just like a net force causes a change in
momentum by Newton’s second law, a net torque causes a change in angular momen-
tum.

Newton’s second law for rotation.

τ “
dL

dt
. (9.98)
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Figure 9.13: Angular momentum of a single point particle.

Of course, we may have multiple torques, therefore it is important to sum the torques
to determine the motion. Imagine a ball at the end of a rope being swung around in circles
as in Fig. 9.13a. It has some angular momentum L “ r ˆ mv. In a flat circle, v K r such
that

|r ˆ v| “ rv. (9.99)

So the magnitude of angular momentum of a mass m moving in a circle is

L “ mrv. (9.100)

Because the tangential velocity is v “ rω,

L “ mr2ω. (9.101)

We can plug in the moment of inertia I “ mr2, and find

L “ Iω. (9.102)

More generally, for a rotation we can write it as a vector

Angular momentum (circular motion).

L “ Iω. (9.103)

The ω and thus L follow the right-hand rule in Fig. 9.2. Notice that this equation looks
very similar to p “ mv. This is consistent with our earlier result,

τ “
dL

dt
“ Iα. (9.104)

9.7.1 Conservation of angular momentum

If there are no external torques, then there is no angular acceleration, and angular mo-
mentum is conserved:

0 “
dL

dt
“ Iα, (9.105)

, similar to the case of p, and

Law of conservation of angular momentum.

pLqbefore “ pLqafter. (9.106)

A well-known example is a figure skater who spins faster after pulling her arms in. With
the arms closer to the body, her moment of inertia I is smaller, and the angular velocity
ω has to increase to compensate and keep the angular momentum L stay constant,

pIωqbefore “ pIωqafter. (9.107)
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9.7.2 Example 1: Neutron star

Another cool example are neutron stars, which are known for being extremely dense, and
spinning incredibly fast. When a supergiant star of about 10 to 25 solar masses Md reaches
its end, it explodes in a supernova and only leaves behind its core which collapses under
its own gravity. The neutron star is this collapsed core with a typical mass of 1.4Md,
crunched into amazingly small radius of Rns “ 10 km. Say the core initially had a radius
of Rcore “ 8000 km, by what factor will the rotation frequency increase when the core is
compressed into a neutron star of radius Rns “ 10 km and the same mass? For simplicity,
suppose that the core and neutron star are homogeneous, solid spheres, then we can use
Eq. (9.50), such that their moment of inertia I “ 2MR2{5 depends on R2. The frequency
of rotation of the neutron star will be

fns “
Icore
Ins

fcore

“
R2

core

R2
ns

fcore “ 1 ˆ 106fcore.

(9.108)

(9.109)

So if the core was originally spinning with a period of Tcore “ 1000 s, then the neutron star
will spin with a period of Tns “ 1.6ms, or 640 full revolutions every second! This is indeed
a typical period of a neutron star.

9.7.3 Example 2: Particle moving in a straight line

A particle moving uniformly in a straight line has an angular momentum relative to some
point not on the line, even though it does not “rotate” around that point. In this case, the
position vector r would be changing, so

L “ rmv sin θ. (9.110)

Clearly, L “ 0 is everywhere with respect to a point on the line because the angle θ “ 0 or
π. The point with respect to which L is defined, is called the point of closest approach. The
lever arm rt points to this point and is perpendicular to the particle’s trajectory. Looking
at the left triangle in Fig. 9.13b, we see that r “ rt{ sin θ, and so in any point r on the
path,

L “ rtmv. (9.111)

This is clearly constant everywhere on the path, which is consistent with conservation of
angular momentum.

9.8 Precession

Suppose you place a disk on a pivot by one of its handles as in Fig. 9.14. If the wheel does
not spin, the wheel will simply fall over because there is an unbalanced torque of τ “ rmg.
But if we spin the wheel with an angular velocity ω, there is still the same torque, however
this time, there is a nonzero angular momentum L along the axis of the disks rotation. L
changes in the direction of τ .

dL “ τdt “ rMg dt τ̂ . (9.112)

Because L and τ are perpendicular, the magnitude of L stays constant, and only it’s
direction changes. The wheel does not fall down counter to intuition, but rotates around
the pivot. This is called precession.
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(d) Torque τ perpendicular
to angular momentum L, will
only change its direction.

Figure 9.14: A disk with mass M is placed on a pivot with one of its handles. If the disk
spins with angular velocity ω, then it will have an angular momentum L. A torque will
cause the angular momentum to change, leading to the phenomenon known as precession.
Precession occurs with angular velocity ωp, and the wheel does not fall down.

If we look from above as in Fig. 9.14d, we can see that as the axis of rotation changes
by some angle dθ, so does the L vector change by the vector dL.

dL “ Ldθ. (9.113)

We find
dθ “

dL

L
“

rMgdt

L
, (9.114)

or,

ωp ”
dθ

dt
“

rMg

L
, (9.115)

which is how fast L goes around the pivot. If the wheel is spinning with an angular velocity
ω, then the angular momentum can be expressed as L “ Iω. Therefore, we can express the
frequency of precession as a function of some constants to do with the mass, radius, gravity,
and rotational inertia, as well as an angular velocity ω, which is variable.

Precession.
ωp “

rMg

Iω
. (9.116)

From this, we see that as ω gets smaller, ωp gets bigger.
Precession appears in toy spinning tops and gyroscopes, but Earth also describes a

precession. The Earth rotates about once around its own axis per day, and fully precesses
once every 25 772 years.

9.9 Application: Millstone

We will now look at a more complicated example of applying our knowledge of angular
momentum, torques, and the rolling condition.

In a millstone like illustrated in Fig. 9.15, a heavy “wheel”, called a runner stone, is
driven by a wooden shaft to roll around a flat bed stone. This type of mill is sometimes
called a kollergang or edge mill. Our goal is to study the angular moment and determine
with what normal force F, the runner stone grinds grain.

First, say that the millstone is not rotating and is simply standing still. Then, there
will only be two forces on the runner stone, which balance;

0 “ FN ` Mg, (9.117)
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Figure 9.15: A millstone: A runner stone (red) of radius b and mass M rolls around
a bed stone (grey) driven by a wooden shaft (vertical axle). As it rolls with an angular
velocity ω around its own axis, it traces a radius R with an angular velocity Ω.

such that FN “ Mg.
Now assume the runner stone of radius b is rolling about its own axle with an angular

velocity ω, such that it goes around a circle of radius R with an angular velocity Ω. Because
a massive body is rotating, there has to be some angular momentum. Furthermore, the
rotating runner stone goes around a circle with Ω, so its angular momentum must be
constantly changing, implying there is a net torque that is nonzero.

Let’s break down all the vectors we know of. The most convenient coordinate system is
the cylindrical one shown in Fig. 9.15c with the origin at point O. The unit vectors r̂ and
θ̂ rotate with the angle θ “ Ωt, like the the 2D polar coordinates defined in Section 5.2.
We can immediately identify three forces: the gravitational, normal and centripetal force,

Fg “ Mg “ ´Mgẑ

FN “ FNẑ

Fc “ ´MΩr̂,

(9.118)
(9.119)
(9.120)

respectively. In our analysis below, we will see that we are still missing one force from the
shaft to explain the change in angular momentum. About point O, we have two nonzero
torques τ “ r ˆ F,

τ g “ RMgθ̂

τN “ ´RFNθ̂

τ c “ 0,

(9.121)

(9.122)
(9.123)

where we used the geometry in Fig. 9.15b.
There are two simultaneous rotations, given by:

ω “ ´ωr̂

Ω “ Ωẑ.

(9.124)
(9.125)

Because the runner stone is rolling, we have the rolling condition of Eq. (9.85),

v “ bω, (9.126)

while it also goes around the circle with the same tangential velocity,

v “ RΩ. (9.127)
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The angular velocities therefore relate as

ω “
RΩ

b
. (9.128)

Because the z and r axes are perpendicular to each other are along the disk’s axes of
symmetry2, we can separate two components in the total angular momentum,

L “ Izω ` IrΩ, (9.129)

where the moments of inertia for disks are

Iz “
1

2
Mb2

Ir “
1

4
Mb2 ` MR2

(9.130)

(9.131)

with respect to the z and r axis, respectively. In the last equation, we simply looked up the
moment of inertia of a disk about an axis through the disk’s plane elsewhere, and added
MR2 according to the parallel axis theorem with d “ R.

Now, the change in angular momentum is given by the net torque,
ÿ

τ “ τ g ` τN “
dL

dt
. (9.132)

When we write the angular momentum in terms of unit vectors,

L “ IrΩẑ ´ Izωr̂, (9.133)

the only time-dependent piece is the unit vector r̂, while ẑ, Iz and Ir are constant. This is
because the direction of ω along r̂ keeps changing with angular velocity

Ω “
dθ

dt
. (9.134)

Therefore, we can write r̂ “ cospΩtqx̂ ` sinpΩtqŷ like in Eq. (5.24) with θ “ Ωt, and

dr̂

dt
“ ´ΩsinpΩtqx̂ ` ΩcospΩtqŷ “ Ωθ̂. (9.135)

The only component of Eq. (9.133) that survives derivative with respect to time is

dL

dt
“ ´Izω

dr̂

dt

“ ´
bRMΩ2

2
θ̂.

(9.136)

(9.137)

Put everything together in Eq. (9.132):

RMgθ̂ ´ RFNθ̂ “ ´
bRMΩ2

2
θ̂, (9.138)

and we see that when the mill is moving, the normal force is larger than the runner stone’s
weight

FN “ M

ˆ

g `
bΩ2

2

˙

ą Mg. (9.139)

The center of mass of the runner stone does not move vertically, so for all forces in the z
direction to balance, there has to be an extra downward force coming from the shaft, that
has a zero torque about O,

Fshaft “ ´MΩr̂ ´
bΩ2

2
ẑ. (9.140)

2To study general rotations in 3D, one needs to construct a 3ˆ3 matrix called the inertia tensor. For a
well chosen set of axes perpendicular to each other (often along axes of symmetry), this matrix is diagonal,
which allows us to “decouple” the rotations around these different axes in the angular momentum.



106 CHAPTER 9. TORQUE & ANGULAR MOMENTUM

9.10 Stability

Mechanical equilibrium (6.8) is when all forces balance. Consider for example a ball than
sits on top of a round hill. The normal force FN balances the ball’s weight mg, but the
smallest sideways push can cause it to roll down the hill. This is therefore called an unstable
equilibrium. On the other hand, if the ball sits in a valley or trough, a small push will always
cause it to be pulled back to its point equilibrium. This is called a stable equilibrium. In
physics this is often thought of in terms of energy potentials, as in Fig. 9.16a. The “valley”
is called a potential well, and returns in the study of planetary attraction, but also nuclear
attraction.

Some potentials might have another local minimum elsewhere (like a lake on a moun-
tain), where the ball can sit stably. However, if the push is large enough, it can cause
the ball to roll over a local maximum, and drop into an even lower minimum. This is
called a metastable equilibrium. The amount of energy to get it over the “barrier” is called
activation energy, which is a useful concept in chemistry. Namely, you have to pay some
small activation energy to let the ball release a big amount of, often useful, energy. In case
of a ball in a local minimum of a hill, the activation energy is E “ mg∆y, where ∆y is the
height difference with the barrier.

Lastly, if a ball sits on a completely flat surface, it is in a neutral equilibrium. The ball
does not restore itself to its original position if you give it a small push (like in a stable
equilibrium), but it also does not spontaneously gain energy (unstable equilibrium).

But we also have seen rotational equilibrium in Section 9.3. In this case there will be
no angular acceleration, because all torques cancel. If both the sum of forces and the sum
of torques are zero, you have a static equilibrium.

Static equilibrium.
$

&

%

ÿ

Fi “ 0
ÿ

τ i “ 0

(9.141)

(9.142)

If the body starts from rest, the first equation implies that the center of mass will not have
a linear motion, and the second equation says that there will not be rotation.

We have already seen one example in the seesaw Fig. 9.5 and in precession of the disk
Fig. 9.14, let’s look at some other real life ones.

9.10.1 Example 1: Ladder

Ladders can be deceivingly dangerous. You can not only fall off them, but the ladder can
also slide down if you are not careful. Let’s look at the ladder leaning against a wall in
Fig. 9.17a. There are four forces: the ladder’s weight Mg, the ground’s friction Ff , the

U

x

metastable

unstable

stable

(a) A ball on a hill.

φ
φ φ

U = mgh

φ−90° 90°0°

mgH/2

mgW/2

metastable metastable

unstableunstable

stable

(b) A rectangular block with width W and height H (Fig. 9.19).

Figure 9.16: Potential wells with stable, metastable and unstable equilibria.
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normal force FN from the ground, and the normal force from the wall FW. For simplicity,
we assume the wall has no friction. What is the condition for the ladder staying in place?
What should the angle θ and friction coefficient be µs? The ladder is stable as long as it
is in a static equilibrium:

#

0 “ FN ` Ff ` Mg ` FW

0 “ τN ` τ f ` τ g ` τW

(9.143)
(9.144)

Using the xy axes as in Fig. 9.17a, choosing clockwise as the positive direction of rotation,
and defining the torque with respect to ladder’s lowest point,

$

’

’

’

’

&

’

’

’

’

%

0 “ FN ´ Mg

0 “ Ff ´ FW

0 “

ˆ

L

2
cos θ

˙

pMgq ´ pL sin θqpFWq

(9.145)

(9.146)

(9.147)

The friction depends on how much the wall pushes the ladder (remember Eq. (6.62) and
Fig. 6.14c). The lower the ladder leans against the wall, the larger the friction has to be
to balance. We are interested in the extreme case, where the angle θ is just small enough
to be stable without the ladder slipping down. The maximum static friction is Ff “ µsFN,
so these equations become

$

’

’

’

’

&

’

’

’

’

%

FN “ Mg

FW “ µsMg

FW “
Mg

2 tan θmin

(9.148)

(9.149)

(9.150)

This allows us to relate the angle to the static friction coefficient µs:

tan θmin “
1

2µs
. (9.151)

So the angle does not depend on the mass or gravity. If µs “ 0.3, then the minimum angle
is about θmin “ 59˝. This is a numerical solution one finds with a calculator. Graphically it
is the intersection point shown in Fig. 9.18a. Fig. 9.18b shows the angle θmin as a function
of θmin.

But what if a person of mass m starts climbing the ladder? The new condition for

y

x

+

Ff

FN Mg
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θ

π
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− θ

π − θ

(a) Without a person.
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FN Mg
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mg
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θ

(b) With a person of mass m,
there is an extra weight.

Ff
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(m+M)g

FW

r

θ

(c) Alternative to (b), take the ladder-
person as one system, shifting the CM.

Figure 9.17: Ladder of length L leaning against a wall. There is the weight, friction,
normal force from the ground, and normal force from the wall. We assume no friction on
the wall.
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(a) Numerical solution for µs “ 0.3:
Finding the intersection with tan θ.
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(c) Minimum angle θmin as a function
of the person’s position with µs “ 0.3.

Figure 9.18: Plots of relation between µs and angle θ in Fig. 9.17a.

static equilibrium is

$

’

’

’

’

&

’

’

’

’

%

0 “ FN ´ Mg ´ mg

0 “ Ff ´ FW

0 “ pr cos θminq pmgq `

ˆ

L

2
cos θmin

˙

pMgq ´ pL sin θminqpFWq

(9.152)

(9.153)

(9.154)

where r is the position of the person on the ladder, r “ 0 being on the bottom, r “ L on
top. This time, the solution is given by

tan θmin “
rm ` LM{2

µspm ` MqL
. (9.155)

A special case is when the person stands in the middle of the ladder, r “ L{2, and we
again find that tan θmin “ 1{2µs. This means that in this case, it is as if there is no
person. What if the person stand lower or higher? Because Eq. (9.155) increases with r, as
shown in Fig. 9.18c, and because tan is a monotonously increasing function, it follows that
the minimum angle θmin is larger if x ą L{2 (tan θmin ą 1{2µs), and smaller if x ă L{2
(tan θmin ă 1{2µs). So, if the ladder were set at the minimum angle without a person, and
then a person walks up the ladder, after they pass the mid-point, the ladder would become
unstable and fall !

9.10.2 Example 2: Rectangular block

Consider the rectangular block with width W , height H and homogeneous mass m in
Fig. 9.19. Intuitively, we know that the block is more stable if it rests on its long side than
its short one. Why?

Say the block rests on its short side as in Fig. 9.19a. Then all torques will balance,

pr sin θqmg ´ rtFN “ 0, (9.156)
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(a) Metastable equilibrium:
Standing on short side. A
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(c) Unstable equilibrium:
The center of mass is right
above the pivot point.

mgmg FN

τ = 0

(d) Stable equilibrium: Ly-
ing on it long side. It takes
more energy to pivot it.

Figure 9.19: Stability of a rectangular block of width W , height H and mass m.
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because FN “ mg and rt “ r sin θ. This is a metastable state, because a small push
will manage to not topple it and cause the block to return to this equilibrium position.
However, if the push is large enough it will fall over to a more stable position on its long
side.

Say you pivot the block just a little bit as in Fig. 9.19b over its right corner, but with
the center of mass on the left side of the pivot point. If you let it go from rest, there will
be an unbalanced, restoring torque due to gravity, τ “ r ˆ mg.

But what if you balance it just right, such that the center of mass is exactly above
the pivot point? Now, the torque due to gravity vanishes, because it is antiparallel to the
position vector, and thus rˆmg “ 0. This is an unstable equilibrium, because the smallest
pushes in will cause it to fall. This is why it is hard to balance a pencil on its tip.

This problem can be expressed in terms of potential wells, by realizing that the block
has a maximum gravitational energy U “ mgh (with h ą H{2) when it is balance on
one of its corners. When it rests on its short side, it has a lower potential energy (U “

mgH{2), because the center of mass is lower, and when it lays on its long side even lower
(U “ mgW {2). This is plotted in Fig. 9.16b.

9.10.3 Example 3: Tightrope artist

Walking on a tightrope is a classic example of a balancing act. Without any help, the
center of mass of a tightrope artist is above the pivot point, meaning that any small push
can cause her to tip over. By extending the arms, the artist can increases her moment of
inertia and make small adjustments. By carrying a rod as in Fig. 9.20b, she increases the
moment of inertia event more, and has more control over it. A bent rod will also lower
the center of mass, making her more stable. But to become fully stable, one can “cheat”
by carrying heavy weights that lower the center of mass to below the rope, as shown in
Fig. 9.20c. Any small rotation will be counteracted by a restoring torque pulling the center
of mass back to below the pivot point, Fig. 9.20d. This is how self-balancing toys work.

9.11 Summary

We have seen many formulas for rotational motion in this chapter. Luckily they are closely
related to linear motion, and there is a lot of concepts and formulas that are similar. They
are summarized and compared in Table 9.1. Make sure you understand in what case these
formulas can be applied and in which cases they cannot.

CM

(a) Balancing with
arms, to increase the
moment of inertia.

CM

(b) Balancing with long rod to in-
crease moment of inertia even more,
and slightly lower the center of mass.

CM

(c) Stabilize by low-
ering the center of
mass below the rope.

CM

FN

mg

τ
r

θ

(d) Restoring torque
when the center of mass
is below the pivot point.

Figure 9.20: Tightrope artist walks on a rope.
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Table 9.1: Comparison of translational (or linear) and rotational (or angular) formulas.

Name Translational Rotational
Position x θ

Velocity v “
dx

dt
ω “

dθ

dt

Acceleration a “
d2x

dt2
α “

d2θ

dt2

Position, constant a or α x “ x0 ` v0t ` 1
2at

2 θ “ θ0 ` ω0t ` 1
2αt

2

Velocity, constant a or α v “ v0 ` at ω “ ω0 ` αt

Inertia m I “
ş

r2dm

Force (torque) F τ “ r ˆ F

Momentum p “ mv L “ r ˆ p “ Iω

Newton’s second law
ÿ

F “
dp

dt
“ ma

ÿ

τ “
dL

dt
“ Iα

Work W “ F ¨ ∆x W “ τ∆θ

Kinetic energy K “ 1
2mv2 K “ 1

2Iω
2

Power P “ F ¨ v P “ τω

Momentum conservation
ř

pi “
ř

pf
ř

Li “
ř

Lf

Equilibrium
ř

F “ 0
ř

τ “ 0

Table 9.2: Summary of moments of inertia of several common shapes about the main
axis.

Shape Moment of inertia

Rod
ω

L
I “

1

12
ML2

Ring or loop
ω

R
I “ MR2

Solid disk
ω

R
I “

1

2
MR2

Solid disk with hole
ω

R1 R2R2R2
I “

1

2
MpR2

1 ` R2
2q

Hollow cylinder
ω

R I “ MR2

Solid cylinder
ω

R I “
1

2
MR2

Solid cylinder with hole
ω

R1R1R1 R2R2R2 I “
1

2
MpR2

1 ` R2
2q

Hollow sphere
ω

I “
2

3
MR2

Solid sphere
ω

I “
2

5
MR2



Chapter 10

Non-Inertial Reference Frames &
Pseudo Forces

10.1 Inertial reference frames

In Section 8.4 we saw the Galilean coordinate transformation Eq. (8.53) between two
reference frames that move with a uniform velocity with respect to each other. Two
observers in each of these reference frames will see different things happen, but the physical
prediction stays the same. All you need to do is transform the coordinates.

Take for example, Alice in frame S, who is standing at rest with respect to the ground,
and Bob in frame S1, who is in a car moving with constant velocity v with respect to Alice
and frame S. Alice sees Bob moving away with a velocity v, and Bob, who thinks he is at
rest, sees Alice moving away from him with a velocity v. When Alice throws up a ball, it
will follow a one-dimensional vertically path according to

$

&

%

xptq “ 0

yptq “ v0yt ´
gt2

2

(10.1)

(10.2)

When Bob throws up his own ball with the same initial velocity v0y, he will see it follow
a one-dimensional path in his own frame as well. He will describe it with

$

’

&

’

%

x1ptq “ 0

y1ptq “ v0yt ´
gt2

2

(10.3)

(10.4)

S

y

x

S′

y′

x′
v S′

y′

x′
v

Figure 10.1: Throwing a ball in two inertial reference frames S and S1 moving at a
constant relative velocity v. Alice in S sees Bob’s ball moving in a parabolic trajectory,
while Bob sees his ball moving only vertically.
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However, Alice in S will see Bob’s ball form a parabolic path as in Fig. 10.1. Alice can use
Galilean transformation to move Eqs. (10.3) and (10.4) to her own coordinate system:

$

’

&

’

%

xptq “ x1ptq ` vt “ vt

yptq “ y1ptq “ v0yt ´
gt2

2

(10.5)

(10.6)

which is indeed a parabola. From Bob’s perspective in S1, Alice’s ball will also follow a
parabola, but in the negative x1 direction. Even though they arrive at different descriptions,
the physics (i.e. Newton’s laws and gravity) are the same, and their results are related by
a simple coordinate transformation.

10.2 Non-inertial reference frames

But what if a frame is accelerated with respect to another one? Consider again Alice in
frame S and Bob in frame S1, but this time Bob’s car is sped up with a uniform acceleration
a. Say there is a mass m suspended from the car’s ceiling by a wire, which was initially at
rest. The mass m has some inertia, so once the car starts moving, the wire pulls the mass
along with a tension T. This causes the mass and wire to deflect with an angle θ as shown
in Fig. 10.2a. Newton’s second law says

ma “ mg ` T, (10.7)

where the horizontal component of the tension causes an acceleration a, as illustrated in
Fig. 10.2b. But this is in Alice’s frame S, which is at rest. Bob, however, thinks he and
the mass are the ones at rest and sees a mysterious force F1 pulling the mass:

0 “ mg ` T ` F1. (10.8)

The mass is at equilibrium in S1. So clearly, this new force is given by the acceleration,

F1 “ ´ma. (10.9)

In fact, Bob will also feel this force F1 and might fall over if he is not careful. This is a so-
called pseudo force, or also a fictitious or inertial force. Because masses have inertia, pseudo
forces like F1 or the centrifugal force mentioned in Section 6.7 will appear in accelerated
frames like S1. A frame that does not have pseudo forces is called an inertial frame of
reference.

Inertial frame of reference. In an inertial frame of reference, all bodies with a
zero net force acting upon them do not accelerate.

a

θ

m
S′

y′

x′

(a) Bob in non-inertial frame S1 is con-
fused about the mass deflecting.

Ty

Tx

T

mg

ma
θ

S

(b) Force balance in iner-
tial frame S.

Ty

Tx

T

mg

F ′
θ

S′

(c) Force balance in Bob’s
non-inertial frame S1.

Figure 10.2: When Bob’s car accelerates, the mass suspended from the ceiling seems to
experience a (pseudo) force F1 in accelerated frame S1.
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This is actually one of the reasons why Newton wisely included the first law, which might
seem redundant as a special case of the second law (F “ 0 such that a “ 0). By including
the first law in addition to the second law, one can postulate that only (real) forces in
an inertial reference frame can accelerate masses, otherwise a mass will stay at rest or
move in a straight line with constant speed. Equivalently, you can define inertial frames
of reference as those reference frames in which Newton laws hold true.

Note that any frame moving with a constant vcm with respect to an inertial lab frame,
is also an inertial frame of reference.

A non-inertial reference frame then, is a(n accelerated) frame where pseudo forces arise
and Newton’s law are violated. Some typical examples are a passenger in a car that is going
around the bend (centripetal acceleration), an astronaut being launched in a rocket, or a
skydiver in free fall (before hitting terminal velocity).

The perceived force due to acceleration is often expressed in units of gravitational force
equivalent, or g-force. For example, the driver in a fast race car that accelerates by a “ g
will feel a g-force of “1 g”, which is the force the seat pushes back on them. A Space Shuttle
launch or reentry is typicall 3 g, and the highest g-force on a roller coaster (in 2020) is up
to a whopping 6.3 g on the Tower of Terror in at Gold Reef City in Gauteng, South Africa.

We typically assume a lab frame at rest on the earth’s surface is an inertial. However,
this is not strictly true due to the Earth’s rotation. A section below will explore the
Coriolis effect among others, which cause a ball that is dropped to the ground to not
follow an exactly straight path, seemingly violating Newton’s first law until the rotations
are considered.

10.2.1 Coordinate transformation

The physical prediction between two frames that are accelerated with respect to each other
is different, because an observer in one frame will claim there is an acceleration, while the
other will claim there is a force. The coordinate transformation becomes

Coordinate transformation to an accelerated frame.

r1 “ r ´
aframet

2

2
, (10.10)

where frame S1 is moving with a uniform acceleration vframe with respect to frame S, and
has no initial velocity. For simplicity, take the initial velocity and acceleration between the
frames to be only in the x direction, in which case the coordinates of the position vector
r1 in the accelerated S1 frame are given by

$

’

’

’

&

’

’

’

%

x1 “ x ´
aframet

2

2
y1 “ y

z1 “ z

(10.11)

(10.12)
(10.13)

Notice that from Bob’s perspective in S1, Alice is actually the one that is accelerated by
´aframe.
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S

z

y
x

T

a
m

ω

ω

(a) Alice in inertial frame S sees that the mass
experiences a centripetal force from tension T.

T Fcf

m

S′
z′

y′
x′

(b) Bob in non-inertial frame S1 sees that the mass
experiences a centrifugal force creating a tension T.

Figure 10.3: A rotational frame gives rise to the fictious centrigual force. Mass m rotates
with a merry-go-around (red disk) and is radially held in place by a wire with tension T.

10.3 Rotating reference frames

10.3.1 Centrifugal force

Now consider a uniformly rotating frame as in Fig. 10.3. Alice looks from the side in
inertial frame S, while Bob is on the rotating merry-go-around in rotating frame S1. A
mass is suspended to the middle by a wire and rotates in circles with the merry-go-around.
To hold the mass radially in place, the wire provides a centripetal force with its tension T,

ma “ T. (10.14)

Meanwhile, Bob scratches his head because he notices there is a mysterious centrifugal
force creating a tension in the wire:

0 “ T ` Fcf . (10.15)

Again, the mass is at equilibrium in S1 and the forces balance. Comparing the latter two
equations,

Centrifugal force. The centrifugal force is opposite to the centripetal acceleration

Fcf “ ´ma “
mv2

r
r̂. (10.16)

where we assumed the centripetal acceleration in frame S points to the origin on rotation
axis, just as in Eq. (5.34).

10.3.2 Extra: Coordinate transformation of rotation

This section is extra for the interested reader, and is not part of the main curriculum.
Some knowledge of matrices and their properties is assumed.

So what is the coordinate transformation between S and S1? Suppose the coordinate
systems of the two frame have the same origin, and S1 rotates counterclockwise with a
uniform angular velocity ω, as in Fig. 10.4a. A point P that has coordinates px, yq in S,
will have coordinates

#

x1 “ x cospωtq ` y sinpωtq

y1 “ ´x sinpωtq ` y cospωtq

(10.17)
(10.18)
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P

x
O

y

x′

y′

r

θ = ωt

(a) A point or position vector r has different co-
ordinates in the S and S1 frame.

P

x
O

y

x′

y′

θ

θ

θ

θ
x

y

x co
s θ

y si
n θ

y si
n θ

x
sin
θ

x
sin
θ

y
cos

θ

(b) The coordinate transformation px, yq ÞÑ px1, y1q can
be derived by finding the right triangles and angles.

Figure 10.4: Frame S’ is rotated counterclockwise with a time-dependent angle θ “ ωt
with respect to frame S.

in frame S1, as can be gleaned from Fig. 10.4b. In terms of linear algebra, this corresponds
to the linear transformation (see Section 3.8)

ˆ

x1

y1

˙

“

ˆ

cospωtq sinpωtq
´ sinpωtq cospωtq

˙ ˆ

x
y

˙

, (10.19)

where the matrix Rpωtq is the clockwise-rotation matrix with rotation angle θ “ ωt

Rpθq “

ˆ

cos θ sin θ
´ sin θ cos θ

˙

. (10.20)

This matrix has the nice property that its transpose is its inverse:

R´1pθq “ RTpθq “ Rp´θq, (10.21)

which is a rotation in the opposite direction (´θ). Equivalently,

RRT “ RTR “ 1, (10.22)

where 1 is the 3 ˆ 3 identity matrix. In linear algebra, matrices with this property are
called orthogonal. It implies that the transformation preserves the length in the scalar
product, and therefore any length:

r1 ¨ r1 “ pRrq ¨ pRrq “ pRrqTpRrq “ rT pRTRq
loomoon

1

r “ r ¨ r, (10.23)

where r “ px, yq and r1 “ Rr “ px1, y1q, and we wrote the scalar product as a transpose
(see Eq. (3.17)). This is exactly what we want for rotations; changing the directions of all
vectors without changing their lengths.

Notice that with the above choice of coordinate systems, the position vectors r1 “ r
are identical because the origins coincide,

r1 “ x1x̂1 ` y1ŷ1 ` z1ẑ1

“ xx̂ ` yŷ ` zẑ “ r,

(10.24)
(10.25)

even though their coordinates are different. The unit vectors in the rotating S1 frame are
given by

$

’

&

’

%

x̂1 “ cospωtqx̂ ` sinpωtqŷ

ŷ1 “ ´ sinpωtqx̂ ` cospωtqŷ

ẑ1 “ ẑ

(10.26)
(10.27)
(10.28)
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The unit vectors x̂, ŷ and ẑ are constant with time in S, but the ones from S1 change with
time in S as

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dx̂1

dt
“ ´ω sinpωtqx̂ ` ω cospωtqŷ

dŷ1

dt
“ ´ω cospωtqx̂ ´ ω sinpωtqŷ

dẑ1

dt
“ 0

(10.29)

(10.30)

(10.31)

Because the rotation assumed to be counterclockwise in Fig. 10.4a, the constant angular
frequency vector is ω “ ωẑ. So we can rewrite the above time-derivatives as

dx̂1

dt
“ ω ˆ x̂1

dŷ1

dt
“ ω ˆ ŷ1,

(10.32)

(10.33)

such that the derivatives are orthogonal to ω and the corresponding unit vector. It turns
out that this holds more generally for any choice of direction of ω,

dx̂1

dt
“ ω ˆ x̂1,

dŷ1

dt
“ ω ˆ ŷ1,

dẑ1

dt
“ ω ˆ ẑ1. (10.34)

So the change in direction of these unit vector is always perpendicular to the rotation axis
and to the given unit vector itself, so its size is constant, as expected. In other words, the
change is tangential. Clearly, if a unit vector is parallel to the rotation axis ω, it will not
change direction (e.g. x̂1 ∥ ω ñ ω ˆ x̂1 “ 0). On the other hand, the change of direction
will be maximal if the unit vector is perpendicular to ω (e.g. x̂1 K ω ñ |ω ˆ x̂1| “ ω).

10.3.3 Extra: Time derivation of a vector function

This section provides some mathematical formulas to help derive the pseudo forces observed
in a rotating frame.

Take any time-dependent vector function A in inertial frame S,

A “ Axx̂ ` Ayŷ ` Azẑ. (10.35)

This vector can be anything, including the position r. The time derivative of A is given
by the derivative of its coordinates in S

dA

dt

ˇ

ˇ

ˇ

ˇ

S

“
dAx

dt
x̂ `

dAy

dt
ŷ `

dAz

dt
ẑ, (10.36)

because the unit vectors are constant in time in frame S. Now look at the same vector,
but with expressed in coordinates of a rotating frame S1,

A “ A1
xx̂

1 ` A1
yŷ

1 ` A1
zẑ

1, (10.37)

where the coordinates and unit vectors are defined in S1. The time derivative of A in S,
with S1 coordinate system is

dA

dt

ˇ

ˇ

ˇ

ˇ

S

“

ˆ

dA1
x

dt
x̂1 `

dA1
y

dt
ŷ1 `

dA1
z

dt
ẑ1

˙

`

ˆ

A1
x

dx̂1

dt
` A1

y

dŷ1

dt
` A1

z

dẑ1

dt

˙

(10.38)
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due to the product rule. The terms between the first parenthesis in Eq. (10.38) is the
change of A in non-inertial frame S1, wherein the unit vectors x̂1, ŷ1 and ẑ1 are constant.
Therefore, Eq. (10.38) becomes

dA

dt

ˇ

ˇ

ˇ

ˇ

S

“
dA

dt

ˇ

ˇ

ˇ

ˇ

S1

` ω ˆ
`

A1
xx̂

1 ` A1
yŷ

1 ` A1
zẑ

1
˘

, (10.39)

where we also substituted Eq. (10.34). So using Eq. (10.37), we find the following useful
result.

Kinematic transport theorem.

dA

dt

ˇ

ˇ

ˇ

ˇ

S

“
dA

dt

ˇ

ˇ

ˇ

ˇ

S1

` ω ˆ A. (10.40)

So the change of A in frame S is related to its change relative to the rotating frame S1 by
simply adding the term ω ˆ A tangentially to A.

10.3.4 Pseudo forces in a rotating system

The centrifugal force is not the only pseudo force that appears in a rotating system. We will
now formally derive the other two that arise starting from the transport theorem (10.40)
and deriving a relation between the acceleration in inertial reference frame S and rotating
reference frame S1 to see if extra terms show up that indicate the presence of pseudo forces.

In Eq. (10.40), A can be any vector. For example, the position vector A “ r “ r1,

dr

dt

ˇ

ˇ

ˇ

ˇ

S

“
dr

dt

ˇ

ˇ

ˇ

ˇ

S1

` ω ˆ r, (10.41)

These are the velocities v in the S frame, and v1 in the S1 frame

v “ v1 ` ω ˆ r, (10.42)

where ω ˆ r encodes the tangential velocity from the rotation ω. By deriving expres-
sion (10.41) with respect to time, we find the acceleration a in frame S,

a “
d2r

dt2

ˇ

ˇ

ˇ

ˇ

S

“
d

dt

ˆ

dr

dt

ˇ

ˇ

ˇ

ˇ

S1

` ω ˆ r

˙

. (10.43)

Following the product rule,

a “
d

dt

ˆ

dr

dt

ˇ

ˇ

ˇ

ˇ

S1

˙

`
dω

dt
ˆ r ` ω ˆ

dr

dt
(10.44)

We can apply the transport theorem (10.40) to r in the last term, which is Eq. (10.41),
and to the vector between the parentheses in the first term, which is

d

dt

ˆ

dr

dt

ˇ

ˇ

ˇ

ˇ

S1

˙

“
d2r

dt2

ˇ

ˇ

ˇ

ˇ

S1

` ω ˆ
dr

dt

ˇ

ˇ

ˇ

ˇ

S1

. (10.45)

Putting everything together,

a “
d2r

dt2

ˇ

ˇ

ˇ

ˇ

S1

` 2ω ˆ
dr

dt

ˇ

ˇ

ˇ

ˇ

S1

` ω ˆ pω ˆ rq `
dω

dt
ˆ r. (10.46)
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Because the position vector r “ r1 in case of rotation in the same origin, we can define the
velocity and acceleration measured in frame S1 as

v1 “
dr

dt

ˇ

ˇ

ˇ

ˇ

S1

, a1 “
d2r

dt2

ˇ

ˇ

ˇ

ˇ

S1

, (10.47)

and write the result as

Acceleration in rotating frame.

a “ a1 ` 2ω ˆ v1 ` ωpˆω ˆ r1q `
dω

dt
ˆ r1. (10.48)

We see that indeed extra terms pop up in the acceleration a1 in the S1 frame. This should
give us a hint of new pseudo forces! This is easy to see if you first invoke Newton’s second
law in the inertial frame S,

ma “
ÿ

F, (10.49)

where
ř

F is the total force observed in inertial frame S. After substituting Eq. (10.48),
we see that in the rotating frame S1

Newton’s second law in a rotating system.

ma1 “
ÿ

F
loomoon

real

´ 2mω ˆ v1

loooooomoooooon

Coriolis

´ mω ˆ pω ˆ r1q
loooooooooomoooooooooon

centrifugal

´m
dω

dt
ˆ r1

loooooomoooooon

Euler

. (10.50)

These are three extra pseudo forces observed in the rotating system S1.

Pseudo forces in a rotating system.

• The Coriolis force FCor “ ´2mω ˆ v1 appears when the particle is moving in
the S1 (v1 ‰ 0).

• The centrifugal force Fcf “ ´mωˆpωˆr1q appears if the particle is at a nonzero
distance from the rotational axis (r1 ‰ 0).

• The Euler force FEul “ ´m
dω

dt
ˆr1 appears when the reference frame experiences

an angular acceleration (dω {dt ‰ 0).

Notice that if ω K r1, that the centrifugal force points again in the radial direction,

Fcf “ ´mω ˆ pω ˆ r1q “ mω2rr̂1, (10.51)

because ω̂ ˆ pω̂ ˆ r̂q “ ´r̂.
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10.3.5 Coriolis force

Let’s focus on the Coriolis force

FCor “ ´2mω ˆ v1. (10.52)

This force is perpendicular to the rotation ω and the velocity v1 in the rotating frame S1.
It is also proportional to the angular frequency ω and speed v1.

Suppose that the velocity moves in the rotation plane, i.e. v1 K ω and take ω “ ωẑ,
then the Coriolis force for a velocity v1 “ v1

xx̂
1 ` v1

yŷ
1 is

FCor “ 2mωpv1
yx̂

1 ´ v1
xŷ

1q. (10.53)

This is a bit hard to interpret, so let’s break down v1 into polar coordinates in the x1y1

plane of the inertial frame S1,
v1 “ v1

rr̂ ` v1
θθ̂, (10.54)

where r̂1 “ r̂ and θ̂
1

“ θ̂ between S and S1. In this case, the Coriolis force is given by

FCor “ ´2mω ˆ pv1
rr̂ ` v1

θθ̂q. (10.55)

Because ẑ ˆ r̂ “ θ̂ and ẑ ˆ θ̂ “ ´r̂,

FCor “ 2mωpv1
θr̂ ´ v1

rθ̂q. (10.56)

10.3.6 Example 1: Throwing a ball on rotating disk

Suppose Alice stands in the middle of a large rotating disk and throws a ball to Bob
standing at the disk’s edge. When she throws the ball at t “ 0, it will follow a straight
path in the inertial frame S to where Bob was at t “ 0, if the ball moves along the y axis,

rptq “ vtŷ. (10.57)

By the time the ball reaches the edge, Bob has already rotated away as in Fig. 10.5a. From
the perspective of both Alice and Bob in the rotating frame S1, the ball follows a curved
path as in Fig. 10.5b. In S1, the ball seems to experience a mysterious force, namely the
Coriolis force. The coordinates of rptq in S1 are given by

r1ptq “ vt sinpωtqx̂1 ` vt cospωtqŷ1, (10.58)

v

m

ω

S

y

x

y′ x′

A

B

(a) Mass m moves in a straight line in
inertial frame S.

S′

y′

x′

v

FCor

m
S

y

x

y

x
ω

(b) Mass m moves in a spiral in rotat-
ing frame S1.

S′

y′

x′

vFcf

FCorFCor

v

Fcf

FCor

v

Fcf

FCor

(c) The spiral motion in S1 is caused by
the centrifugal and Coriolis force.

Figure 10.5: Alice (A) throws a ball of mass m from the center of a disk to Bob (B) at
the edge of the disk. Because its velocity is nonzero in the rotating frame S1, a Coriolis
force will cause a deflection in the rotating S1.
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or in polar coordinates,
r1ptq “ vtr̂1 ´ ωtθ̂

1
, (10.59)

which describes a clockwise spiral in S1, i.e. a uniform circular motion θ “ ωt, except that
the radius r “ vt increases with time. The deflection is caused by the Coriolis force FCor,
which is perpendicular the v. At the same time there is the centrifugal force Fcf which
seems to radially increase the velocity, as shown in Fig. 10.5c.

10.3.7 Example 2: A ball at rest

What if the ball simply stays at rest at some radial distance r from the origin in the inertial
frame S? Without loss of generality, say its coordinates are given by

rptq “ rx̂ “ rr̂ (10.60)

and v “ 0 in S, and
r1ptq “ r cospωtqx̂1 ` r sinpωtqŷ1 “ rr̂1 (10.61)

in the rotating frame S1, meaning the ball appears to rotate clockwise around the origin.
The velocity in S1 is given by

v1ptq “ ´rω sinpωtqx̂1 ` rω cospωtqŷ1

“ ´rωθ̂
1
,

(10.62)

(10.63)

such that it is tangential to the position r, and has size v “ rω, as one would expect
for a uniform circular motion. Note this is also consistent with the transport theorem
Eq. (10.42) for r. The velocity v1 is nonzero in S1, so there is a Coriolis force (10.56). In
this case it is in the negative radial direction

FCor “ ´2mω2rr̂1, (10.64)

while the centrifugal force is
Fcf “ mω2rr̂1. (10.65)

Putting this together in the second law in S1,

ma “ FCor ` Fcf “ ´mω2rr̂1, (10.66)

which is consistent with the centripetal force (5.43) for uniform circular motion.

10.3.8 Example 3: Centrigufal force on Earth

The Earth spins, and is therefore not an non-inertial reference frame. Assuming the rota-
tion is constant over time, there will be a Coriolis and centrifugal force, but no Euler force.
Let’s compare the former two depending where you are on Earth. Because of symmetry,
the only important piece of information is your latitude θ. Anywhere at the equator,
ϕ “ 0, while at the North Pole it is ϕ “ 90˝ and at the South Pole it is ϕ “ ´90˝. The
centrifugal force only depends on the radial distance r “ R cosϕ from the rotation axis,
where R « 6370 km is Earth radius. So the centrifugal force is

Fcf “ mω2r “ mω2R cosϕ, (10.67)
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where ω « 2π{1 day “ 7.27ˆ 10´5 s. The centrifugal force is zero at the poles, and biggest
at the equator, where for 1 kg

Fcf “ mω2R “ 0.034N.

The centrifugal acceleration that opposes the gravitational field g is

acf “ ω2R “ 0.034
m

s
.

In other words, if at the poles weight is measured as simple mg, then the difference in
measured weight at the equator is

´
Fcf

mg
“ ´

ω2R

g
“ ´0.35%

In reality the difference is closer to 0.5%, as the Earth is not a perfect sphere. Due to the
centrifugal force, the Earth is “flattened” a bit, and looks more like oblate spheroid. As a
consequence, the gravity is stronger at the poles, which are closer to Earth’s center (about
6378 km) than at the equator (about 6357 km).

10.3.9 Example 4: Coriolis force on Earth

How does the centrifugal force compare tot the Coriolis force? This force is maximum
when the velocity is perpendicular to the rotation axis, v1 K ω, when

FCor “ 2mωv (10.68)

So for a 1 kg object moving at an appreciable speed of 100 km{h,

FCor “ 0.0040N,

almost ten times smaller than the centrifugal force for the same mass.
Still, the Coriolis effect has a large impact on the directions of things like winds and

ocean currents. In the Northern Hemisphere, a mass moving from west to east will expe-
rience a southward deflection, and vice verse, a mass moving from east to west will notice
a northward deflection. Similar for longitudinal north-south travel. This will cause winds
on the Northern Hemisphere to spiral counterclockwise as in Fig. 10.6b. On the Southern
hemisphere it will be clockwise instead. Despite what you may have seen on the Simpsons,
this effect is not strong enough to determine the sense of a vortex in a kitchen drain of
toilet, as other initial condition can influence the direction.

Interestingly, this effect is also noticeable on the railroad tracks for trains moving
longitudinally: A train moving from north to south in the Northern Hemisphere will put
more force on the west track (right in facing the direction of motion), while a train moving

ω

r
Fcf

φ

(a) The centrigufal force on Earth’s surface de-
pends on the latitude ϕ.

N

W

E

S

(b) The Coriolis force depends on which direction
you move.

Figure 10.6: Earth rotates, so pseudo forces arise.
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from south to north will put more force on the east track (again right). This means that
right tracks in the Northern Hemisphere will tend to wear out faster than the left one. A
similar effect is seen in the shape of river beds.

Another phenomena that the Coriolis effect influences are jet streams. As hot air
moves from the high to low pressure zones, it tends to be deflected eastward in both
hemispheres, creating jet stream between 9 and 16 km. These jet streams have a large
impact on flight times. Eastward planes pick up a tail wind and arrive quicker than
without, while westbound planes take longer. For example, planes flying from New York
to London take roughly seven hours, while the return takes about eight.



Chapter 11

Stress & Strain

Up until now, we have implicitly assumed that solid objects are not deformed under force.
In reality, even hard solids can be deformed and have some elastic and plastic properties.

A force or pressure that deforms an object, is called stress σ. Under stress, an object
will deform, which is measured by strain ϵ.

Figure 11.1 illustrates several types of strains. For example, when you push on either
side of a beam, you will cause it to compress. If you instead twist it with torques, you
create torsion.

Each type of stress and strain will have its own measure of resistance to deformation,
which typically follows the formula

Generalized Hooke’s law.

elastic modulus “
stress
strain

“
σ

ϵ
. (11.1)

Note that form this similar to Hooke’s law

k “
F

∆x
, (11.2)

where the spring constant k is the resistance a spring offers to change in length ∆x (strain)
under a force F (stress). In this course we see

• Young’s modulus: solid’s resistance to change in length;

• Shear modulus: solid’s resistance to shearing;

• Bulk modulus: solid or fluid’s resistance to change in volume (Sections 13.5.2 and 16.3).

(a) No stress (b) Tension (c) Compression (d) Bending (e) Torsion (f) Shearing

Figure 11.1: Illustration of different types of strain on a solid under stress.
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L

(a) No stress

L

∆L
F

F

(b) Compression

L

∆L

FF

(c) Tension

Figure 11.2: Closer look at the compression and tension of a solid beam of rest length L.

11.1 Young’s modulus

Imagine you have a rod of length L. If we apply a force on the ends with areas A, how
much does the length change? As a measure of a given solid’s compressibility along its
length, we introduce the Young’s modulus Υ as

F

A
“ Υ

∆L

L
, (11.3)

where F is the force applied, A is the area and ∆L is the change of length. (Υ is the Greek
symbol for upsilon.) In other words,

Young’s modulus.

Υ “
F {A

∆L{L
“

stress
strain

. (11.4)

It has units N{m2 or Pascal like pressure (see Chapter 16), and varies per material. Some
values are listed by Table 11.1. Note that Young’s modulus also measures the tensile
strength, i.e. the material’s resistance to pulling by a tension force.

A lot of materials behave similar qualitative behavior under stress that is illustrated in
the stress-versus-strain plot shown in Fig. 11.3. We see that for small strain and stresses,
the relationship is linear, following Hooke’s law Eq. (11.1). This regime is called the elastic
region: Any deformation will be undone by removing the stress. After the elastic limit,
the material the strain does not increases linearly anymore, but keeps increasing until
its ultimate strength. This is the plastic region, where some of the deformation will be
permanent, even after the stress is removed. Increasing the stress beyond this point will
eventually lead to breaking the object.

Table 11.1: Young’s modulus for several materials .

Material Young’s modulus Υ [GN{m2 or GPa]
Brass 90
Bone 9

Stainless steel 180

Strain ε = ∆L/L

S
tr

es
s
σ

elastic
limit

ultimate strength

fracture

elastic plastic

Figure 11.3: Stress-strain curve showing the qualitative behavior of many materials under
stress. In the elastic region, Hooke’s linear law is followed. After the elastic limit, in the
plastic region, deformation caused by stress can become permanent.
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L

∆x

θ

Fs

PHY111
Physics I for Physics Majors

PHYSIK INSTITUTUNIVERSITÄT ZÜRICH

Prof. Ben Kilminster

Figure 11.4: A book is sheared by a shearing force Fs.

11.2 Shear modulus

Let’s say you put a book flat on a table top and push on top of it with a lot of pressure,
as shown in Fig. 11.4. Now slowly add a horizontal force, such that the book starts to
deform. This tangential force on an object is called a shear force Fs. It produces a shear
stress to the object,

σ “
Fs

A
, (11.5)

and a shear strain
ϵ “

∆x

L
“ tan θ, (11.6)

where ∆x is displacement on the sheared top. The shear modulus then is defined as the
resistance to shearing,

Shear modulus.

Ms “
Fs{A

∆x{L
“

Fs{A

tan θ
. (11.7)

Is is also known as the torsion modulus: If you apply a torque to an object, it will produce
a twisting angle as in Fig. 11.1e.
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Part II

Oscillations and Waves
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Chapter 12

Harmonic Oscillations

12.1 Interlude: Taylor expansion

Physicists like to model the physical world by starting with simplifications and approxima-
tions. One mathematical tool indispensable to physicists is Taylor approximation. From
analysis, we remember that

Taylor series. The Taylor series of a function f that is infinitely differentiable in
a is the power series

fpxq “ fpaq `
f 1paq

1!
px ´ aq `

f2paq

2!
px ´ aq2 `

f3paq

3!
px ´ aq3 ` ...

“

8
ÿ

n“0

f pnqpaq

n!
px ´ aqn

(12.1)

(12.2)

Accordingly, the nth Taylor polynomial is the polynomial of degree n,

Tnpxq “

n
ÿ

i“0

f piqpaq

i!
px ´ aqi. (12.3)

T1 is the tangent line to fpxq at x “ a with slope f 1paq. Typically, the more terms you
add, the better you approximate f around x “ a, fpxq « Tnpxq. Also the closer you stay
to x “ a (so small |x ´ a|), the smaller the difference |Tnpxq ´ fpxq|.

A special case of a Taylor series is when a “ 0.

Maclaurin series.

fpxq “ fp0q `
f 1p0q

1!
x `

f2p0q

2!
x2 `

f3p0q

3!
x3 ` ...

“

8
ÿ

n“0

f pnqp0q

n!
xn

(12.4)

(12.5)

12.1.1 Example 1: Cubic function

As a simple example, consider a cubic function

fpxq “ x3 ´ x2 ´ x ` 1. (12.6)

129
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y

x

f

T1

T21

−1

1−1−1

Figure 12.1: First (green) and second (red) degree Taylor polynomials that approximate
fpxq “ x3 ´ x2 ´ x ` 1. T1 is a straight line in x “ 0 and x “ 1, while T2 is a parabola.

The first, second and third Taylor polynomials in x “ 0 are

T1pxq “ 1 ´ x

T2pxq “ 1 ´ x ´ x2

T3pxq “ 1 ´ x ´ x2 ` x3

(12.7)

(12.8)

(12.9)

Notice that with T3pxq we retrieve the original function fpxq, because they are both third-
degree polynomial. Similarly, in a different point, x “ 1, they are

T1pxq “ 0

T2pxq “ 2px ´ 1q2

T3pxq “ 2px ´ 1q2 ` px ´ 1q3

(12.10)

(12.11)

(12.12)

Notice that the last result T3pxq is again the exact same as fpxq and Eq. (12.9).

12.1.2 Example 2: Sine

For the purposes of this course, it is important to know the Taylor expansion of sine:

sinx “ x ´
x3

3!
`

x5

5!
´

x7

7!
`

x9

9!
` ...

“

8
ÿ

n

p´1qn

p2n ` 1q!
x2n`1.

(12.13)

(12.14)

The series only has terms of odd degree. Several Taylor polynomials are shown in Fig. 12.2a.
The first-order approximation of a sine function is a linear one,

sinx « T1pxq “ x. (12.15)

y

x

sin

T1

T3T5

T7

T9

T−T

(a) Taylor polynomials Tn, see Eq. (12.13).

Tn(x)−sin x
|sin x|

x

T9

T7
T5

T3

T1

1

−1

180°−180°

(b) Relative difference with Tn.

x

T1(x)− sinx

|sinx|

1%

−1%

2%

−2%

3%

−3%

10°−10° 20°−20°

(c) Relative difference with T1.

Figure 12.2: Taylor expansion approximating sine fpxq “ sinx. The first-order approxi-
mation T1pxq “ x (green) is a straight line. All Taylor polynomials of an odd function like
sinx have an odd degree.
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y

x

cos

T0

T2

T4

T6

T8

T−T

(a) Taylor polynomials Tn, see Eq. (12.17).

Tn(x)−cos x
|cos x|

x

T8

T6

T4

T2

T0

1

−1

180°−180°

(b) Relative difference with Tn.

x

T2(x)− cosx

|cosx|

−0.02%
−0.04%
−0.06%
−0.08%
−0.10%
−0.12%
−0.14%

10°−10° 20°−20°

(c) Relative difference with T2.

Figure 12.3: Taylor expansion approximating fpxq “ cosx. The first-order approxima-
tion T2pxq “ 1´x2{2 (red) is a parabola. All the Taylor polynomials of cosx have an even
degree.

They are shown in Fig. 12.1. To see how each terms improve the approximation, one can
use as a measure the relative difference defined as

Tnpxq ´ sinx

|sinx| . (12.16)

This is plotted in Fig. 12.2b. The closer to x “ 0, the smaller the difference, the better
the approximation; and the more terms, the larger the range around x “ 0 where there is
a good approximation. Clearly, the fifth degree polynomial T5 is a better approximation
to sin than a parabola T3, which is in turn better than a straight line T1. In physics, we
often consider smaller values of x, and the first-order approximation T1 would be enough.
We will see the case of small-angle approximation below, but it is also to setup differential
equations by expanding a function in terms of some infinitesimal value dx.

12.1.3 Example 3: Cosine

Cosine is very similar, except now, only terms of even degree survive;

cosx “ 1 ´
x2

2!
`

x4

4!
´

x6

6!
`

x8

8!
` ...

“

8
ÿ

n

p´1qn

p2nq!
x2n.

(12.17)

(12.18)

The lowest-degree polynomials are shown in Fig. 12.3a. So the first-order approximation
of a cosine function is a quadratic function, and not a linear one!

12.2 Simple harmonic oscillator

Harmonic oscillators correspond to cases where acceleration is proportional to the dis-
placement, and in the opposite direction. They appear in many places in physics, all the
way from physical springs and pendulums, down to molecules and atoms.

Reconsider the mass on a frictionless surface and fixed to a wall by a spring discussed
in Section 6.5 and shown in Fig. 6.5. If you pull or push the mass, the length of the spring
changes, and the spring will try to bring the mass back to position x “ 0. If you push or
pull it from of its equilibrium position, and let it go, it will accelerate, gaining velocity that
causes it to overshoot its rest position. In absence of other forces like friction, the spring
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will keep trying to return the mass to x “ 0, but overshooting it each time, oscillating
back and forth. By Hooke’s law (6.28), the spring force is F “ ´kx, so

ma “ ´kx, (12.19)

where x is the displacement of the mass with respect to the rest position, or equivalently,
the extension of the spring, while k is the spring constant. Because F “ ´kx is the only
force, this is called a simple harmonic oscillator. We can rewrite this in terms of x as

d2x

dt2
“ ´

k

m
x, (12.20)

or

Equation of simple harmonic motion.

d2x

dt2
` ω2x “ 0, (12.21)

with “some” constant ω2 “ k{m for a spring-mass system. Remember the form of this
equation, because we will see equations of this form appearing in many different problems
in physics. In the Newton’s dot notation (Section 4.4):

:x ` ω2x “ 0. (12.22)

As the mass oscillates back and forth, the position x “ xptq depends on time t. Equa-
tion 12.21 is a differential equation, which is the so-called equation of motion for x. So
what is the solution? The solution needs to be a function xptq whose second derivative
is itself times some negative constant ´ω2 “ ´k{m. We know two such (real) functions!
Cosine and sine. Let’s use the ansatz (i.e. an educated guess)

xptq “ A cospωtq, (12.23)

where A is a constant called the amplitude, and ω is the angular frequency with units rad{s.
Remember from Section 5.3 that ω “ 2πf “ 2π{T for frequency f and period T . The first
derivative is the velocity,

vptq “
dx

dt
“ ´Aω sinpωtq, (12.24)

and the second one is the acceleration

aptq “
d2x

dt2
“ ´Aω2 cospωtq “ ´ω2xptq. (12.25)

We see that our ansatz solves Eq. 12.21. Comparing Eq. 12.21 to Eq. 12.20, we see that the
constant ω is actually the angular frequency, which we choose to be positive, and which
relates to the spring constant and mass as in,

Angular frequency of a harmonic oscillator.

ω “

c

k

m
. (12.26)
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TT 2T

T = 2π/ω

(a) xptq “ A cospωtq.

x

y

A

A

A

ωt

ω

(b) A point moving uniformly in a circle.

Figure 12.4: Simple harmonic oscillator with amplitude A, uniform angular frequency ω
and period T “ 2π{ω.
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t

A

t0

t0 = φ/ω

t0 + Tt0 + T t0 + 2Tt0 + 2T

(a) xptq “ A cospωt ´ ϕq.

x

y

A

A

A

φ
ωt

ω

(b) A point moving uniformly in a circle.

Figure 12.5: Simple harmonic oscillator with a non-zero phase shift.

We can also convert this result to the period of oscillation with units of seconds,

T “
2π

ω
“ 2π

c

k

m
. (12.27)

This is shown in Fig. 12.4a. Note that our solution Eq. (12.23) assumes that xp0q “ A,
i.e. the oscillator starts at maximum displacement when it is released from rest. This
is our initial condition that determines this arbitrary constant. Another solution would
be to choose a different starting time. So a more general solution includes some phase
ϕ:

Solution of a simple harmonic oscillator.

xptq “ A cospωt ´ ϕq. (12.28)

This phase is like a shift t0 “ ϕ{ω in time, shown in Fig. 12.5a,

xptq “ A cos
“

ωpt ´ t0q
‰

. (12.29)

12.2.1 Initial conditions

So at t “ 0, the oscillation in Eq. (12.23) starts with

#

xp0q “ A cosϕ

vp0q “ Aω sinϕ

(12.30)
(12.31)

Equation (12.28) has two arbitrary constants, A and ϕ, while ω “
a

k{m is determined
by the properties of the spring-mass system. The two unknown constants are determined
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by two independent initial conditions. Typically this is a constraint of the form xpt0q “ x0
and vpt0q “ v0 with constant t0, x0 and v0. A trivial example of a set of intitial conditions
is given by

#

xp0q “ x0

vp0q “ 0

(12.32)
(12.33)

in which case A “ x0 and ϕ “ 0, and we find Eq. (12.23) again. A different simple example
is

#

xp0q “ 0

vp0q “ v0

(12.34)
(12.35)

such that A “ v0{ω and ϕ “ π{2.

12.2.2 General solution

It is immediately obvious from Eq. (12.28) that sine is also a valid solution because sinpxq “

cospx ` π{2q. Therefore, one way to think of a harmonic oscillator is as the vertical and
horizontal projections of a point moving uniformly in a circle, as shown in Figs. 12.4b
and 12.5b. Mathematical analysis says that if you have two linearly independent solutions
of a second-order differential equation, like A cospωtq and B sinpωtq of Eq. (12.21), then
the most general solution is the linear combination of these two equations:

General solution of a simple harmonic oscillator.

xptq “ A cospωtq ` B sinpωtq. (12.36)

However, if the amplitudes A and B, and ω are constant, you can always rewrite this linear
combination as just one cosine or sine with some phase ϕ by using trigonometric identities
like cospx ´ yq “ cosx cos y ` sinx sin y, setting A “ A0 cosϕ and B “ A0 sinϕ,

A cospωtq ` B sinpωtq “ pA0 cosϕq cospωtq ` pA0 sinϕq sinpωtq

“ A0 cospωt ´ ϕq

(12.37)
(12.38)

The maximum displacements are at x “ ˘A. In our derivation above, we saw that
the velocity and acceleration also have oscillatory behavior, according to sine or cosine.
A comparison of the phase of the position, velocity and acceleration is shown earlier in
Fig. 4.5g. The maximum velocity is ˘Aω, while the maximum acceleration is ˘Aω2. The
velocity is π{2 out of phase with the position. On the other hand, the acceleration is a
full π out of phase with the position, which means that it always points to the opposite
direction than the position vector, just like the force exerted by the spring.

Section 12.6 will show how the complete set of solutions and initial conditions can be
visualized in a phase diagram.

12.2.3 Energy of a harmonic oscillator

From Section 7.4.2, the potential energy is

Uptq “
kx2

2
“

kA2

2
cos2pωtq, (12.39)
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(b) Versus time.

Figure 12.6: Energy E “ U ` K of a harmonic oscillator with period T .

if the position xptq “ A cospωtq. The total energy of the mass-spring system has to stay
constant if we neglect non-conservative forces like friction, so the potential and kinetic
energy both oscillate in time and are out of phase with respect to each other:

Etotptq “
kx2

2
`

mv2

2

“
kA2

2
cos2pωtq `

mω2A2

2
sin2pωtq.

(12.40)

(12.41)

Notice that the total energy is indeed constant,

Etot “
kA2

2
“

mω2A2

2
(12.42)

and is proportional to the amplitude squared, Etot9A2. The maximum kinetic energy is
when x “ 0 and v “ ˘ωA, as expected. This is shown in Fig. 12.6.

12.2.4 Vertical harmonic oscillator

Now remember the mass hanging on a spring from the ceiling from Section 6.5 and Fig. 6.6.
This is shown in Fig. 12.7. If the weight and spring force balance,

0 “ ´mg ` ky (12.43)

where y is the extension of the spring, with respect to its normal rest length of ℓ0. Because
gravity pulls down the mass, the spring will be extended by a constant

y0 “
mg

k
. (12.44)

So at equilibrium and rest, y “ y0, and the new rest length of the spring is ℓ0 ` y0. But
if we extend the spring even more by some distance y1, the total extension is y “ y0 ` y1.

y y′

0
y0 0

m

F

mg

`0

(a) Vertical spring.

y

t

A+ y0

−A+ y0

y0

(b) Oscillation around offset y0: yptq “ y0 ` A cospωtq.

Figure 12.7: Spring with rest length ℓ0 is hung vertically. Because of the weight, the new
rest length is ℓ0 ` y0.
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When we let go the mass from rest, Newton’s second law becomes

m
d2y

dt
“ ´mg ` ky, (12.45)

or in terms of y1 “ y ´ y0,

m
d2y1

dt
“ ´mg ` kpy1 ` y0q “ ´ky1. (12.46)

So we again find a simple harmonic oscillation, but this time around y “ y0, instead of
around y “ 0. The solution is for the form

yptq “ y0 ` y1ptq “ y0 ` A cospωt ´ ϕq. (12.47)

12.2.5 Double spring

Consider a mass on a frictionless surface connected to two springs on either ends as in
Fig. 12.8. Assume the springs have spring constants k1 and k2, respectively, and at equi-
librium they are at their rest length ℓ0 (i.e. neither compressed nor extended). Any
displacement x by the mass from its rest position x “ 0 causes a force imbalance given by

ma “ ´k1x ´ k2x. (12.48)

If we move the mass to the right by x ą 0, spring k1 gets extended, while k2 is compressed,
and vice versa. Their forces, therefore, always point in the same x direction. Notice that
the effective spring constant of the whole system is keff “ k1 ` k2. The equation of motion
are

d2x

dt
`

k1 ` k2
m

x “ 0. (12.49)

So this acts as a simple harmonic oscillator with angular frequency

ω “

c

k1 ` k2
m

. (12.50)

What if the springs are not at their own rest length when the system is at its rest
position? Remember the example in Section 6.5.2 where we found the rest position of the
system is given by x1 “ ´pk2{k1qx2. This time, if the mass is displaced by x from its rest
position x “ 0,

ma “ ´k1px ` x1q ´ k2px ` x2q. (12.51)

Because of Eq. (6.32), this reduces to Eq. (12.48), so the system has the same dynamics
as before.

x
0

`0 `0
x x

k1 k2
m

−k1x−k1x −k2x−k2x

Figure 12.8: Double oscillator: Two springs with constants k1 and k2.
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Figure 12.9: A pendulum is a harmonic oscillator.

12.3 Pendulum

Another physicist’s favorite example of a harmonic oscillator is a pendulum. A mass is
suspended by a string of fixed length L to the ceiling. At equilibrium, the mass just hangs
vertically at rest. The string makes an angle θ “ 0 with the vertical. When we pull or push
the mass from its rest position, gravity will pull the mass back towards its rest position,
and the mass will oscillate back and forth.

Let’s decompose the forces on the mass. It is easier to consider forces in the radial and
tangential directions, instead of vertical and horizontal ones, as in Fig. 12.9a. The total
force is

ÿ

F “ T ´ mg. (12.52)

The mass will only swing in the tangential direction, so the forces must balance radially:

"

0 “ T ´ mg cos θ

ma “ ´mg sin θ

(12.53)
(12.54)

The degree of freedom is the arc length s “ Lθ from the rest position θ “ 0, so

a “
d2s

dt
“ ´g sin θ. (12.55)

This is a nonlinear differential equation due to the sine function, which is not easy to solve...
We therefore use a common trick, called the small-angle approximation: We assume that
the angle θ is small, such that we can use the Taylor expansion Eq. (12.15),

Small-angle approximation.
sin θ « θ. (12.56)

From Fig. 12.2c, we see that this is a very good approximation. The relative error is about

10˝ ´ sin 10˝

|sin 10˝| « 0.51%, (12.57)

where 10˝ « 0.1754. The error is about 1.0% for 14˝, and 2.1% for 20˝.
Now we can rewrite Eq. (12.55), using s “ Lθ and assuming small θ we find
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Linearized equation of motion for a pendulum.

d2s

dt
`

g

L
s “ 0. (12.58)

We recognize this equation as the one for simple harmonic oscillators, Eq. (12.21)! So for
small angles, a pendulum behaves as a simple harmonic oscillator. The solution must be
of the form

sptq “ s0 cospωt ´ ϕq, (12.59)

with the amplitude sp0q “ s0, and an angular frequency

Angular frequency of a pendulum.

ω “

c

g

L
. (12.60)

Therefore, the period is

T “ 2π

d

L

g
. (12.61)

Notice that this time, the period does not depend on the mass m, but only on the length
L of the string, and the gravitational acceleration g.

Perhaps surprisingly, the period does not depend on the initial conditions; the ampli-
tude s0 which is how high you let it go. However, it is clear that the larger the amplitude
s0, the larger the maximum velocity vmax “ ˘ωs0 at s “ 0 (or θ “ 0). The property
that the period of a pendulum (for small angles) is independent of its amplitude is called
isochronism, and was discovered by Galileo Galilei around 1602. This makes pendulums
particularly useful as timekeepers. The first pendulum clock was designed by Christiaan
Huygens in 1656, and this was one of the most accurate timekeeping technology all the
way until the 1930s.

Notice that the angle θ “ s{L also oscillates harmonically,

θptq “ θ0 cospωt ´ ϕq, (12.62)

where the pendulum was let go from rest at θp0q “ θ0 at t “ 0.
Similarly, the tension also has a harmonic oscillation below the minimum tension T0 “

mg at θ “ 0. By using the small angle approximation for Eq. (12.53),

T ptq “ mg

ˆ

1 ´
θ20
2
cos2pωt ´ ϕq

˙

. (12.63)

12.3.1 Extra: Exact solution

The exact solution of the original nonlinear pendulum equation (12.55) falls outside the
scope of this course. It is worth noting however, that it is not isochronous, meaning the
frequency does depend on the amplitude θ0: As a pendulum clock winds down due to loss
of energy, the frequency decreases ever so slightly. However, it turns out that the harmonic
solutions using the small angle approximation hold surprisingly well. Figure 12.10a shows
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(a) Ratio of real period T pθ0q and approx-
imate, constant period T0 “

a

L{g. At
θ0 “ π{2 rad “ 45˝ the difference is 18%.
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(b) Comparison of exact (solid line) and a cosine with the
same period (dashed line). At large angles, the solution be-
comes more “square” than cosine, and has a longer period.

Figure 12.10: The exact solution of pendulum with period T pθ0q depends on the am-
plitude θ0, while the solution of the small-angle approximation has a constant period
T0 “

a

L{g.

that even for an angle θ0 ă π{6rad “ 30˝, the difference between the real period T “ T pθ0q

and the period T0 “
a

L{g according to the small-angle approximation is less than 1.8%.
At the most extreme angle amplitude of θ0 “ π rad “ 180˝, the difference is almost four-
fold! But of course, small differences add up over time. So the smaller the initial amplitude
of a pendulum clock, the smaller this effect, and thus the more accurate the time.

Besides the period, the shape of the exact solution still looks quite like a cosine, even
for an angle amplitude up to θ0 “ 2.4 rad « 138˝ as shown in Fig. 12.10b. For larger
amplitudes, besides much longer periods, the curve becomes more “square”.

12.3.2 Physical pendulum

What about the case of a body of arbitrary shape? Say a body is fixed in some point and
allowed to swing like a pendulum, Fig. 12.9c. There is a torque on the center-of-mass due
to its weight F “ mg sin θ:

Iα “ Lpmg sin θq. (12.64)

So using the small-angle approximation, the equation of motion becomes

d2θ

dt
`

Lmg

I
θ “ 0. (12.65)

This is once again a simple harmonic oscillator with an angular frequency

Angular frequency of a pendulum.

ω “

c

Lmg

I
. (12.66)

In the trivial example of a single point mass m at the end of the pendulum, the moment
of inertia is I “ L2m, and we retrieve Eq. (12.60).

12.4 Damped harmonic oscillators

The previous sections discussed some ideal simple harmonic oscillators that have a constant
energy, but in reality there frictional forces that cause the oscillation to “die out”. The
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simplest example is again a mass-spring system, but where this time there is a drag force
Fd that is opposite to the velocity. It is typically of the form

Fd “ ´bv, (12.67)

where it is opposite and proportional to the velocity, and there is some drag constant b
with units Ns{m “ kg{s. Newton’s second law is opposite to the velocity. It is typically
of the form

ma “ ´bv ´ kx, (12.68)

so the new equation of motion is slightly modified to

Equation of damped harmonic motion.

d2x

dt
`

b

m

dx

dt
`

k

m
x “ 0. (12.69)

Or in dot notation,

:x `
b

m
9x `

k

m
x “ 0. (12.70)

If b “ 0, this reduces to a simple harmonic oscillation Eq. (12.21).
So what is the solution of this equation? Qualitatively, we expect some solution that

oscillates, but with an amplitude that is damped over time. It should still oscillates with
some frequency ω similar to the undamped frequency ω0 “

a

k{m called the natural
angular frequency or resonant frequency,

ω „ ω0 “

c

k

m
. (12.71)

12.4.1 Energy loss

Because the amplitude decreases, the energy must decrease with time. The loss of energy
is due to the drag force,

dE

dt
“ Fd ¨ v “ ´bv2 ă 0. (12.72)

We haven’t yet shown how vptq depends with time, but we can instead look at the average
amount of energy lost in one cycle (one period T ). In a given cycle, the average kinetic
energy is given by some average speed,

K “

B

mv2

2

F

“
m

2

@

v2
D

. (12.73)

Due to conservation of energy, the total energy E is the sum of the average potential energy
U and average kinetic energy K.

E “ U ` K (12.74)

Because the potential and kinetic energies oscillate out of phase of each other, we can safely
assume that their averages are about the equally same,

E “
1

2
m

@

v2
D

`
1

2
m

@

v2
D

“ m
@

v2
D

. (12.75)
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So approximating v2 «
@

v2
D

, we write Eq. (12.72) as

dE

dt
« ´b

@

v2
D

“ ´b
E

m
. (12.76)

This is a differential equation, where the derivative of the solution Eptq is again itself, but
with an extra coefficient ´b{m. This is like an exponential! If we integrate

ż

dE

E
“

ż

´
b

m
dt, (12.77)

we find that the solution is indeed an exponential

Energy of a damped harmonic oscillation.

Eptq “ E0e
´ b

m
t, (12.78)

where E0 is some integration constant given by the initial condition Ep0q “ E0. Because
the exponential’s argument is negative, there is an exponential decay with time constant
τ “ m{b. This is the time τ needed to decrease the energy by a factor of 1{e. If the
damping is small enough,

∆E

E
“ ´

b

m
T, (12.79)

where ∆E is the amount of energy lost in one period T . And ∆E{E is the fractional
energy lost per period.

12.4.2 Quality factor

Damping is often quantified by a dimensionless quantity Q called the quality factor or Q
factor

Quality factor.
Q “

2πE

|∆E| , (12.80)

such that the fractional energy lost is

|∆E|
E

“
2π

Q
. (12.81)

Comparing this to Eq. (12.79) for a damping force Fd “ ´bv,

Quality factor for damping drag force.

Q “
2πm

bT
“

2πτ

T
. (12.82)
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(a) Underdamped oscillation with ζ ă 1 and envelope
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(b) Critically damped ζ “ 1, overdamped ζ ą 1.

Figure 12.11: Damped oscillation with damping ratio ζ “ b{bc.

12.4.3 Underdamping

Remember from Eq. (12.42), that the energy for a simple harmonic oscillator is proportional
to the amplitude squared. So at t “ 0, Ep0q “ E09A2

0, while at some later time t,
Eptq9Aptq2, where Ap0q “ A0. Therefore,

E

E0
“

A2

A2
0

“ e´ b
m
t, (12.83)

or
Aptq “ A0e

´ b
2m

t. (12.84)

This tells us that the amplitude of the harmonic oscillation is damped by an exponential
decay, namely

Underdamped harmonic oscillation.

xptq “ A0e
´ b

2m
t cospωt ´ ϕq. (12.85)

The exponential term with time constant τ “ 2m{b is called an envelope, as it modulates
the amplitude of the oscillation, as shown in Fig. 12.11a.

The above derivation might seem a bit hand-wavy. Let’s use Eq. (12.85) as an ansatz,
and show that it indeed solves the equation of motion (12.69):

0 “A0e
´ b

2m
t

ˆ

b2

4m2
cospωt ´ ϕq `

b

m
ω sinpωt ´ ϕq ´ ω2 cospωt ´ ϕq

˙

`
b

m
A0e

´ b
2m

t

ˆ

´
b

2m
cospωt ´ ϕq ´ ω sinpωt ´ ϕq

˙

`
k

m

´

A0e
´ b

2m
t cospωt ´ ϕq

¯

. (12.86)

Simplyfing a bit,

0 “

ˆ

k

m
´

b2

4m2
´ ω2

˙

cospωt ´ ϕq. (12.87)

And in fact, Eq. (12.85) is a valid solution if the sum between these parentheses vanishes.
This condition provides us the formula for the angular frequency:
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Angular frequency of an underdamped harmonic oscillation.

ω “

c

k

m
´

b2

4m2
“

c

ω2
0 ´

1

τ2
, (12.88)

where τ “ 2m{b the time constant τ for the oscillation. Clearly, if the damping is small,
b Ñ 0, then ω Ñ ω0. Conversely, the larger b, the larger ω ą ω0. So in addition to an
exponential decay, the oscillation is slowed down by a drag force opposing its motion, as
expected.

Like before, another linearly independent solution is found by replacing cosine with
sine in Eq. (12.85).

12.4.4 Critical damping and overdamping

But what if the damping is very large? At some point, Eq. (12.88) is not well defined
anymore, namely when the argument of the square root becomes negative. The critical
point where this is about to happen is given by the critical damping coefficient

Critical damping coefficient.

bc “ 2mω0 “ 2
?
km, (12.89)

for which there is no oscillation anymore, ω “ 0. The ratio ζ “ b{bc, given by the Greek
letter “zeta”, is the called the damping ratio. There are four different cases, or regimes,
where you will have different solutions to Eq. (12.69):

• b “ 0 or ζ “ 0: no damping;

• 0 ă b ă bc or 0 ă ζ ă 1: underdamping ;

• b “ bc or ζ “ 1: critical damping ;

• b ą bc or ζ ą 1: overdamping.

So far we have mostly assumed underdamping, where the damping is not too large such
that there is still an oscillation given by Eq. (12.85) and Eq. (12.88) before the energy com-
pletely decays away. The regimes with larger damping, critical damping, and overdamping
have different solutions xptq that will not be discussed here. The main thing we need to
understand is that starting from critical damping, there is no oscillation anymore at all,
and the system will just return to its rest position x “ 0 at t Ñ 8. These different cases
are compared in the plot 12.11b. Notice that for overdamping it takes longer to return
to x “ 0, because the drag force really opposes any motion. In the extreme case where
b Ñ 8, or equivalently ζ Ñ 8, the system will stay at its initial position xp0q.

We will revisit damped oscillations in Section 14.3, where we will use complex numbers
to solve differential equations.

12.4.5 Energy (revisited)

For an underdamped oscillation Eq. (12.85), it is clear that the energy is in fact given by
Eq. (12.78):

Eptq “
kx2

2
`

mv2

2
, (12.90)
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Figure 12.12: The potential (orange) and kinetic energy of an underdamped oscillation
(red) have an envelope E0e

´bt{m, while the total energy (green) oscillates around the
average Eptq “ E0e

´bt{m. Compare to Fig. 12.6.

which is not constant anymore as in Eq. (12.42) and in Fig. 12.12. The initial energy E0

is given by the maximum extension x “ A0

E0 “
kA2

0

2
. (12.91)

The total energy decays exponentially, but not quite. Since loss of energy depends on the
velocity which oscillates,

vptq “ ´A0e
´ b

2m
t

ˆ

b

2m
sinpωt ´ ϕq ` ω cospωt ´ ϕq

˙

, (12.92)

the loss of energy also oscillates: When the velocity is at its maximum in the oscillation,
the loss of energy is highest, and when v « 0, the energy loss is small to zero, and the
energy roughly constant. However, the average energy in each period will still follow an
exponential decay, as shown by the green line in Fig. 12.12. So Eq. (12.78) does not hold
exactly, but the average does.

12.5 Driven oscillation & resonance

In a damped oscillation, energy is lost. But we can “pump” energy into the system to
counteract this energy loss. We consider a driving force of in the form of

F ptq “ F0 cospωtq (12.93)

that oscillates harmonically with some fixed ω, that can be different than the natural
angular frequency ω0. The relation between ω0 and ω is measured by the Q factor

Q factor for driven oscillation.

Q “
ω0

|ω0 ´ ω| “
ω0

|∆ω| . (12.94)

The smaller ∆ω, the larger Q, and the more power P “ dE{dt ą 0 is give to the oscillator.
We continue with our example of a simple mass-spring system with a drag force Fd “

´bv, and add the applied force F :

ma “ ´bv ´ kx ` F0 cospωtq. (12.95)

The equation of motion is



12.5. DRIVEN OSCILLATION & RESONANCE 145

Equation of driven harmonic motion.

d2x

dt
`

b

m

dx

dt
`

k

m
x ´ F0 cospωtq “ 0, (12.96)

or,

:x `
b

m
9x `

k

m
x ´ F0 cospωtq “ 0. (12.97)

This is called a driven or forced oscillation. There are special methods that can be used to
solve this differential equation, but this falls outside the scope of this course. However, the
result is important for understanding resonant behavior. The solution is a simple harmonic
oscillator for the form

Driven harmonic oscillation.

xptq “ A cospωt ´ ϕq (12.98)

with constant amplitude

A “
F0

a

m2pω2
0 ´ ω2q2 ` b2ω2

, (12.99)

and phase

tanϕ “
bω

mpω2
0 ´ ω2q

, (12.100)

When an external force starts driving an oscillation, it typically takes some short time
before the system stabilizes. But once it is stabilized, its harmonic oscillation will be
described by Eq. (12.98). The amplitude A as a function of the driving ω has a special
feature shown in Fig. 12.13. It peaks at the natural frequency ω0. This is called a resonance.
We can learn several things from this:

• The larger the driving F0, the larger the amplitude A, F09A0.

• The amplitude A tends to be larger around ω „ ω0.

• For a fixed F0 and m, the amplitude A becomes the same for all values of b, when
ω Ñ 0.

• The smaller b, the larger the amplitude A, and the narrower and larger the resonance
around ω “ ω0. In particular, if b Ñ 0, the drag force disappears and the resonance
becomes arbitrary large. This can be understood from the fact that the driving force
will keep pumping energy into the system with no limit.

12.5.1 Real-life examples

There are many other examples of resonant phenomena in physics, all the way from orbital
mechanics to electronics, to atomic physics. One typical real-life example of a resonance
is when someone is pushing you on a swing. A swing is like a pendulum, and when your
playmate pushes you at the right time, they can make you swing higher and higher by (i.e.
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Figure 12.13: Resonance with Q factor.

a higher amplitude). If you have ever pushed someone on the swing before, you know the
right moment is at the highest point, just when the swing is about to come down again.
By pushing at this exact moment each time, you add energy to the system every period
T “ 2π{ω0 and in phase, building up its amplitude.

Most objects, even rigid ones, have some natural frequencies ω0 of f0 “ ω0{2π. Finding
the natural frequency of an object can make it vibrate harder than it would otherwise with
some other random frequency. Sometimes this reaches the point where the object breaks.
Objects can have multiple natural frequencies, which depend on their shape, mass and
structure, but also in which direction the driving force is applied.

For example, you can shatter a wine glass if you play an acoustic sound at the natural
frequency of the glass and loud enough. The natural frequencies vary between glasses but
they typically have one or two natural frequencies in the 400–2500Hz range. This is why a
wine glass “sings” when you rub around its rim with a moist finger, which causes the glass
to vibrate, with just the right frequency. You can lower the natural frequency by pouring
water in the glass. If you have multiple identical wine glasses, but filled with different
amounts of water, you now have different notes to play a song, like some musicians do.

The pillars of offshore oil platforms standing in sea water are constantly hit by sea
waves. Engineers have to take into account the natural frequency of the whole oil platform
and come up with solutions to prevent the waves from causing the platform to shake
uncontrollably when the waves hit its resonance.

The dramatic collapse of the Tacoma Narrows Bridge in 1940 due to strong winds
is an oft-cited example of resonance, but this can be better explained by complicated
aerodynamical effects.

12.6 Extra: Phase diagrams

One useful tool to analyze the behavior of systems are so-called phase diagrams. These
are planes with as axes some variables of the system, for example y vs. x, or v vs. x. Any
point in this plane is a possible state of the system. As time passes, the state of the system
can change, an so the point will move. The evolution of a system will therefore form a
line, or trajectory, in the phase plane.

This is why it is often used in context of differential equations. A differential equation
describes the change of a system, and each solutions will describe unique trajectories. One
can conveniently display and summarize all the possible solutions of a differential equation
in the phase plane. This is called a phase portrait. An initial condition is some point, or
initial state, where the line “starts”. Any other point on the line can be taken as an initial
condition with the same solution, but with some time offset. Different trajectories can
never cross. What is more, trajectories have some direction, going from “early” to “later”
time, past to future. Differential equation are therefore sometimes visualized as vectors in
the phase plane.
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Figure 12.14: Phase portraits for px, vq of a simple and damped oscillator. The trajec-
tories (solid lines) depends on the system parameters and initial condition (red points).

Take for example the simple harmonic oscillator of a spring. Figure 12.14a illustrates
that each solution is an ellipse where the system moves in the counterclockwise direction.
This is easy to understand when you realize that if x9 cospωtq, then v9 sinpωtq. The radii
of the ellipse depends on the amplitude A and angular frequency ω. The amplitude A in
turn, is determined by the initial conditions px0, v0q, while ω “

a

k{m is a parameter of
the system. For a system with a given ω, the trajectories will look different, as shown in
Fig. 12.14b. These are examples of closed trajectories.

Because the kinetic energy K9v2, and the potential energy U9x2, we can also identify
the vertical direction in the xv plane as the kinetic energy, and the horizontal as the
potential one. The larger the radius, the larger the total energy.

Next, consider the underdamped oscillator. As time passes, the amplitude of both x
and v will exponentially decrease. This looks like a spiral, as shown in Fig. 12.14c.

Lastly, the pendulum looks similar to a simple harmonic oscillator with closed trajec-
tories for angle amplitudes θ0 below π, or, 180˝. However, if the pendulum has enough
velocity, or equivalently enough kinetic energy, it can spin all the way around. As long as
it does not lose energy, it will keep spinning without changing direction. These form open
trajectories in the phase plane, as illustrated in Fig. 12.15. The border between these two
cases where the angle amplitude is θ0 “ π rad “ 180˝, is called the separatrix. This is
the case when the velocity of the mass m is just about enough to reach the highest point

θ [rad]

θ̇ [rad/s]

−π π

2ω0

−2ω0

closed

separatrix

open

π−π

Figure 12.15: The phase portrait of a pendulum with closed (blue) and open trajectories
(purple). The edge case where the amplitude is θ0 “ π rad and the maximal 9θ is 2ω0,
forms a separatrix (red). Note that because the angle θ is cyclic; the horizontal axis
“wraps“ around itself, e.g. any angle θ is the same point in space as θ ˘ 2π rad, and
therefore corresponds to the same state.
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h “ 2L. The maximal kinetic energy is therefore

mv2max
2

“ 2mgL. (12.101)

Because v “ L dθ{dt “ L 9θ,

9θmax “ 2

c

g

L
“ 2ω0. (12.102)

Anything smaller, and the pendulum will swing back and forth, anything larger, and the
pendulum will just rotate in one direction. Its maximal velocity will be at the bottom,
and it minimum at the top. Clockwise or counterclockwise depends on the initial v0.

12.7 Application of simple harmonic oscillator

The phenomenon of a simple harmonic oscillator will returns frequently in physics. The
reason why it is so ubiquitous can be understood with Taylor approximations. In most of
these cases, a mass oscillates around some point of stable equilibrium. The simple harmonic
oscillator is often a good first-order approximation because the total force F depends on a
displacement x, and can be expanded by Taylor expansion,

F pxq « F 1p0qx ` F 2p0q
x2

2
` ... (12.103)

where F 1 is the first derivative of the force, which always pulls the mass back to x “ 0, such
that F 1p0q ă 0. F p0q must be zero, otherwise x “ 0 would not correspond to an equilibrium.
If the second derivative F 2p0q and higher derivatives are relatively small around x “ 0,
then this form approximates Hooke’s law F pxq9x, leading to a harmonic oscillator as in
Eq. (12.19). One such example is a pendulum with F pθq “ ´mg sin θ « ´mgθ for small θ.

An alternative way to formulate this argument is in terms of potential energy for some
conservative force. A stable equilibrium means that there is some local minimum in the
potential energy around x “ 0 (see Section 9.10). In that case, the potential forms a well
that can be approximated with a parabola in x “ 0;

Upxq « Up0q ` U2p0q
x2

2
` U3p0q

x3

3!
` ... (12.104)

Ignoring the arbitrary constant Up0q, assuming U2p0q ą 0 for a stable point, and that
higher order derivatives are relatively small in x “ 0, we recognize the potential energy for
a simple harmonic oscillator, Upxq9x2. One example where the minimum of a potential is
well approximated by a parabola, is the vibrations of diatomic molecules. It is modeled by
the Morse potential, shown in Fig. 12.16c, which is a function of the atom separation r. This
potential is indeed behaves like a simple harmonic oscillator at first-order approximation.

F

θ−π π

−mgL sin θ

−mgLθ

(a) Force of a pendulum is F pθq “

´mgL sin θ « ´mgLθ.

U

θ2π−2π

mgL
2 θ2 mgL(1− cos θ)

(b) Potential energy of a pendulum is
Upθq “ mgLp1 ´ cos θq « mgLθ2{2.

U

rr0

D
(
1− e−a(r−r0)

)2

Da2(r − r0)
2

(c) Molecular vibrations can be ap-
proximated by harmonic oscillator.

Figure 12.16: Many systems with a stable equilibrium can be approximated by a simple
harmonic oscillator.



Chapter 13

Waves

Waves, very broadly, are disturbances that travel through a medium. It is a phenomenon
that appears in many different places in physics. The medium can be one-dimensional, like
a string or a metal bar, also two-dimensional membrane, like the skin of a drum, or even
three-dimensional, like a bulk of fluid. The disturbance can be transverse (perpendicular
to the direction of propagation), or longitudinal (in the direction of propagation). In
particular, will have a closer look at traveling and standing waves in strings and air (sound),
as well as interference, the Doppler effect, and how waves carry energy.

Next semester, PHY121 will cover Huygens’s principle, refraction, diffraction, interfer-
ence patterns in more detail in the context of optics.

13.1 Transverse waves

A transverse wave is wave that causes a disturbance in the perpendicular direction of the
propagation. Let’s take a simple wave that travels in one direction, like a disturbance on
a string after yanking it. We break down the motion in two directions: x direction for
propagation, and y direction for the disturbance. At t “ 0, the disturbance has a shape
within the medium that is given by some function, say ypx, tq “ fpxq as in Fig. 13.1a. f
can be any function, although we will focus mostly on sine waves.

The wave travels in the x direction with some constant velocity v, but the wave’s shape
stays the same. In the reference frame S1 that moves at the same velocity as the wave, we
see that at any time t,

y1px, tq “ fpxq. (13.1)

Going back to the lab frame S, we use the Galilean transformation Eq. (8.53) to find our

x

y
y(x, 0) = f(x)

a

v

(a) Shape of wave at time t “ 0 can be some func-
tion f in space variable x.

x

y
f(x− v∆t)

a a+ v∆t

v

(b) The shape moved by a distance v∆t at time
t “ ∆t.

Figure 13.1: A transverse wave is a traveling wave that distorts a medium in the direction
perpendicular to the direction of propagation.
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coordinates
"

y “ y1

x “ x1 ` vt.

(13.2)
(13.3)

Therefore, in the S frame, the wave can be described as

Traveling wave.
ypx, tq “ fpx ´ vtq. (13.4)

If v ą 0, the expression above describes a wave moving in the positive x direction, i.e. to
the right in Fig. 13.1b. For a wave moving in the negative x direction, we have instead

ypx, tq “ fpx ` vtq. (13.5)

13.1.1 Sinusoidal waves

If we keep moving a string up and down, we can generate a periodic wave which has some
wavelength λ and period T . The wavelength is the minimum distance λ at any given time
between two points where the wave repeats itself. Similarly, the period is the minimum
time interval T at a given point in space, when the wave repeats.

One example of such a periodic wave, is a sine wave, which is a simple harmonic
oscillator. A sine wave can be described by

ypx, tq “ A sinpkx ´ ωtq (13.6)

with amplitude A, angular velocity ω and wavenumber k. It is illustrated in Fig. 13.2.
More generally, a phase ϕ can appear.

Sine wave.
ypx, tq “ A sinpkx ´ ωt ´ ϕq (13.7)

But what exactly is k? Without loss of generality, take time t “ 0, where ypx, 0q “

A sinpkxq. Take any two points that are separated by one wavelength λ, say x1 and
x2 “ x1 ` λ, such that the corresponding y values are the same, ypx1, 0q “ ypx2, 0q, as in
Fig. 13.2a. Therefore,

A sinpkx1q “ A sin
`

kpx1 ` λq
˘

, (13.8)

and so we must have
kpx1 ` λq “ kx1 ` 2πn (13.9)

for integer n “ 0,˘1,˘2, .... Since the wavelength λ is the minimum distance between two
different points, n “ 1, we find that k must be:

x

y λ

λ

A

−A

y1

x1 x2

v

(a) Whole wave in space at time t “ 0, given by
ypx, 0q “ A sinpkxq.

t

y T

T

A

−A
y1

t1 t2

(b) Local disturbance at position x “ 0, given by
yp0, tq “ ´A sinpωtq.

Figure 13.2: A space and time slice of a travelling sine wave ypx, tq “ A sinpkx ´ ωtq.
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Wavenumber.
k “

2π

λ
. (13.10)

Therefore, k is a measure of how many wavelengths λ “fit” in 2π, the period of a sine wave.
Clearly, k has dimension of inverse length with units rad{m.

In a similar way, we find that for a space slice yp0, tq “ ´A sinpωtq, two moments in
time t1 and t2 “ t1 ` T must have

ωpt1 ` T q “ ωt1 ` 2π, (13.11)

such that we find

ω “
2π

T
, (13.12)

as previously in Sections 5.3 and 12.2. Note the equivalence between k for space and ω
for time. A comparison of all these different parameters and their relations is given by
Table 13.1. A sine wave Eq. (13.7) can be expressed as

ypx, tq “ A sin

„

2π

ˆ

x

λ
´

t

T

˙ȷ

. (13.13)

One can immediately read off that if x2 “ x1 ` λ at a fixed time t, ypx1, tq “ ypx2, tq.
Similarly, when t2 “ t1 ` T , ypx, t1q “ ypx, t2q for any x.

Furthermore, any two space points x1 and x2 “ x1 ` nλ that differ only in an integer
multiple n “ 0,˘1,˘2, ... of the wavelength λ at a fixed time, are said to be in phase.
Similarly, in a fixed space point, the wave has the same phase at any two times t1 and
t2 “ t1 ` nT that only differ by an integer multiple n of the period T .

Notice that we can also rewrite Eq. (13.7) as a traveling wave Eq. (13.4),

ypx, tq “ A sin
`

kpx ´ vtq
˘

. (13.14)

So what is the velocity v? Comparing the this form to Eq. (13.7), it is simply

Velocity of a sine wave.
v “

ω

k
. (13.15)

Comparing to Eq. (13.13), we have more generally for a traveling, periodic wave,

Velocity of a traveling, periodic wave.

v “
λ

T
“ λf. (13.16)
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Ft Ft

FrFr

F F F F

v

(a) Forces on a string. All across the string, there
is a constant tension F.

R R

∆s
Ft

FrF

Ft

Fr F
θ θ

θ θ

(b) Small segment of length ∆s experi-
ences a tension F on either side.

Figure 13.3: The tension in a string is increased due to a disturbance.

13.1.2 Speed of a wave on a string

The propagation speed of a wave depends on the medium. It does not depend on how fast
the disturbance is caused. Consider a wave on a string with a length L and of uniform
mass M as in Eq. (13.3a). The mass density per unit length is therefore

µ “
M

L
. (13.17)

The string has some tension F along its length. Let’s focus on a small segment at the
peak of the disturbance, and assume it can be approximated by a short segment of a circle
with some radius R and that subtends an angle 2θ. Zooming into this small segment, the
tension on either side can be decomposed into a tangential and radial part (Fig. 13.3b). The
tangential components tend to cancel out over the disturbance, while the radial components
tend to add up. The segment has an arc length ∆s “ 2Rθ. This means it has a mass of

m “ 2µRθ. (13.18)

The sum of the radial forces is given by
ÿ

Fr “ 2F sin θ. (13.19)

If θ is very small, we can use the small-angle approximation (12.56), such that
ÿ

Fr « 2Fθ. (13.20)

This force points radially toward the center of the circle. It is convenient to consider a
reference frame S1 that moves along with the disturbance at a velocity v. In this frame,
the wave shape is stationary, but the string segment on the top moves with a tangential
velocity v to the left, which is caused by the centripetal force

2Fθ “ m
v2

R
“ p2µRθq

v2

R
, (13.21)

where we used the centripetal acceleration Eq. (5.34). We see that R and θ, the variables
related to this particular segment, cancel out. We find an interesting relation

Table 13.1: Summary of parameters of a traveling sine wave. Their units are given in
terms of seconds x “ s, meters x “ m, and/or radians.

Units Spatial Temporal
x Wavelength λ Period T

1

x
– Frequency f “

1

T
rad

x
Wavenumber k “

2π

λ
Angular frequency ω “

2π

T
m

s
Velocity v “

λ

T
“ λf “

ω

k
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Speed of wave on string.

v “

d

F

µ
. (13.22)

This means that the wave velocity only depends on the mass density µ and tension F of
the string. In fact, the formula for the velocity of mechanical waves in other media, very
often has form

v “

d

elastic property
inertial property

, (13.23)

where the “plastic property” can refer to the tension, stiffness or compressibility of the
medium, and “inertial property” refers to for example the mass density.

13.2 Wave equation

These wave functions can generally be obtained by solving a differential equation with the
appropriate boundary equations. Such a differential equation is called the wave equation,
and its solutions will be of the form ypx, tq “ fpx ´ vtq and ypx, tq “ fpx ` vtq.

To find the wave equation, consider a small segment of a vibrating string. Figure 13.4
shows the segment is pulled by two different tensions F1 and F2 in opposite directions, but
not exactly parallel. They make different angles with the horizontal. The small segment
has dimension ∆x and ∆y, so the slope s of the small string tension is given by

s “
∆y

∆x
“ tan θ, (13.24)

where θ is the angle of the tangent on the string segment. Taking the infinitesimal limit,

s “
By

Bx
“ tan θ, (13.25)

where we take a partial differential w.r.t. to x, as there are several variables like time t in
play, that we want to keep constant.

Meanwhile, if we assume the wave is transverse, we only care about the vertical com-
ponents of the tension, and assume the horizontal ones cancel. The total vertical force
is

ÿ

Fy “ F sin θ1 ´ F sin θ2, (13.26)

where we assume the magnitude of the tensions, F , is the same along the whole string. We
can now use our small-angle approximation (12.56) trick again to say that sin θ „ θ „ tan θ.
Substituting,

ÿ

Fy “ F tan θ1 ´ F tan θ2 “ F ps1 ´ s2q “ F∆s. (13.27)

Let’s apply Newton’s second law for the y direction,

F∆s “ may “ pµ∆xq
B2y

Bt
, (13.28)

x

y

F1
F2 dm

F1

F2

dx

dy

θ1

θ2θ2

Figure 13.4: The tension in a small segment of a string.
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with linear mass density µ. Taking the ratio

∆s

∆x
“

µ

F

B2y

Bt2
, (13.29)

where we recognize the velocity v2 “ F {µ from the last section. Taking the infinitesimal
limit again,

lim
∆xÑ0

∆s

∆x
“

1

v2
B2y

Bt2
(13.30)

Comparing this to Eq. (13.25), which leads to

Bs

Bx
“

B2y

Bx2
, (13.31)

we find the desired wave equation in 1D.

Wave equation (1D).
B2y

Bx2
“

1

v2
B2y

Bt2
. (13.32)

13.3 Superposition & interference

If we have two waves traveling along the same path, we can often simply add them linearly.
This is called a superposition. For example, two waves traveling in the opposite direction
can be added as

ypx, tq “ f1px ´ v1tq ` f2px ` v2tq. (13.33)

If f1pxq “ ´f2pxq for any x, then at the time the waves meet, the will completely cancel,
as in Fig. 13.5b.

f(x− vt) f(x + vt)

v vt = 0

vvt = ∆t

vvt = 2∆t

(a) Constructive interference happens when two op-
positely waves meet on a string.

f(x− vt)

−f(x + vt)

v

v

t = 0

v

v

t = ∆t

v

v

t = 2∆t

(b) Destructive interference. If the waves are the
same but for a sign, they cancel completely.

Figure 13.5: Superposition between two oppositely travelling waves in the same medium
is a simple linear sum.
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13.3.1 Phase difference

What happens when two sine waves have the same amplitude, wave number and angular
frequency, but a constant difference in phase? Consider

y1px, tq “ A sinpkx ´ ωtq

y2px, tq “ A sinpkx ´ ωt ´ ϕq.

(13.34)
(13.35)

Adding them together, there are several interesting cases. If ϕ “ 2πn for some integer
n, the superposition y1 ` y2 will have constructive interference, doubling their individual
sizes,

y1px, tq ` y2px, tq “ 2A sinpkx ´ ωtq. (13.36)

If ϕ “ nπ for an uneven integer n “ ˘1,˘3,˘5, ..., they cancel in all time and space point,

y1px, tq ` y2px, tq “ 0, (13.37)

which is destructive interference.
In general, for some phase ϕ,

y1px, tq ` y2px, tq “ A sinpkx ´ ωtq ` A sinpkx ´ ωt ´ ϕq, (13.38)

we can use the sum rule

sin θ1 ` sin θ2 “ 2 cos

ˆ

θ1 ´ θ2
2

˙

sin

ˆ

θ1 ` θ2
2

˙

. (13.39)

So the interference of two waves,

y1px, tq ` y2px, tq “ 2A cos

ˆ

ϕ

2

˙

sin

ˆ

kx ´ ωt ´
ϕ

2

˙

. (13.40)

Two separate sources that create waves with the same shape, wavelength, period, but
only differ in a constant phase, are said to be coherent.

13.3.2 Interference patterns in space

Say you have two coherent sources, S1 and S2, like in Fig. 13.7, that spherically emit waves,
i.e. in all radial directions equally. Assuming they are coherent sine waves,

y1pr, yq “ A sinpkr ´ ωtq

y2pr, yq “ A sinpkr ´ ωtq,

(13.41)
(13.42)

with the radial distance r. However, the sources are separated in space, and therefore in
each point, there will be a phase difference, which depends on the path difference, namely

∆ϕ “ pkr2 ´ ωtq ´ pkr1 ´ ωtq “ k∆r, (13.43)

where ∆r “ r2 ´ r1. So

∆ϕ “ 2π
∆r

λ
. (13.44)

Some special points are where ∆ϕ “ 2πn or ∆r “ nλ for some integer n “ 0,˘1,˘2, ...,
such that the waves add constructively. Destructive interference happens when ∆r “ nλ{2
for odd integers n “ ˘1,˘3,˘5, ....

Next semester, PHY121 will cover interference patterns in more detail.
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(a) Large difference ω2 ´ ω1.
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(b) Small difference ω2 ´ ω1.

Figure 13.6: Beats: Interference pattern between two oscillations with a different fre-
quencies fi “ ω{2π.

∆m = 0

∆m = − 1
2

∆m = + 1
2

∆m = −1

∆m = +1

∆m = − 3
2

∆m = + 3
2

(a) Thick lines are maxima, thin lines are minima. The green lines
connect points with destructive and constructive interference.

r1

r2
S1

S2

(b) Path difference ∆r “ r2 ´ r1 will deter-
mine the type of interference in a point.

Figure 13.7: Two point sources create an interference pattern. There is destructive
interference if the path difference r2 ´ r1 “ ∆mλ where ∆m is half-integer, constructive if
∆m is an integer.
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(a) Fixed on a rigid support.

v v

(b) Loose end on a free support.
Figure 13.8: Reflection.
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v

v′

(a) From lighter string to heavier string.

v

v v′

(b) Loose end.

Figure 13.9: Partial transmission and reflections between strings of different mass densi-
ties.
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13.3.3 Frequency difference & beats

Previously, in Eq. (13.34), we assumed the amplitude and frequency were the same. What
happens when the frequencies are not quite the same ? Say the sine waves of two sources
meet in some point in space, causing the oscillation

y1ptq “ A sinpω1tq

y1ptq “ A sinpω2tq,

(13.45)
(13.46)

where ω1 ‰ ω2, and we ignore any phase difference for simplicity. Using again the sum
rule Eq. (13.39), we find

y1ptq ` y2ptq “ 2A cos

ˆ

ω1 ´ ω2

2
t

˙

sin

ˆ

ω1 ` ω2

2
t

˙

. (13.47)

The combination is represented as two oscillations going on at the same time, first a fast
oscillation with frequency pf1 ` f2q{2, and secondly a slower oscillation with frequency
|f1 ´ f2|{2, where fi “ ωi{2π. The slower frequency can be thought of as the modulation
of the amplitude, creating the dashed envelopes shown in Fig. 13.6. Notice that the smaller
the difference in frequency, the longer the modulation. Furthermore, if f1 „ f2, then the
larger frequency will almost be double the original ones „ 2f1.

In acoustics, this can happen with sound waves, and it is called a beat. Because the
amplitude varies up and down twice per cycle, fbeat “ |f1 ´ f2| is called the beat frequency.

13.4 Reflection & transmission

The classic picture of a wave is a shape wave traveling along a string. It is interesting to
look at what happens when the wave reaches the end of the string. There are several cases.

If the string is fixed on one rigid support, a wave reaching the end will be reflected,
but the direction of the disturbance will be “flipped” vertically as in Fig. 13.8a. If the
support is free, such that the string’s end can freely move up and down, the wave will still
be reflected, but not inverted.

Another case, is where the string is connects to another string with a different mass
density µ. In case the other string is heavier, only part of the wave will be transmitted at
a lower velocity, while part of the wave will be flipped and reflected on the first string with
a smaller amplitude to conserve energy. Conversely, a wave on a heavy string will transmit
most of the wave to a lighter one, and part will be reflected, without being flipped.

13.5 Longitudinal waves

So far we discussed mostly transverse waves, where the disturbance is in the y-axis direc-
tion, perpendicular to the direction of propagation (x axis). If the disturbance instead is
along the direction of propagation, we are dealing with a longitudinal wave. The classic
example is sound, where the air molecules will move back and forth. In this case, the
disturbance is given by a longitudinal displacement s along x of the air molecules. Other
forms of longitudinal waves can be expressed with density or pressure variations along the
propagation.
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(a) Time t “ 0.
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v

(b) Time t “ ∆t.

Figure 13.10: A traveling longitudinal
wave is when the distortion happens along
the direction of propagation, here shown
as a local displacement.

s
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v

∆P

x

v

v

Figure 13.11: Sound wave traveling in a tube of air,
shown as a local, average displacement s of air molecules
in the longitudinal (x) direction (blue), and a local pres-
sure variation ∆P (orange), 90˝ out of phase with s.

13.5.1 Sound waves

A hand clap in midair will create a disturbance in the air that travels in all directions.
This disturbance is what hits our ear drum and our brain interprets as sound (after it is
converted to electric stimuli). Looking more closely, air molecules will locally vibrate back
and forth, which can be expressed as an average displacement s along x. Because there will
be a compression in some places, where more air molecules bunch up, and a rarefaction
in others, where they are depleted, an equivalent way of describing this is as a change in
pressure, ∆P , as in Fig. 13.11. Although we mostly think of sound as traveling through
air, it can also travel through any gas, liquid or solid medium.

For a sinusoidal sound wave, the pressure wave ∆P is always 90˝ ahead of the displace-
ment wave s, as shown in Fig. 13.11. We can therefore write them as

spx, tq “ s0 sinpkx ´ ωtq

∆P px, tq “ ∆P 0 sinpkx ´ ωt ´ π{2q.

(13.48)
(13.49)

The relation between their respective amplitudes is given by

Soundwave amplitude relationship.

∆P 0 “ ρωvs0, (13.50)

with the mass density ρ.

13.5.2 Speed of sound in fluids

What is this velocity of sound in a given fluid? Consider a tube filled with a fluid of density
ρ. We move a piston at one end of the tube with cross sectional area A to suddenly increase
the pressure. However, the fluid will resist compression which is given by the bulk modulus

B “ ´∆P
∆V

V
, (13.51)
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u∆t

v∆t

F

A

Figure 13.12: A piston with area A quickly moves some fluid in a pipe with some force
F and velocity u, creating a pressure wave with the speed of sound v.

discussed in more detail in Section 16.3. First we quickly compress the piston in some short
time interval ∆t and some velocity u. It moves a distance ∆xpiston “ u∆t, and increases
the fluid’s pressure by

∆P “
F

A
, (13.52)

where F is the force exerted by the piston, and A is the tube’s area. This creates a pulse
of pressure, a sound wave, traveling with some velocity v through the tube. The pressure
wave moves a distance ∆x “ v∆t through the air in the same time interval ∆t. Over this
distance, a volume V “ A∆x of fluid with total mass

m “ ρAv∆t (13.53)

is moved. We want to know the velocity v of the wave in the fluid, we can derive with
conservation of momentum. The impulse (Section 8.2) created by the piston,

F∆t “ pA∆P q∆t, (13.54)

causes a change in momentum of the fluid,

A∆P∆t “ ∆pfluid. (13.55)

The change in momentum can also be expressed as mass times velocity

∆pfluid “ pρAv∆tqu. (13.56)

Comparing Eq. (13.55) and (13.56), ∆t and area A drops out,

∆P “ ρvu. (13.57)

From the definition of the bulk modulus Eq. (13.51),

´B
∆V

V
“ ρvu. (13.58)

Here, V “ Av∆t is the volume of the fluid, and ∆V “ Au∆t is the volume of fluid moved
by the piston, so

∆V

V
“

u

v
. (13.59)

Plugging this into Eq. (13.58), we see that u cancels out, which leads us to our result

Speed of sound in fluids.

v “

d

B

ρ
. (13.60)
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In words, the speed of sound in some fluid is determined by

v “

d

compressibility
mass density

. (13.61)

For air, B “ 142 kPa, ρ “ 1.2 kg{m3. So we can calculate how fast air travels in over some
distance ∆x. While the above calculation is a good first approximation, the speed of sound
also lightly depends on the temperature of the air. As the temperature increases, the air
molecules move faster, allowing a pressure wave to pass through more quickly.

13.5.3 Speed of sound in solids

In fluids, the speed of sound was given by the bulk modulus B, So if we want to study
sound traveling through a solid rod, we need to ask how compressible a solid is? Now,
the compressibility of our medium is expressed by Young’s modulus, and it turns out that
indeed

Speed of sound in solids.

vsolid “

d

Υ

ρ
. (13.62)

As an example, brass has a density of ρ “ 8600 kg{m3 and Young’s modulus Υ “ 90GN{m2,
so the speed of sound is about ten times faster in brass than in air:

vbrass “ 3234m{s. (13.63)

13.6 Standing waves

The previous sections covered traveling waves. Another very interesting case with many
applications are a standing waves. They are important to understand how one can produce
different notes on music instruments, for example. In some cases, the superposition of to
oppositely traveling waves will give rise to a standing wave.

Let’s see how. Consider two sine waves meeting on a string, one moving to the right
and one moving to the left,

yRpx, tq “ A sinpkx ´ ωtq

yLpx, tq “ A sinpkx ` ωtq,

(13.64)
(13.65)

respectively. Their superposition can rewritten with sum rule Eq. (13.39) as

yRpx, tq ` yLpx, tq “ 2A cospωtq sinpkxq. (13.66)

Figure 13.13 shows that the superposition does not seem to be traveling anymore in any
direction. Instead, there is a standing wave with shape sinpkxq, whose amplitude 2A cospωtq
oscillates in time with frequency f “ ω{2π.

There are space points where there never is a disturbance. They are given by

2A cospωtq sinpkxq “ 0, (13.67)
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Figure 13.13: Two oppositely traveling sine waves with the same wave length and velocity
form a standing wave with amplitude 2A and period T “ 2π{ω.
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meaning that they must satisfy the condition

x “
nπ

k
“

nλ

2
, (13.68)

for integers n “ 0,˘1,˘2, ... These are so-called nodes. Similarly, there are anti-nodes,
where the wave reaches its maximum variation at given times. They are given by

sinpkxq “ 1, (13.69)

or,

x “
nπ

2k
“

nλ

4
, (13.70)

for odd integers n “ ˘1,˘3,˘5, ...

13.6.1 On a string

As discussed in Section 13.4, when waves are confined by a boundary, they will reflect.
If the reflected waves “hit” other incoming waves, they can combine into standing waves.
Let’s study this in more detail for sine waves on a string of length L.

Fixed ends

First consider that both ends of the strings are fixed by rigid supports, as in Fig. 13.14a.
Now, notice that the standing wave must have nodes ypx, tq “ 0 at x “ 0 and x “ L,
where string cannot move. A standing wave must be of the form

ypx, tq “ 2A cospωntq sinpknxq (13.71)

with boundary condition
sinpknLq “ 0. (13.72)

This happens when

Standing waves on a string fixed on both ends.

λn “
2L

n
, kn “

nπ

L
(13.73)

for non-zero integers n “ 1, 2, 3, ...

The first case n “ 1 corresponds to the standing wave which has only two nodes, on either
end, and one anti-node. For n “ 2, there are two anti-nodes, and a third node shows up in
the middle. So for any n, the respective standing waves has n` 1 nodes and n anti-nodes.

One fixed, one loose end

The same calculation can be done for a boundary condition where one end is left loose, as
in Fig. 13.15. In this case, the open end is an anti-node, because the standing wave reaches
its maximum here. This provides the boundary condition

sinpkLq “ 1. (13.74)

We find that
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Standing waves on a string fixed on only one ends.

λn “
4L

n
, kn “

nπ

2L
(13.75)

for odd integers n “ 1, 3, 5, ....

For n, the corresponding standing waves has pn ` 1q{2 nodes and anti-nodes.

13.6.2 Resonant frequencies

Remember that for a wave, the wavelength λ and frequency f are linked by the wave
velocity v “ λf , which in turn is determined by the properties of the medium, e.g. v “
a

F {µ for a string. Therefore, for a given medium, there are certain frequencies, called
resonant frequencies, at which the medium will spontaneously form standing waves.

Take for example a string with length L, fixed on both ends. In the last section, we
saw that the standing waves can be classified with some integer n. Such a standing wave
is called the nth harmonic and a member of a discrete set of allowed standing waves, called
the harmonic series. The frequency of the nth harmonic is

Frequency of the nth harmonic.

fn “
v

λn
. (13.76)

For a string, we found Eq. (13.22) and Eq. (13.73), so

Frequency of the nth harmonic on a string with fixed ends.

fn “
n

2L

F

µ
. (13.77)

The first case n “ 1 corresponds to the first or fundamental harmonic. Notice that the
frequency of any harmonic,

fn “ nf1, (13.78)

can be expressed as the multiple of the fundamental frequency

f1 “
v

2L
, (13.79)

which is the lowest possible frequency to form a standing wave.
You can experiment with this at home. All you need is to tie a string to some rigid

support like a door knob, and smoothly pull it up and down. As you increase the frequency,
you will first find the fundamental f1. To find the next harmonic, you need to go twice as
fast, f2 “ 2f1.
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L

f1

(a) Fundamental frequency.
4L/5

5f1/4

(b) Different note, “major third”.

3L/4

4f1/3

(c) Different note, “perfect fourth”.
L/2

f2 = 2f1

(d) Same note as (a), but one octave up.

Figure 13.16: By changing the length of a guitar string, different notes can be played.

13.6.3 String instruments

Many musical instrument, including guitars, pianos and violins, use strings to produce
sound. Humans experience the sound a vibrating string makes as a note with a certain
pitch, or frequency.

The harmonic frequency only depend on three properties of the string: the length L,
mass density µ, and tension F . This is why a guitar string can be tuned by adjusting the
tension with the knobs, and why each guitar string with a different mass density, can reach
a different frequency. Heavier strings will produce lower notes.

At the same time, if you put your finger on the middle of the guitar string as in
Fig. 13.16, you double the frequency, producing the same note, but at a higher pitch. In
music, this jump between the same notes is called an octave.

13.6.4 Musical notes

Very broadly speaking, musical notes are a set of frequencies that to humans sound “good”
or “harmonious” when played together. Pythagoras had discovered that this happens when
the ratio of the frequencies is (approximately) a rational number, i.e. the ratio of two whole
numbers, like 5{4, 4{3 or 3{2. In the western music, the frequency interval of each full
octave is traditionally divided into twelve notes, or semi-tones, that follow some set of
ratios. To play a different note on a string, you have to put your finger in just the right
spot to get the note that corresponds to a frequency that has the correct ratio with respect
to the other notes. Figures 13.16b and 13.16c show some examples.

Conventionally, the musical note “A” (also known as “la”) is tuned to 440Hz and all
other notes can be derived from that. This choice is largely arbitrary, but by fixing the
frequency of one note, different instruments can be adjusted to be in tune when playing
together.

13.6.5 In a pipe of air

Standing waves can also form in a tube of air. The derivation of the expressions is very
similar to strings, but one needs to consider different boundary conditions.

Closed tube

First consider a closed tube of length L filled with air as in Fig. 13.17. Say you move a
piston or hit a membrane on one end to produce sinusoidal pressure waves. When the
pressure wave hits the other closed end at x “ L, it will reflect the wave and interfere with
the incoming wave. Under the right conditions, a standing wave will form.

Because the air molecules cannot move at the closed ends, the longitudinal displacement
s has to be zero at all times. Therefore, there are displacement nodes in the standing s
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s

x

∆P

x

t = 0

t = T/2

Figure 13.17: Standing wave of harmonic n “ 4 in a closed tube filled with air. Top plot
shows the local, average displacement s of air molecules in the longitudinal (x) direction
(blue). The second plot shows the pressure variation ∆P (orange), which is 90˝ out of
phase with s. The solid line is the wave at t “ 0, while the dashed line is at t “ T {2, when
the wave is reversed.
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(a) Closed on both ends.
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(b) Half-open tube. Only odd harmon-
ics appear.
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(c) Open on both ends.

Figure 13.18: Harmonics of standing pressure waves in tubes of air. Closed ends have
maximal pressure differences and coincides with a pressure anti-node (displacement node).
Open ends, where the air is in contact with the atmospheric pressure, the pressure variation
is zero, and corresponds to a pressure node (displacement anti-node).
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wave at either ends. This also means that at either ends, the air molecules will bunch up
the most, creating the peak pressure variations ∆P , or pressure anti-nodes. The pressure
wave will therefore have the form

∆P px, tq “ 2A cospωntq cospknxq (13.80)

with boundary condition
cospknLq “ 1. (13.81)

Therefore,

Standing waves in a closed or open tube.

λn “
2L

n
, kn “

nπ

L
(13.82)

for non-zero integers n “ 1, 2, 3, ...

Notice that this formula works if the two ends are both closed or both open, since in both
cases the same number of waves fit in the tube. Several harmonics are shown in Fig. 13.18a.

Half-open tube

Now consider the case one end is open as in Fig. 13.18b. At the open end, the air molecules
are fully free to move back and forth, while the pressure must be more or less fixed,
due to the exposure to atmospheric pressure. Therefore, the new boundary condition for
Eq. (13.80) is

cospknLq “ 0, (13.83)

so that

Standing waves in a half-open tube.

λn “
4L

n
, kn “

nπ

2L
(13.84)

for odd integers n “ 1, 3, 5, ...

Open tube

Standing waves in a tube open on both ends must have nodes on those ends, and therefore
have the form

∆P px, tq “ 2A cospωntq sinpknxq, (13.85)

and has same solutions as in Eq. (13.82).

Wind instruments

Wind instruments use standing waves in a pipe to produce notes. They come in many
shapes, cylindrical like flutes and organs, or conical like clarinets, trumpets or saxophones.
Typically, by controlling the openings of holes and valves, a player can change which
harmonic is excited by changing which holes are in contact with the atmosphere and form
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L

(a) Fundamental frequency.
4L/5

(b) Different note, “major third”.

L/2

(c) Second harmonic of (a), same note, one octave up.
3L/4

(d) Different note, “perfect fourth”.

L/2

(e) Same note as (a), one octave up.
3L/4

(f) Third harmonic of the “perfect fourth”.

Figure 13.19: Acoustics of a flute. By controlling the air holes and air flow, different
notes can be played. Opening the lowest holes makes the flute effectively shorter. By
opening a hole in the middle, a node can be created to excite a higher harmonic of a given
note.

nodes. In the case of a trombone, the length is increased by moving the slide. Organs,
trumpets, saxophones and clarinets are examples of half-open pipes, while flutes are open
pipes.

13.7 Energy transmission in a wave

Waves can carry energy and do work. For example, as a wave travels from left to right
on a string under tension, it can lift some weight that hangs on the string. The pressure
waves of sound can make other objects like ear drums or glasses vibrate by transferring
energy through pressure.

13.7.1 Power of a wave on a string

Consider a sine wave with amplitude A and angular frequency ω on a string. Let’s look
at a small segment like we did before in Fig. 13.4. The segment has some length ∆s and
mass ∆m “ µ∆s. Because we are considering a sine wave, our piece of string is a simple
harmonic oscillator moving up and down. Last chapter, we figured out that the total
energy (potential plus kinetic) of an oscillator is

E “
1

2
kA2, (13.86)

where k “ mω2 is the spring constant, not to be confused with the wave number. For our
small segment with mass ∆m “ µ∆s, we therefore have

∆E “
1

2
pµ∆sqω2A2. (13.87)

The power of energy that the wave carries across the string then is

P “
∆E

∆t
“

1

2
µω2vA2, (13.88)

where v “ ∆s{∆t is the wave’s velocity. (Do not confuse P with pressure.) Notice that
the power is proportional to A2, ω2, µ and v.
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13.7.2 Exciting harmonics

Vibrating systems generally have multiple standing waves that are superimposed. In gen-
eral, you can think of a wave as the sum of several harmonics with varying amplitudes
An:

ypx, tq “
ÿ

n

An cospωnt ` ϕnq sinpknxq. (13.89)

ω2
nA

2
n is the relative energy of the nth harmonic w.r.t. the other harmonics. The phase ϕn

depends on the initial conditions.
The location of the initial impact on the string that creates the standing wave, deter-

mines the values of each harmonic’s amplitude An, and therefore their relative energies.
Like a guitar player, we can “pluck” or hit a string to create a standing wave. If we pull
exactly in the middle, at x “ L{2, just the fundamental harmonic n “ 1 with one anti-
node in the middle is excited. However, if we pick at any other random place, we can
excite more than one harmonic, and get some set of amplitudes An, called a spectrum.
The higher-order harmonics are called the overtones to the fundamental. The resulting
standing wave will be some superposition of harmonics. Often, most energy will still go
into the fundamental.

We have seen that a wave on a string depends on the length L of the string. The
same is true for waves on two- or three-dimensional objects. As standing waves strongly
depend on the boundary conditions and the location of the (anti-)nodes, differently shaped
objects of the same material have different wave functions. And again, plucking or hitting
the object at different locations will create a different set of An. An example of standing
waves in 2D, is the so-called Chlandi plate, which are simple square metal plates that,
when vibrated, create beautifully regular patterns in a thin layer of sand, lying on top. In
music, drum head and cymbals also form standing waves when hit by the drummer.

Equation (13.89) and what is discussed above will be put in more context in in Chap-
ter 15 on Fourier analysis.

13.7.3 Energy density & intensity

Consider again a source that emits waves spherically in three dimensions, Fig. 13.20. As
each wavefront spreads out, its energy is distributed over a larger area. Therefore, it is
useful to define

Intensity.

I “
P

A
, (13.90)

where P is the power, and A is the area of the wavefront. In case of spherically emitted
waves, the surface area is A “ 4πr2. So as the wave moves outward, the area increased
with r2, while the intensity decreases with 1{r2.

v

r1

r2

∆r

E1E1

E2E2

Figure 13.20: Cross section of two spherical wavefronts that carry some energy. The
wave speed is v.
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Let’s look at the relationship between intensity I and the energy density defined as the
energy per unit volume,

Energy density.

η “
∆E

∆V
. (13.91)

Take a spherical shell of radial thickness ∆r as in Fig. 13.20. If the wave travels with
velocity v, it will take a wavefront ∆t “ ∆r{v to go through the shell. The additional
energy that is contained in this spherical shell is given by the energy density

∆E “ η∆V . (13.92)

A very thin spherical shell has volume ∆V “ A∆r, so

∆E “ ηApv∆tq. (13.93)

The power then, is given by

P “ ηvA (13.94)

Intensity of a wave is therefore the energy density times velocity,

Intensity of a wave.
I “ ηv. (13.95)

Sound wave

But what is η? Let’s consider a sinusoidal sound wave. We remember for a simple harmonic
oscillator that E “ mω2A2{2. In case of sound, the air molecules vibrate back and forth
with an amplitude s0, so the energy in a small volume ∆V with mass m “ ρ∆V is given
by

∆E “
1

2
pρ∆V qω2s20. (13.96)

The energy density therefore is

η “
1

2
ρω2s20, (13.97)

or in term of pressure variations, using Eq. (13.50),

η “
∆P 2

0

2ρv2
. (13.98)

Therefore, the intensity of a sound wave is given

Intensity of a sound wave.

I “
∆P 2

0

2ρv
(13.99)
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13.7.4 Decibel scale

The human ear can hear a range intensities from I “ 10 ˆ 10´12W{m2 (breathing) up
to 1W{m2 (rock concert speakers at 2m). Because this range spans over twelve orders
of magnitude, intensity of sound, i.e. “loudness”, is measured with the logarithmic decibel
scale, defined as

Decibel scale for intensity.

β “ 10 log

ˆ

I

I0

˙

dB, (13.100)

where the reference intensity is I0 “ 10´12W{m2 as per convention. Although β is di-
mensionless, it is counted in units of decibels (dB). The logarithm is understood to be in
base 10, so logp10xq “ x. Therefore, if I “ 10´12W{m2, β “ 0 dB, while for I “ 1W{m2,
β “ 120 dB.

Logarithms convert multiplication to addition, which is useful to span large orders of
magnitudes. Say you are playing music at an intensity I, and you increase the volume of
your speaker by ∆β “ 10 dB, then the new intensity is given by

10 log

ˆ

I 1

I0

˙

dB “ 10 log

ˆ

I

I0

˙

dB ` ∆β, (13.101)

which leads to
I 1 “ 10

∆β
10 dB I. (13.102)

So a sound that is ∆β “ 10 dB louder actually has an intensity that is larger by a factor
ten. An increase of ∆β “ 20 dB is an increase of factor 100, ∆β “ 3 dB is approximately
a factor 2 and so on. This is depicted in Fig. 13.21. Remember that the intensity depends
on distance. Additionally, how loud humans perceive a sound, also strongly depends on
the frequency: Very low or very high frequencies do not seem as loud at the same pressure
as the middle range to which our ears are most sensitive.

Because I9∆P 2, as per Eq. (13.99), a slightly different decibel scale is defined in terms
of a pressure wave:

Decibel scale for pressure amplitude.

βP “ 20 log

ˆ

∆P

∆P 0

˙

dB, (13.103)

with reference pressure ∆P 0 “ 20µPa “ 2ˆ10´5 Pa in air. This very roughly corresponds
to I0. This time, an increase of ∆βP “ 20 dB is a factor 10

∆βP
20 dB “ 10, etc.

The decibel scale returns in other fields like electronics as well.

β [dB]0 10 20 30 40 50 60 70 80 90 100 110 120 130

breathing whisper
computer

fan conversation
busy
trafficcar

motor
cycle

rock
concert siren

gun
shot

+3 dB +10 dB +20 dB

×2 ×10 ×100

×1.41 ×3.16 ×10

I [W/s2]10−12 10−10 10−8 10−6 10−4 10−2 1faint quiet loud pain damage

P [Pa]0.00002 0.0002 0.002 0.02 0.2 2 20

Figure 13.21: Decibel scale for sound pressure with some typical examples.
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(a) Stationary source (red point)
emitting waves with speed c.

c

y
x

z
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(b) Source moving with velocity v.
Wavefronts get compressed in front.

vs
v∆t

c∆tc∆t

cc

(c) Wavefronts in front and back traveled
the same distance after ∆t.

Figure 13.22: Doppler effect in a wavefront diagram: When a source emitting wave
moves, the distance between wavefronts (maxima) will vary in each direction.

13.8 Doppler effect

When a source emitting waves moves relative to a receiver the the observed frequency f 1

is not the same as the frequency f at which the source emits the waves. This is called
the Doppler effect. We experience it in our daily lives, when a fast car with a loud engine
or an ambulance with its sirens on zooms past us. The same effect, however, can also be
observed with light in astronomy, such as the light emitted by stars moving relative to us.

13.8.1 Moving source

To understand, first consider the stationary source in Fig. 13.22a that emits waves in
all spherical directions with constant frequency f and wave speed c. Each wavefront (the
wave’s maximum) forms a radially expanding circle with the source as center. The distance
between two wavefronts is always λ. But something interesting happens when the source
starts moving in some direction with constant velocity vs ă c, as in Fig. 13.22b. Say that
the source emits N waves in some time interval ∆t,

N “ f∆t. (13.104)

After ∆t, the first wavefront has traveled a distance c∆t in each direction. The source,
however, has also and moves a distance vs∆t. So in the direction of the source’s motion,
N wavefronts are compressed into a distance c∆t ´ vs∆t, while to the opposite direction
they are stretched over c∆t ` vs∆t.

So what does an observer see who stand in the front of the moving source? To them,
the wavelength appears shorter:

λfront “
pc ´ vsq∆t

N
“

c ´ vs
f

, (13.105)

because they count N wavefront over a distance pc ´ vsq∆t. Similarly, for an observer
standing in the back, and the source is moving away from them,

λback “
c ` vs
f

. (13.106)

This can be converted back with Eq. (13.16) to the frequency measured by the observer;
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Doppler effect for a moving source.

f 1
front “

ˆ

c

c ´ vs

˙

f

f 1
back “

ˆ

c

c ` vs

˙

f.

(13.107)

(13.108)

13.8.2 Moving observer

If source is stationary, but an observer is moving at a speed vr, we see the same effect. The
observer moving toward the source counts more wavefront in time ∆t,

N “
pc ` vrq∆t

λ
. (13.109)

In terms of frequency,

f 1
toward “

N

∆t
“

c ` vr
λ

. “

ˆ

c ` vr
c

˙

f. (13.110)

Same for an observer moving away from the source

f 1
away “

ˆ

c ´ vs
c

˙

f. (13.111)

13.8.3 General formula

In general, we can combine the frequencies into one formula

Doppler effect.

f 1 “

ˆ

c ` vr
c ´ vs

˙

f, (13.112)

where vs ą 0 if the source is moving toward the observer, vs ă 0 if the source is moving
away from the observer, while vr ą 0 if the observer is moving toward the source, and
vr ă 0 if the observer is moving away.

Note that above about 10% of the speed of light, some corrections are needed to the
equations above.

13.8.4 Sonic boom

If the source accelerates, it will at some point reach the speed of the wave, vs “ c. In case
of sound, the wavefronts of the pressure waves will coincide and add up to create a huge
pressure shock, known as a sonic boom. If the source source like a supersonic plane moves
faster than sound, vs ą c, wave fronts will still line up sideways in the shape of a growing
cone as in Fig. 13.23b, leaving behind a large shock wave. This is similar to the triangular
wake of a boat sailing on water, when the boat is quicker than the waves on the water
surface.

Besides supersonic planes, the crack of a whip or bullet are also examples of sonic
booms.
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(a) When the source moves at the speed of
sound, vs “ c, wavefronts align in the front.

(b) If the source moves faster than the speed of sound,
vs ą c, the wave fronts align sideways (red line).

Figure 13.23: Breaking the sound barrier: A supersonic source causes a shockwave, called
a sonic boom.
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Chapter 14

Complex Numbers

Even though everything we observe and measure in physics has a real value, complex num-
bers still are useful and have many applications; from oscillators and waves to electronics
and quantum mechanics. As we will see in this chapter, they are particularly handy for
solving differential equations like those for harmonic oscillators.

14.1 Basics

The imaginary number is defined as

i “
?

´1. (14.1)

Notice that it follows that

i2 “ ´1, i4 “ `1,
1

i
“ ´i. (14.2)

Complex number have the general form

z “ x ` yi (14.3)

with a real part Rerzs “ x and an imaginary part Imrzs “ y, They can behave like vectors
in the complex plane with coordinates px, yq. This plane is spanned by the real axis (values
of x) and the imaginary axis (values of y), which are perpendicular to each other as shown
in Fig. 14.1. Complex number are also useful to write down in terms of polar angles pr; θq:

z “ r cos θ ` ir sin θ, (14.4)

where the radius |z| “ r is the modulus and the polar angle Argrzs “ θ is the argument,
given by

r “
a

x2 ` y2, tan θ “
y

x
. (14.5)

z = x+ iy = reiθ

z = x− iy = re−iθ

Re

Im

r

r

θ

−θ x

y

−y

Re

Im

11−1−1

ii

−i−i

1 + i

1− i

−1 + i

−1− i

Figure 14.1: Complex plane with the real and imaginary axis. A complex number
z “ x ` iy is given by the coordinates x “ Rerzs and y “ Imrzs. The complex conjugate
z “ x ´ iy is the reflection of z with respect to the real axis.
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14.1.1 Euler’s formula

It turns out that any complex number z can be written as

z “ reiθ “ r exppiθq (14.6)

There are many different proofs of this formula, but it can be shown most readily with a
Taylor series. For the exponential function, the Taylor series is

exp θ “ 1 ` θ `
θ2

2
`

θ3

3
`

θ4

4
`

θ5

5
` ... “

8
ÿ

n“0

1

i
xi., (14.7)

and when we plug in a purely imaginary argument x “ iθ, this becomes

exppiθq “ 1 ` iθ ´
θ2

2
´ i

θ3

3
`

θ4

4
` i

θ5

5
` ... (14.8)

Comparing this to Eqs. (12.13) and (12.17),

sin θ “ θ ´
θ3

3
`

θ5

5
` ... “

8
ÿ

n“0

p´1q2

p2n ` 1q
x2n`1

cos θ “ 1 ´
θ2

2
`

θ4

4
` ... “

8
ÿ

n“0

p´1q2

p2nq
x2n,

(14.9)

(14.10)

we notice we can pair off the even terms, which are real, and the odd terms, which are
imaginary, such that

Euler’s formula.
eiθ “ cos θ ` i sin θ. (14.11)

For θ “ π,
eiπ ` 1 “ 0, (14.12)

which is one of the most compact equations that contains all the important constants in
mathematics.

14.1.2 Complex conjugate

Notice that if we replace θ with ´θ, only the imaginary part is “flipped”,

e´iθ “ cos θ ´ i sin θ. (14.13)

This is called complex conjugation. The complex conjugate of a complex number z “

x ` iy “ reiθ is
z “ x ´ iy

“ r cos θ ´ ir sin θ “ re´iθ.

(14.14)

(14.15)

An alternative notation for complex conjugation is z˚. This operation can be understood
as a reflection in the complex plane with respect to the real axis, shown in red in Fig. 14.1.
The conjugate of z is again z:

z “ z. (14.16)
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With this definition, we can actually define the modulus of a complex number as

|z| “
?
zz (14.17)

It is easy to show this is consistent with Eq. (14.5). Notice that
∣∣eiθ

∣∣ “ 1.
The conjugate also allows us to cancel the real or imaginary parts; it’s easy to show

that
Rerzs “

z ` z

2

Imrzs “
z ´ z

2i
.

(14.18)

(14.19)

A complex number is “purely” real if z “ z and thus the imaginary part is Imrzs “ 0.

14.1.3 Complex form of goniometric functions

These sine and cosine functions are one of the reasons why complex numbers are useful for
studying oscillations and waves. Notice that we can use Euler’s formula to write

cos θ “
eiθ ` e´iθ

2

sin θ “
eiθ ´ e´iθ

2i

(14.20)

(14.21)

Remember that sine is an odd function, while cosine is an even one. This works out in our
formulas above:

sinp´θq “
e´iθ ´ e`iθ

2i
“ ´ sin θ

cosp´θq “
e´iθ ` e`iθ

2
“ cos θ

(14.22)

(14.23)

Furthermore, it’s easy to show from the above, or directly from Fig. 14.1, that

einπ “

#

1 for even n

´1 for odd n
(14.24)

14.1.4 Extra: Angle-sum formula

One neat trick with the complex form of sine and cosine is to quickly derive some go-
niometric formulas that are hard to remember. All you need is to remember Euler’s
formula Eq. (14.11) to write

eipα`βq “ cospα ` βq ` i sinpα ` βq

“ eiαeiβ “
`

cosα ` i sinα
˘`

cosβ ` i sinβ
˘

.

(14.25)

(14.26)

Reshuffling a bit, we can identify the real and imaginary parts

cospα ` βq ` i sinpα ` βq “
`

cosα cosβ ´ sinα sinβ
˘

` i
`

sinα cosβ ` sinα cosβ
˘

,

(14.27)
and one can for example see that the imaginary parts yield:

sinpα ` βq “ sinα cosβ ` sinα cosβ. (14.28)
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14.2 Quadratic equations

Complex numbers are useful for solving quadratic equations. For example,

z2 ´ 2z ` 2 “ 0. (14.29)

has no real solution because the discriminant d “ 22 ´ 4 ¨ 1 ¨ 2 “ ´4 is negative, so the
square root is negative. Therefore, there are two complex solutions

z˘ “
2 ˘

?
´4

2
“ 1 ˘ i. (14.30)

A quadratic equation can either have one real root (d “ 0), two real roots (d ą 0), or
two complex roots (d ă 0). The roots of an equation of the form ax2 ` c “ 0 are purely
imaginary if d “ ´4ac ă 0, so if ac ą 0, which means a and c have the same sign (both
positive, or both negative).

14.3 Solving second order differential equations

14.3.1 Characteristic equation

A homogeneous second-order differential equation is of the form

a2
d2y

dt2
` a1

dy

dt
` a0y “ 0, (14.31)

with real constants a0, a1, a2 P R. Suppose for a second that one solution has the form
yptq “ ert, where r is a complex number. Plugging in our ansatz, we find

a2r
2ert ` a1re

rt ` a0e
rt “ 0, (14.32)

or, because ert ‰ 0, and for r ‰ 0,

Characteristic equation for second-order differential equation.

a2r
2 ` a1r ` a0 “ 0. (14.33)

If the roots of this characteristic equation are two complex numbers r1 and r2, then there
are two linearly independent solutions that form the most general solution

yptq “ Aer1t ` Ber2t, (14.34)

where A and B are complex constants that are determined by the initial conditions. This
general solution can be rewritten in several forms depending on the solutions of character-
istic equation (14.33), which may have a complex form, r “ α ` iβ with α, β P R. Let’s
look at some case distinctions.
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Two real solutions

If the discriminant d “ a21 ´ 4a0a2 ą 0 is strictly positive, then there are two real solutions
for y in Eq. (14.33);

α˘ “
´a21 ˘

a

a21 ´ 4a0a2
2a0

. (14.35)

The general solution (14.34) has the form of two exponentials

yptq “ A`e
α`t ` A´e

α´t, (14.36)

with some complex constants A˘ determined by initial conditions.

One real solution

If the discriminant d “ a21 ´ 4a0a2 “ 0, then there is only one root,

α “ ´
a21
2a0

. (14.37)

and so, as discussed in Section 12.2.2, one extra solution to the second-order differential
equation that is linearly independent to eαt has to exist. It turns out this is teαt. The
most general solution is therefore

yptq “ Aeαt ` Bteαt. (14.38)

Two complex solutions

If the discriminant d “ a21 ´ 4a0a2 ă 0 is strictly negative, and a1 ‰ 0, then there are two
non-real solution of the form

α ˘ iβ “
´a21 ˘ i

a

4a0a2 ´ a21
2a0

. (14.39)

The solution to the differential equation is

yptq “ eαt
`

B`e
iβt ` B´e

´iβt
˘

. (14.40)

By substituting Euler’s formula (14.11), we find another form that is like an underdamped
harmonic oscillator Eq. (12.85):

yptq “ eαt
`

A cospβtq ` B sinpβtq
˘

, (14.41)

where A “ B` ` B´ and B “ iB` ´ iB´ are new constants.

Two imaginary solutions

If a1 “ 0 and the discriminant d “ ´4a0a2 ă 0 is strictly negative, there will be two
imaginary roots of the form

˘iβ “ ˘i

c

a2
a0

, (14.42)

and the general solution to the differential equation is of the form

yptq “ B`e
iβt ` B´e

´iβt, (14.43)

or equivalently, a simple harmonic oscillator,

yptq “ A cospβtq ` B sinpβtq. (14.44)
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14.3.2 Differential operator

A different formalism for the method discussed in the previous section relies on the so-called
linear differential operator, defined as

D “
d

dt
, (14.45)

which acts on t-dependent functions y. Notice that this is a linear operator acting on
functions, meaning that for some functions y, y1, y2,

D
`

y1 ` y2
˘

“ Dy1 ` Dy2

D
`

ay
˘

“ aDy,

(14.46)
(14.47)

where a is a constant (see Section 3.8). Higher-order derivatives is like applying D several
times, for example,

d2y

dt2
“ D

`

Dy
˘

“ D2y. (14.48)

Notice that D2 is still a linear operator.
We can rewrite the second-order equation Eq. (14.31) as

`

a2D
2 ` a1D ` a0

˘

y “ 0, (14.49)

where the terms between the parentheses are a linear combination of linear operators.
(The linear operator with a0, the identity operator 1y “ y, is hidden.) Equivalent to the
characteristic equation Eq. (14.33), the algebraic form of this differential equation is

a2D
2 ` a1D ` a0 “ 0, (14.50)

which can again be used to find the general solutions for different roots of a second order
equation.

14.3.3 Simple harmonic oscillator

Let’s take the example of the simple harmonic oscillator in Eq. (12.21),

d2y

dt2
` ω2y “ 0, (14.51)

and rewrite this with the differential operator

0 “ D2y ` ω2y

“ pD2 ` ω2qy

“ pD ` iωqpD ´ iωqy.

(14.52)

(14.53)
(14.54)

There are thus two imaginary roots ˘iω, which result in two independent differential
equations

pD ` iωqy “ 0,

pD ´ iωqy “ 0.

(14.55)
(14.56)

The second equation leads to
dy

dt
“ iωy, (14.57)
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and therefore
ż

dy

y
“

ż

iωdt. (14.58)

The integrals are
ln y “ piω ` Cq, (14.59)

with an integration constant C determined by initial conditions. Taking the logarithm to
obtain y,

yptq “ Aeiωt, (14.60)

with a new integration constant A “ eC . This function does behave like a harmonic
oscillator. Namely, due to Euler’s formula,

yptq “ A cospωtq ` iA sinpωtq, (14.61)

which is like a vector of constant length A rotating uniformly in the complex plane in the
counterclockwise direction, as shown in Fig. 14.2. It has a real cosine and imaginary sine
component.

For the second differential equation (14.55), we similarly find

yptq “ Be´iωt, (14.62)

with some other integration constant B. This rotates clockwise in the complex plane. In
general, the solution to the simple harmonic oscillator (14.51) is therefore

Complex solutions to the simple harmonic oscillator equation.

yptq “ Aeiωt ` Be´iωt. (14.63)

This is consistent with the general solution (14.43) we found earlier for purely imaginary
roots of the characteristic equation. Again, we can rewrite this complex form to retrieve a
sine and cosine

yptq “ A cospωtq ` B sinpωtq. (14.64)

as in Eqs. (12.36) and (14.44). As discussed in Section 12.2.2, this can be rewritten as a
single cosine with a phase

yptq “ A cospωt ´ ϕq. (14.65)

14.3.4 Initial conditions & real solutions

The constants A, B, C and ϕ in the above equations, can be obtained by imposing initial
conditions. Consider again form (14.63) and take for example

yp0q “ 0

dy

dt
“ vp0q “ v0.

(14.66)

(14.67)

In order for yptq to be physical, it has to be real. So we need to get rid of the imaginary
part. The imaginary part of y is vanishes if y “ y for any value of t. Thus,

0 “ pA ´ Bqeiωt ` pB ´ Aqe´iωt. (14.68)
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Because eiωt and e´iωt are linearly independent functions, this equation only holds when

A ´ B “ 0 “ B ´ A, (14.69)

so
A “ B. (14.70)

Now, because yp0q “ 0, Eq. (14.63) at t “ 0 becomes

yp0q “ 0 “ A ` A, (14.71)

and therefore A has to be purely imaginary, RerAs “ 0. The solutions is

yptq “ Aeiωt ´ Ae´iωt. (14.72)

Consider now the second initial condition Eq. (14.67):

dy

dt
“ v0 “ 2iωA. (14.73)

Therefore,
A “

v0
2iω

. (14.74)

After a bit of rearranging, we find the 100% guaranteed real, and therefore physical, solution

yptq “
v0
ω

sinωt. (14.75)

14.3.5 Extra: Analytic representation and complex phase

This section is only for the interested reader, and will not be covered on the exam.
Say you have a real harmonic oscillator of the form

yptq “ A cospωt ´ ϕq. (14.76)

The complex form of this oscillator is called the analytic representation:

zptq “ A cospωt ´ ϕq ` Ai sinpωt ´ ϕq. (14.77)

z(t) = Aeiωt

Re

Im

A
ωt

A cos(ωt)

A sin(ωt)

(a) The oscillation in the complex
plane is a circle.

Im

Re

z(
t)
=
Ae
iω
t

ωt

t [s]

Im

ωt

TT

2T2T

y(t) = A sin(ωt)

t [s]

Re

ωt

T

2T
x(t) = A cos(ωt)

t [s]

Im

Re

(b) The oscillation z “ Aeiωt has a real and imaginary component.
With the time axis, it forms a helix.

Figure 14.2: A simple harmonic oscillation with amplitude A and angular frequency ω
can be represented by a complex number z “ Aeiωt.
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such that the “physical” form is the real part y “ Rerzs. One of the reasons this is
interesting, is because the sine and cosine can readily be converted to an exponential
thanks to Euler,

zptq “ Aeipωt´ϕq. (14.78)

This allows us to more easily manipulate the argument, where the phase becomes a mul-
tiplicative term because it can be factorized as

zptq “ Aeiωte´iϕ. (14.79)

This new term
∣∣eiϕ

∣∣ “ 1 has unit length. Factorizing the complex phase term is something
that will return in fields like quantum mechanics, where the modulus of wave functions of
this form are often squared such that the phase disappears.

14.3.6 Extra: Rotation in the complex plane

This section is only for the interested reader, and will not be covered on the exam. Some
knowledge of linear algebra is assumed.

Notice that an extra phase eiϕ effectively rotates the complex number z in the complex
plane by an angle ϕ as illustrated in Fig. 14.3b. Because it has modulus 1,

∣∣eiϕ
∣∣ “ 1, it

does not change the modulus r “ |z|. It’s immediately clear by writing z in Euler’s form,

zeiϕ “ reiθeiϕ “ reipθ`ϕq. (14.80)

But it we can make another connection if we use Cartesian coordinates:

zeiϕ “ px ` iyq pcosϕ ` i sinϕq

“ px cosϕ ´ y sinϕq ` ipx sinϕ ` y cosϕq.

(14.81)
(14.82)

If you have read the extra Section 10.3.2 on rotated coordinates, you will recognize the
similarity with a counter-clockwise rotation in the real plane,

Rp´ϕqr “

ˆ

cosϕ ´ sinϕ
sinϕ cosϕ

˙ ˆ

x
y

˙

“

ˆ

x cosϕ ´ y sinϕ
x sinϕ ` y cosϕ

˙

. (14.83)

So not only do complex numbers behave as two-dimensional vectors in the complex plane,
multiplying other complex numbers can act as transformations.

Any complex number z1 “ eiϕ with modulus 1 acts analogous to orthogonal matrices
in the plane, which do not change the scalar product after their transformation. Later in
your studies you might learn about symmetries in quantum physics, where this connection
becomes important. You will see that in terms of linear algebra and group theory, the
rotation matrices in a plane belong to the special orthogonal group of degree 2, SOp2q, and
the complex numbers with modulus 1 belong to the unitary group of degree 1, Up1q.

r = (x, y)

r′ = (x′, y′)

x

y

φ

x

y

x′

y′

(a) Rotation of a vector in the real
plane (See Fig. 10.4).

z = reiθ

zeiφ = rei(θ+φ)

Re

Im

r

r

θ

φ

r cos θ

r sin θ

(b) Rotation of a complex number in
the complex plane.

Figure 14.3: Comparison of rotation in the real and complex plane.
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14.4 Damped harmonic oscillator

Consider a harmonic oscillator with some damping that opposes velocity as discussed in
Section 12.4. A new term with the damping factor b will enter our usual differential
equation:

d2y

dt
`

b

m

dy

dt
` ω2

0y “ 0. (14.84)

The characteristic equation is given by
ˆ

D2 `
b

m
D ` ω2

0

˙

y “ 0, (14.85)

and has solutions given by

D “
´b ˘

a

b2 ´ 4m2ω2
0

2m
. (14.86)

Assuming b ‰ 0, there are three different situations, depending on the sign of the discrim-
inant b2{m2 ´ 4ω2

0. We have already seen these in Section 14.3.1 and identify them with
the types of damping discussed in Section 12.4.4:

1. b2 ą 4m2ω2
0: two real roots, overdamped ;

2. b2 “ 4m2ω2
0: one real roots, critically damped ;

3. b2 ă 4m2ω2
0: two complex roots, underdamped.

Here, bc “ 2mω0, is again the critical damping coefficient.
Let’s look at the underdamped case (3) with two complex roots

D “
´b ˘ i

a

4m2ω2
0 ´ b2

2m
“ ´

b

2m
˘ iω, (14.87)

with

ω “

c

m2ω2
0 ´

b2

4m
. (14.88)

The general solution for y, then, has form

yptq “ Ae´ b
2m

t cospωt ´ ϕq, (14.89)

with constant A and ϕ to be determined by initial conditions. This is consistent with our
previous results, Eq. (12.85).



Chapter 15

Fourier Analysis

Fourier analysis studies the way in which functions can be represented by a linear
combination of goniometric functions like sine and cosine. It was originally developed by
Joseph Fourier (1768–1830) in his study of heat transfer and oscillations. The applications
of Fourier analysis are very broad: solving differential equations, electronics, acoustics,
spectroscopy, signal processing, data compression, and much more.

First, we will have a look at Fourier series, which can be used to approximate periodic
functions with a discrete sum of sine and cosines. After that, we will discuss Fourier
transforms, which are used to represent aperiodic functions with a continuous sum (i.e.
integral) instead.

15.1 Interlude: Integration by parts

Before diving into Fourier analysis, recall the integration by parts method, which is a
consequence of the product rule in differentation:

d

dx

`

fpxqgpxq
˘

“
df

dx
gpxq `

dg

dx
fpxq. (15.1)

Integrating both sides over dx,

fpxqgpxq “

ż

gpxq
df

dx
dx `

ż

fpxq
dg

dx
dx. (15.2)

A short-hand notation is often used.

Integration by parts.
ż

udv “ uv ´

ż

v du . (15.3)

Take for example,

I “

ż

x sinxdx,

and identify
"

u “ x
dv “ sinxdx

ñ

"

dv “ dx
v “ ´ cosxdx

185
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Therefore, we can easily solve the integral as

I “ ´x cosx `

ż

cosxdx,

“ ´x cosx ´ sinx.

15.2 Interlude: Averaging functions

For Fourier analysis, we will also need to know how to compute the average of a function
over some interval ra, bs. It can be defined as

xfpxqyra,bs “
1

b ´ a

ż b

a
fpxq dx, (15.4)

which is like the continuous version of the usual average xxy “
řN

i xi{N . A few trivial
examples are

xkyra,bs “ k

xkxyra,bs “
k

2
pb ` aq,

(15.5)

(15.6)

where k P R is a constant. The average of sine over one half and one full period is

xsinxyr0,πs “
2

π
xsinxyr0,2πs “ 0.

(15.7)

(15.8)

Now consider the average of functions sin2 x and cos2 x over a full period. Even though
sine and cosine are out of phase, over an interval of length T “ 2π, we notice that they
have the same integral,

ż 2π

0
sin2 x dx “

ż 2π

0
cos2 x dx, (15.9)

and the integral of their sum is simply
ż 2π

0

`

sin2 x ` cos2 x
˘

dx “

ż 2π

0
dx “ 2π. (15.10)

This result is equally shared, so
ż 2π

0
sin2 x dx “ π “

ż 2π

0
cos2 x dx. (15.11)

The averages then, are these integrals divided by b ´ a “ 2π,

@

sin2 x
D

r0,πs
“

1

2
“

@

cos2 x
D

r0,πs
. (15.12)

y

x

y = k

a b

〈k〉

(a) Constant function y “ k.

y

x

y = kx

a b

〈kx〉

(b) Linear function y “ kx.

y

xπ 2π

2

π

y = sinx

(c) Sine function has an average of 0 over r0, 2πs.

Figure 15.1: Averaging basic functions over some range ra, bs.
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y

xπ 2π 3π

1

2

y = sin2 x y = cos2 x

Figure 15.2: Average of y “ sin2 x and y “ cos2 x.

Note that sin2pnxq ` cos2pnxq “ 1 holds for any number n, so

@

sin2pnxq
D

ra,bs
“

1

2
“

@

cos2pnxq
D

ra,bs
. (15.13)

In the next section, we need the following averages over the cycle of 2π:

1

2π

ż π

´π
sinpmxq cospnxq dx “ 0

1

2π

ż π

´π
sinpmxq sinpnxq dx “

$

’

&

’

%

0 m ‰ n
1
2 m “ n ‰ 0

0 m “ n “ 0

1

2π

ż π

´π
cospmxq cospnxq dx “

$

’

&

’

%

0 m ‰ n
1
2 m “ n ‰ 0

1 m “ n “ 0

,

(15.14)

(15.15)

(15.16)

with some general integers m and n. Let’s show Eq. (15.14) is true as an illustration. Yet
again complex algebra will prove us useful. We observe that for any integer k, eikπ “

cospkπq “ ˘1 because sinpkπq “ 0. Therefore, we know the following simple integral

ż π

´π
eikxdx “

„

eikx

ik

ȷπ

´π

“ 0. (15.17)

We can now rewrite Eq. (15.14) as complex numbers using Eqs. (14.21) and (14.20):
ż π

´π
sinpmxq cospnxqdx “

ż π

´π

ˆ

eimx ´ e´imx

2i

˙ ˆ

einx ` e´inx

2

˙

dx

“
1

4i

ż π

´π

´

eipm`nqx ´ e´ipn´mqx ´ eipm´nqx ` e´ipm`nqx
¯

dx

Each of these terms are like Eq. (15.17) because m ˘ n are still integers! Therefore, we
have proven that Eq. (15.14) is indeed zero for any integer m and n. Equations (15.15)
and (15.16) can be proven in the same way.

15.3 Fourier analysis

We have seen in Section 13.7.2 that when we pluck a string, we get a superposition of
standing waves, which are a sum of its harmonics with different amplitudes. These are
represented by terms like an sinpnω0tq and bn cospnω0tq for some amplitudes an and bn and
with the fundamental harmonic ω0. In this section, we will derive these amplitudes for a
given signal that is periodic. This is called Fourier analysis.
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15.3.1 Period 2π

Take a function that repeats every 2π, meaning

fpxq “ fpx ` 2πq “ fpx ` 2nπq (15.18)

for any integer n. Fourier analysis poses this 2π-periodic function can be written as

fpxq “
1

2
a0 ` a1 cosx ` a2 cos 2x ` a3 cos 3x ` ...

` b1 sinx ` b2 sin 2x ` b3 sin 3x ` ..., (15.19)

with real coefficients an and bn. We will show that this is possible by deriving an and bn.
First, note several things:

1. The right-hand side of Eq. (15.19) also has a period 2π.

2. Each new sine or cosine term has a higher frequency fn “ n{2π (or shorter period
Tn “ 2π{n) than, which is an integer multiple of the “fundamental” frequency 1{2π.

3. Each coefficient an and bn acts as an amplitude for cosine and sine with period 2nπ,
respectively.

4. For n “ 0, the cosine term becomes a simple constant a0{2, while it vanishes for the
sine, b0 “ 0. The factor 1{2 in a0{2 is arbitrary, but will be convenient later.

How do we get an and bn for a some periodic function fpxq? Start with a0 by taking
the average over one period:

1

2π

ż π

´π
fpxqdx “

a0
2

1

2π

ż π

´π
1 dx

`a1
1

2π

ż π

´π
cosx dx ` b1

1

2π

ż π

´π
sinx dx

`a2
1

2π

ż π

´π
cos 2x dx ` b2

1

2π

ż π

´π
sin 2x dx

`... (15.20)

The average of sine and cosine over one period is always 0, so only the first term survives.
For any 2π-periodic function fpxq therefore,

a0 “
1

π

ż π

´π
fpxqdx. (15.21)

This term with a0 serves as a constant, vertical offset corresponding to the average of f .
For a1, we use a clever trick: Multiply both sides by cosx, and then take the average

1

2π

ż π

´π
fpxq cosx dx “

a0
2

1

2π

ż π

´π
cosx dx

`a1
1

2π

ż π

´π
cos2 x dx ` b1

1

2π

ż π

´π
sinx cosx dx

`a2
1

2π

ż π

´π
cosp2xq cosx dx ` b2

1

2π

ż π

´π
sinp2xq cosx dx

`... (15.22)
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Using Eqs. (15.14) and (15.16), this time, all terms vanish except for the one with a1. We
are only left with

a1 “
1

π

ż π

´π
fpxq cosx dx. (15.23)

Similarly for a2, we multiply both sides by cos 2x, and take the average. Only the term
with a2 survives. We notice a pattern. In general, we get the formula for an by multiplying
both sides by cosnx, and then taking the average:

1

2π

ż π

´π
fpxq cospnxqdx “

a0
2

1

2π

ż π

´π
cospnxqdx

`a1
1

2π

ż π

´π
cosx cospnxq dx ` b1

1

2π

ż π

´π
sinx cospnxq dx

`a2
1

2π

ż π

´π
cosp2xq cospnxq dx ` b2

1

2π

ż π

´π
sinp2xq cospnxqdx

`...

The only non-zero terms are when

1

2π

ż π

´π
cos2pnxq dx “

1

2
. (15.24)

Therefore, in general

an “
1

π

ż π

´π
fpxq cospnxqdx. (15.25)

By multiplying fpxq with cosnx and averaging, we “project out” this component in fpxq,
while the integral of all other components vanish. The amplitude an is a measure of “how
much cosnx there is in fpxq”. Analogously for the bn terms, one multiplies by sinnx and
averages to select this component:

bn “
1

π

ż π

´π
fpxq sinpnxq dx. (15.26)

In summary:

Fourier series expansion for 2π-periodic function. Any 2π-periodic function
f can be written as

fpxq “
1

2
a0 ` a1 cosx ` a2 cos 2x ` a3 cos 3x ` ...

` b1 sinx ` b2 sin 2x ` b3 sin 3x ` ...

“
ÿ

nPN

an cosnx `
ÿ

nPN

bn sinnx. (15.27)

where
an “

1

π

ż π

´π
fpxq cospnxqdx

bn “
1

π

ż π

´π
fpxq sinpnxqdx.

(15.28)

(15.29)
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Notice that the 1{2 factor in front of a0 was good foresight, because it is consistent with
the general formula for an.

Now we know how to decompose a given function with period T “ 2π into a discrete
sum of sines and cosines by computing the coefficients, or amplitudes, an and bn.

15.3.2 Any period T

Let us now make the previous a bit more general. Say you have a (time-dependent) function
with period T ,

fptq “ fpt ` nT q (15.30)

for any integer n. We need to transform our sines and cosines so they have the same period;

cosnt Ñ cos
2πnt

T
“ cosnωt

sinnt Ñ sin
2πnt

T
“ sinnωt,

(15.31)

(15.32)

with ω “ 2π{T as usual. Some textbooks write ωn “ nω. So everywhere in the previous
sections, we need to perform the substitution x Ñ 2πt{T “ ωt, which is simple rescaling
the horizontal axis. The differential in each integral becomes

dx Ñ
2π

T
dt “ ωdt. (15.33)

This leads to

Fourier series expansion. A function f with period T “ 2π{ω can be expanded
as

fpxq “
ÿ

nPN

an cospnωtq `
ÿ

nPN

bn sinpnωtq. (15.34)

with real coefficients an and bn, or with complex coefficients cn, where

an “
2

T

ż T

0
fpxq cospnωtqdt

bn “
2

T

ż T

0
fpxq sinpnωtqdt

(15.35)

(15.36)

When T “ 2π, and thus ω “ 1, we retrieve the result in the previous section.
In the derivation of previous section, the integral ranged from ´π to π, while in this

section, we went from 0 to T . The limits of the integral of a periodic function is arbitrary
as long as the range is over the same period T . This is easily proven by substitution. Say
you want to shift the limits by some constant t0 ą 0; split the integral as

ż T

0
fptqdt “

ż t0

0
fptq dt `

ż T

t0

fptq dt. (15.37)

Use substitution t Ñ t1 “ t ` T in the first integral on the right-hand side, and the fact f
has a period T , and you will find

ż T

0
fptqdt “

ż t0`T

t0

fptqdt. (15.38)
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The proof for t0 ă 0 is similar. Therefore, the limits do not matter, as long as the range
is T .

Fourier series are very useful and have many applications. It allows us to approximate
any random periodic signal. In some sense it is like Taylor expansion, but instead of a
polynomial

Tnpxq “

n
ÿ

i“0

f piqpaq

i!
px ´ aqi. (15.39)

(linear sum of terms with increasing order xi) approximating a function a some point x “ a,
we have a linear sum of sines and cosine of increasing frequency nωt,

snpxq “

n
ÿ

i“0

ai cospnωtq `

n
ÿ

i“0

bi sinpnωtq, (15.40)

approximating a periodic function over its full range. Each new “higher order” term im-
proves the approximation. Rebuilding a function with sines and cosines in this way is
called Fourier synthesis. Each periodic function has its own unique set of coefficients an
and bn that is called its spectrum. Conversely, under the right mathematical conditions, a
Fourier spectrum uniquely defines a periodic function. It contains all the information of
the original function.

Let’s make Fourier series a bit more concrete with some examples.

15.3.3 Example 1: Cosine

First a trivial example. The spectrum of a cosine

fptq “ A cosωt (15.41)

is simply one component with the same period,

bn “ 0, an “

#

A if n “ 1

0 otherwise
. (15.42)

15.3.4 Example 2: Square wave

A classic example is the so-called square wave shown in Fig. 15.3. One form is

fpxq “

#

`1 for 2πn ă x ď πpn ` 1q, n “ 0,˘2,˘4,˘6, ...

´1 for πn ă x ď 2πpn ` 1q, n “ ˘1,˘3,˘5,˘7, ...
(15.43)

Note that f has a period T “ 2π, amplitude A “ 1, and is an odd function, i.e. fp´xq “

´fpxq, just like a sine. We therefore expect that all even cosine components will disappear.
Indeed, breaking up the integral into its two pieces over r0, 2πs,

an “
1

π

ż 0

´π
p´1q cospnxq dx `

1

π

ż π

0
p`1q cospnxqdx. “ 0

y

t [s]
−T/2−T/2 TTT/2T/2 3T/23T/2 2T2T 5T/25T/2

A

−A

(a) Odd square wave between ´A and A.

y

t [s]
−T/2−T/2 TTT/2T/2 3T/23T/2 2T2T 5T/25T/2

A

(b) Square wave between 0 and A.

Figure 15.3: Square waves are simple periodic functions with period T and amplitude A.
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Similarly,

bn “
1

π

ż π

0
p´1q sinpnxq dx `

1

π

ż 0

π
p`1q sinpnxqdx “

$

’

&

’

%

0 for even n “ 0, 2, 4, 6, ...

4

nπ
for odd n “ 1, 3, 5, 7, ...

(15.44)

So we find

fpxq “
4

π

ˆ

sinx `
sin 3x

3
`

sin 5x

5
` ...

˙

. (15.45)

Since f is an odd function, it is not surprising that no cosine terms are left, but only sines.
Notice that each new term bn with a higher frequency n{2π in this series gets smaller

as shown in Fig. 15.4b, which means that with each term we get a better approximation
to f , as shown in Fig. 15.4a. One can mathematically show that this series (i.e. infinite
sum) converges, and so the result is finite like f .

15.3.5 Example 3: Square wave with amplitude A and period T

More generally, a square wave with general amplitude A and period T can have the form

fptq “

$

’

&

’

%

A for nT ă t ď pn ` 1q
T

2
, n “ 0,˘2,˘4,˘6, ...

´A for n
T

2
ă t ď pn ` 1qT , n “ ˘1,˘3,˘5,˘7, ...

It is easy to show that this yields

fptq “
4A

π

ˆ

sinωt `
sin 3ωt

3
`

sin 5ωt

5
` ...

˙

.

with ω “ 2π{T .

y

t [s]

s1

s3

s5

s7

T 2T

A

−A

(a) Comparing Fourier series sn of different order n.
The higher the order, the better the approximation.

bn

fn
[
1
s

]
4A

πn

1/T 3/T 5/T 7/T 9/T

4A

π

4A

3π

(b) Spectrum of the square wave showing the amplitudes
as a function of frequencies fn “ nf “ n{T .

t [s]

y

TT

2T2T
Time domain

bn

fn

[ 1
s

]

Fre
que

ncy
dom

ain

11

T9

T7

T5

T3

T1

T

(c) Illustration of Fourier synthesis: Square waves can be approximated by adding up sine waves
of frequencies fn “ nf “ n{T (i.e. harmonics) with respective amplitudes An.

Figure 15.4: Fourier analysis of square wave with period T in Fig. 15.3a.
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15.3.6 Example 4: Square wave with offset

A small variation on the previous square wave is one with an offset, shown in Fig. 15.3b:

fpxq “

#

1 for 2πn ă x ď πpn ` 1q, n “ 0,˘2,˘4,˘6, ...

0 for πn ă x ď 2πpn ` 1q, n “ ˘1,˘3,˘5,˘7, ...

It is a repeated signal of 0’s and 1’s, and is used a lot in electronics. It can for example be
used to keep time as it defines fixed intervals.

This time, a0 is not zero, but all other an’s are:

fpxq “
1

2
`

2

π

ˆ

sinx `
sin 3x

3
`

sin 5x

5
` ...

˙

.

As mentioned before, the first constant term serves to vertically shift the sines up.

15.3.7 Example 5: Sawtooth wave

Another common example is the sawtooth wave shown in Fig. 15.5a. It is also a piece-wise,
periodic function. One way to define it with an amplitude A and period T is as

fptq “
2A

T
pt ´ nT q for p2n ´ 1q

T

2
ă t ď p2n ` 1q

T

2
,

where n can be any integer. This as well, is an odd function, so an “ 0 for each n. The
odd components bn are most easily computed by integrals from ´T to T :

bn “
4A

T

ż T

´T
t sinpnωtq dt

“
4A

T 2

„

sinnωt

pnωq2
´

t cosnωt

nω

ȷT {2

´T {2

“

$

’

&

’

%

`
2A

nπ
for even n “ 0, 2, 4, 6, ...

´
2A

nπ
for odd n “ 1, 3, 5, 7, ...

.

15.3.8 Example 6: Triangle wave

Finally, the triangle wave in Fig. 15.6a is another example of an odd function.

fptq “

$

’

’

&

’

’

%

4A

T

ˆ

t ´ n
T

2

˙

for p2n ´ 1q
T

4
ă t ď p2n ` 1q

T

4
, n “ 0,˘2,˘4, ...

4A

T

ˆ

n
T

2
´ 1

˙

for p2n ´ 1q
T

4
ă t ď p2n ` 1q

T

4
, n “ ˘1,˘3,˘5, ...

.

The only components are given by

bn “
8A

T

ż T {4

´T {4
t sinpnωtqdt `

8A

T

ż 3T {4

´T {4

ˆ

T

2
´ t

˙

sinpnωtq dt.

After a bit of algebra, left as an exercise,

bn “

$

&

%

0 for even n “ 0, 2, 4, 6, ...

p´1q
n´1
2

8A

n2π2
for odd n “ 1, 3, 5, 7, ...

.
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y

t [s]
−T/2−T/2 TTT/2T/2 3T/23T/2 2T2T 5T/25T/2

A

−A

(a) Original function.
y

t [s]

s1
s2
s3

s4s5

T 2T

A

−A

(b) Fourier synthesis.

bn

fn
[
1
s

]
2A

πn

−2A

πn

1/T1/T

2/T2/T

3/T3/T

4/T4/T

5/T5/T

6/T6/T

2A

π

−A
π

(c) Spectrum.

Figure 15.5: Sawtooth wave.

y

t [s]
−T/2−T/2 TTT/2T/2 3T/23T/2 2T2T 5T/25T/2

A

−A

(a) Original function.
y

t [s]

s1 s3

s5

T 2T

A

−A

(b) Fourier synthesis.

bn

fn
[
1
s

]
8A

π2n2

− 8A

π2n2
1/T1/T

3/T
5/T5/T 7/T7/T

8A

π2

− 8A

9π2

(c) Spectrum.

Figure 15.6: Triangle wave.

15.3.9 Extra: Amplitude-phase form

In Eq. (15.34), the expansion was in terms of sines and cosines, but this is not the only
form one can use. As discussed in Sections 12.2.2 and 14.3.3, the superposition of a sine
and cosine, which have the same frequency and phase, but different amplitude, can be
rewritten as a single cosine (or sine), but with a new phase,

an cospnωtq ` bn P pnωtq “ An cos pnωt ´ ϕnq .

where an and bn are defined as before. So a different formulation of Fourier series be-
comes

Amplitude-phase form of Fourier series expansion. Any periodic function f
can be written as

fpxq “
ÿ

nPN

An cos pnωt ´ ϕnq , (15.46)

with coefficients
An “

a

an ` bn

tanϕn “
bn
an

.

So now we have one frequency spectrum An and one phase spectrum ϕn.
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15.3.10 Extra: Complex form

Yet another form is using Eqs. (14.21) and (14.20) again to write

sinnωx “
einωx ´ e´inωx

2i

cosnωx “
einωx ` e´inωx

2

(15.47)

(15.48)

If one substitutes this into Eq. (15.34), it is easy to rearrange things into a more simplified
form;

an cospnωtq ` bn cospnωtq “
an ´ ibn

2
einωt `

an ` ibn
2

e´inωt.

Define a new coefficient with einωt.

cn “
an ´ ibn

2
“

1

2π

ż π

´π
fptq

`

cospnωtq ´ i sinpnωtq
˘

dt. (15.49)

We see that the coefficient with e´inωt is actually the complex conjugate, such that it can
conveniently be written as

c´n “ c˚
n “

an ` ibn
2

. (15.50)

Therefore, f becomes

fptq “ c0 ` c1e
iωt ` c2e

i2ωt ` c3e
i3ωt ` ...

` c´1e
´iωt ` c´2e

´i2ωt ` c´3e
´i3ωt ` ... (15.51)

In summary,

Complex form of Fourier series expansion. Any periodic function f can be
written as

fptq “
ÿ

nPZ

cne
int (15.52)

with complex coefficients

cn “
1

2π

ż π

´π
fptqe´intdt. (15.53)

It turns out that this complex form is a very useful form of Fourier expansion. More
generally, the coefficients cn are complex numbers as well, but if f is a real function, as
assumed up until now, one can simply impose cn “ c˚

´n, such that all the imaginary terms
cancel, because for any sum of the form

cne
iθ ` c´ne

´iθ “ pcn ` c˚
nq cos θ ` pcn ´ c˚

nqi sin θ

“ 2Rercns cos θ ´ 2 Imrcns sin θ,

The last line is manifestly real. We recognize the coefficients an “ 2Rercns belonging to the
odd cosines, and bn “ 2 Imrcns to the even sines in our real Fourier expansion, consistent
with the derivation at the beginning of this section. Therefore, all the information is
encoded in one single complex number cn. Note that c0 serves as a vertical offset.
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15.3.11 Example 6: Square wave (revisited)

Let’s see this in work with our previous square wave example with A “ 1 and T “ 2π. If
n ‰ 0,

cn “ ´
1

2π

ż 0

´π
e´inxdx `

1

2π

ż π

0
e´inxdx

“

$

&

%

2

inπ
for odd n

0 for even n

The coefficient cn is purely imaginary, and thus cn “ ibn, and our result is consistent with
Eq. (15.44). The square wave can there for be expanded as

fpxq “
2

2
`

1

π

„

eix `
ei3x

3
`

ei5x

5
` ...

ȷ

´
2

π

„

e´ix `
e´i3x

3
`

e´i5x

5
` ...

ȷ

“
1

2
`

2

π

ˆ

sinx `
1

3
sin 3x `

1

5
sin 5x ` ...

˙

.

Again, exactly the same result as Eq. (15.45).

15.3.12 Application: Spectra of music instruments

As mentioned in Section 13.6.2, if one plays the same note on different music instruments,
we still notice that it somehow sounds different. This is because each instrument, and the
way it is played, has its own unique spectrum, which gives its own “feeling”, called the tone
color, or timbre. Using oscilloscopes, one can plot the spectrum of any sounding note and
analyze which frequencies with which amplitudes are present. For a given note, you will
typically not only find the fundamental frequency f “ f1, but also some set of the other
excited harmonics fn “ nf (the overtones), and often even a small contributions from
other frequencies.

15.4 Fourier transforms

So far, we have expanded periodic functions into a sum of terms with different frequencies.
But what if a shape does not repeat? We cannot use Fourier series anymore. This can be
done with Fourier transforms. The derivation is out of the scope of this course, but the
result is

Fourier transform. A function f can be expanded as

fptq “

ż 8

´8

gpωqeiωt dω , (15.54)

where the Fourier transform is a continuous function of a real variable ω,

gpωq “
1

2π

ż 8

´8

fpxqe´iωxdt. (15.55)

Here, the gpωq is the analogue of the coefficient cn in the Fourier series expansion. The
integral over the real variable ω is the analogue of the sum over discrete integers n. We
usually say that g is the Fourier transform of f . But we see that the integrals are of exactly
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the same form, except for the minus sign in the exponent, so people often say f and g are
Fourier transforms of each other.

In case of a signal fptq changing with time, the Fourier transform provides you with
the (continuous) amplitude of the frequencies ω. This is called the frequency or power
spectrum. When we analyze the function f versus time t, this is called the time domain,
whereas we study g versus ω, it is in the frequency domain.

Some books use the notation g “ f̂ . The position of the 1{2π factor in Eq. (15.55)
is not important. Other books use different conventions where g has no 1{2π factor in
front, but f in Eq. (15.54) does. Even other authors use a factor 1{

?
2π in front of both

equations for f and g, which makes the quation more symmetric.
The Fourier transform works for every infinite interval if the following conditions on f

are met

1. f is absolutely integrable;
ş8

´8
|fptq|dt is finite. This often means that at infinity, the

function dampens, limtÑ˘8 fptq “ 0.

2. f has a finite number of maxima, minima and discontinuities.

3. f is a single-valued function.

15.4.1 Even/odd properties

Notice that the Fourier transform can be rewritten as

gpωq “
1

2π

ż 8

´8

fptqpcosωt ´ i sinωtqdt. (15.56)

One can see the interesting property that if f is even, this integral reduces to

gpωq “
1

π

ż 8

0
fptq cospωtqdt, (15.57)

because cosine is also an even function, while sine is odd. From this last equation, it is
obvious that if f is even, so is g. In the same way, if f is odd, so is g, because

gpωq “
i

π

ż 8

0
fptq sinpωtqdt, (15.58)

15.4.2 Example: Rectangular pulse

As an example, take the rectangular pulse function shown in Fig. 15.7a

fptq “

#

A for ´T ă t ď T

0 otherwise
(15.59)

This function does not repeat, so we can use the Fourier transform, which is only non-zero
between ´T and T :

gpωq “

ż T

´T
Aeiωt “ 2A

sinωT

ω
. (15.60)

This is the so-called sin cardinalis (sinc) function. Let’s draw gpωq. Remember from
calculus that

lim
xÑ0

sinx

x
“ 1, (15.61)

such that gpωq “ 2TA. When is gpωq “ 0? Simply when sinpωT q “ 0, so when ω “

π{T, 2π{T, 3π{T, .... Putting this all together, we get Fig. 15.7b.



198 CHAPTER 15. FOURIER ANALYSIS

y

t [s]

A

−T T

(a) Function f in time domain.

g

ω [rad/s]
−3π

T
−2π

T
− π

T

π

T

2π

T

3π

T

2TA 2A
sin(Tω)

ω

(b) Fourier transform of f in frequency domain.

Figure 15.7: Fourier analysis of rectangular pulse with width T and amplitude A in
Eq. (15.59).

15.4.3 Dirac delta function

Consider the step function, sometimes called the Heaviside step function shown in Fig. 15.8a,

fpxq “

$

’

&

’

%

1 for x ą 0

1{2 for x “ 0

0 for x ă 0

(15.62)

This equation is not continuous and it is not differentiable in x “ 0. Although it is not
well defined, we can intuitively say that the change that happens in x “ 0 is infinite, while
zero everywhere else. We therefore introduce the Dirac delta function:

Dirac delta function.

δpxq “

#

8 for x “ 0

0 otherwise
(15.63)

which has a unit integral (i.e. normalized),
ż 8

´8

δpxqdx “ 1. (15.64)

Because the Dirac delta function has an infinity, it is not well-defined in real calculus, but
it is still a useful and convenient tool for physicists and has many applications. More rig-
orous definitions exist, using so-called Schwartz distributions or measures in mathematical
analysis, but this falls outside the scope of this course.

The delta function is often depicted as a single spike, or with an arrow pointing to 1
as in Fig. 15.8b. Some books define it intuitively by taking the limit of some narrowing
function that has a fixed integral of 1, like those illustrated in Fig. 15.9.

The delta function can be shifted by a real constant a P R,

δpx ´ aq “

#

8 for x “ a

0 otherwise
(15.65)

still with an integral of one;
ż 8

´8

δpx ´ aqdx “ 1. (15.66)

The most useful property of this function is that it can “project” out a single value of f
when combined in an integral:

ż 8

´8

fpxqδpx ´ aqdx “ fpaq. (15.67)
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1

(a) Heaviside step function.

1

y

x

δ(x)

(b) Dirac delta function δpxq.

1

a

y

x

δ(x− a)

(c) Delta function δpx ´ aq shifted by a.

Figure 15.8: The Heaviside step function and Dirac delta function.
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(a) Rectangular function with width ϵ Ñ 0.

y

x

1√
2πσ

e−
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(b) Normal distribution with standard deviation σ Ñ 0.

Figure 15.9: Sometimes the Dirac delta function is defined as the limit of some narrow
spike function with fixed integral 1.

What has this to do with Fourier transformations? Well, suppose there is a function f
with the Dirac delta function as Fourier transform,

gpωq “ δpω ´ aq. (15.68)

The corresponding time function then must be

fptq “
1

2π

ż 8

´8

δpω ´ aqe´iωt dω

“
1

2π
e´iat.

(15.69)

(15.70)

If we are talking about real, physical observable, we only need the real part (see Sec-
tion 14.3.5),

Rerfptqs “
1

2π
cos at. (15.71)

Therefore, the spectrum of time-dependent cosine with frequency a is a single spike at a,
similar to what the trivial example 15.3.3 of a Fourier series.

15.5 Summary

Table 15.1 gives a summary of the different methods of expanding and representing certain
functions that we have seen in this course. A Taylor expansion is often used to approximate
functions around some point with a polynomial. Fourier series are used to decompose
a periodic function into a discrete sum sine and cosines, and can also be used as an
approximation with limited terms. A Fourier transformation is the continuous version of
a Fourier expansion, and is used to represent an aperiodic function in frequency space.
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Table 15.1: Comparison of different ways of expanding function.

Method Function conditions Formula Result

Taylor expansion Differentiable in a fpxq “
ÿ

nPN

f pnqpxq

n!
px ´ aqn Polynomial in a

Fourier expansion Periodic
(Piecewise) continuous fpxq “

ÿ

nPN

an cospnωtq `
ÿ

nPN

bn sinpnωtq
Discrete sum of
sines and cosines

Fourier transform
Aperiodic
Absolutely integrable
(Piecewise) continuous

fpxq “

ż 8

´8

gpωqe´iωt dω
Continuous integral
Aperiodic



Part III

Fluid dynamics

201





Chapter 16

Hydrostatics & Pressure

This part of the course will study the basics of fluid dynamics. A fluid is a substance that
has no fixed shape. They can be liquid or gas that occupy some volume and have some
pressure. Ideal liquids are incompressible, while gasses are compressible; gasses tend to
occupy the volume of their container, while liquids do not. Gases are a bit more complicated
as their temperature can also vary with pressure and volume, as we will see next semester
during the lectures on thermodynamics in PHY121. For now we will focus more on basic
properties such as pressure, density and velocity. In this chapter we will first look at the
basic concepts of hydrostatics, such as pressure.

What is pressure? Pressure P is when a total force F is applied to some surface with
are A,

Pressure.
P “

F

A
. (16.1)

It carries units of Pascal named after Blaise Pascal (1623–1662),

1Pa “ 1
N

m2
. (16.2)

16.1 Atmospheric pressure

Otto von Guericke demonstrated the existence of atmospheric pressure in 1654 in Magde-
burg. He sealed two large copper hemispheres and pumped out the air to create a vaccuum
inside. Even two teams of horses could not pull apart the hemispheres, demonstrating the
immense size of the atmospheric pressure.

The atmospheric pressure at sea level is about

Patm “ 101.325 kPa “ 1013.25 hPa “ 1 atm, (16.3)

P

(a) Pressure P “ FA on a surface with area A.
P

P

P

P

P

P

(b) Pressure is the same in all directions.

Figure 16.1: Pressure.
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Table 16.1: Units of pressure. (* Per definition.)

Pa bar atm torr psi
1Pa 1 1 ˆ 10´5 9.8697 ˆ 10´6 7.5006 ˆ 10´3 1.4504 ˆ 10´4

1 hPa 1 ˆ 102 “ 100* 0.001 9.8697 ˆ 10´4 0.750 06 0.014 504
1 kPa 1 ˆ 103 “ 1000* 0.01 9.8697 ˆ 10´3 7.5006 0.145 03
1mbar 1 ˆ 102 “ 100* 0.001 9.8697 ˆ 10´4 0.750 06 0.014 504
1 bar 1 ˆ 105 “ 100 000* 1 0.986 97 750.06 14.5038
1 atm 1.013 25 ˆ 104 “ 101 325* 1.0132 1 760* 14.6952
1 torr 133.32 1.3332 ˆ 10´3 1.3160 ˆ 10´3 1 0.019 336
1 psi 6894.76 0.068 948 0.068 049 51.715 1

where atm is one of the alternative units for pressure, see Table 16.1. Patm is the weight
(i.e. a force) of all the air above us that is spread out over some area.

How much weight does the atmosphere “feel” like on an area of A “ 1 cm2? The
total force would be F “ PatmA « 10.1N, which is like having a 1 kg mass weighing on
every square centimeter. However, we do not notice this, because our bodies are internally
pressurized: The pressure inside our body is the same as outside. We only experience it
when we find ourselves in a lower-pressure (like on a high mountain top), or high-pressure
environment (like when diving underwater), for which our lungs and bodies were not built.
Deep sea fish, like the so-called “blob fish”, live at depths where the pressure is 60 to
120 times higher than at sea level. At this high-pressure, they look like normal fish, but
once you take them to the surface, their bodies, which have evolved for high-pressure
environments, decompress and they become very ugly, memeable blobs.1

At any given height, a pressure pushes in all directions with the same value, as shown
in Fig. 16.1b. Pressure is a scalar; it has a particular value in each point in space, but it
does not have a particular direction. Pressure does exert a force orthogonal to a surface,
but the important thing is the difference of pressure on either side of some surface. This
is evident when you hold up the hand and feel no net force from atmospheric pressure
pushing on the top, bottom, or sides. If you put your hand on the tube of a running
vacuum cleaner, there will be a pressure difference, and the your hand will be “sucked”
onto the tube’s opening.

Another experiment you can try at home is holding a filled glass upside down with
a coaster blocking off the opening. The coaster will stay put and block the water from
running out. This happens because the atmosphere applies a pressure to the coaster, even
if it is upside down. Say the beer glass has an opening of radius 4 cm, then the net force
on the coaster from the atmosphere is about Fatm « 510N. Compare this to the weight of
the water push down on the other side: mg « 5N for half a liter of beer, which is about
half a kilogram. Clearly, the atmospheric pressure is much larger. Later in this chapter we
will see how pressure varies over height due to the added fluid weight.

16.2 Microscopic description

Why is there pressure? Where does it come from? Fluids are made out of small molecules
that can freely move around. Each one constantly collides with others, but also with the

1In fact, something similar likely happens to an astronaut who is thrown into the vacuum of space
without a suit: Beside suffocating, receiving horrible radiation, having their fluids boil and bubble form in
their blood, they will swell up because all internal gas expands due to the lack of external pressure. Their
body will not explode as in some movies, because the skin is elastic enough to withstand the increased
internal pressure.
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(a) A box of colliding gas
particle has a pressure.

P

V , P , T A

(b) A container with gas closed of with a
piston can measure the pressure.

P
pi = mvi

pf = mvf

(c) Gas particles collides off piston
causes an change in momentum.

Figure 16.2: Pressure is a macroscopic phenomena caused by collisions of gas particles
between each other and on the wall at the microscopic level.

walls of its surrounding container. When it does, it has a change in momentum

∆p “ pf ´ pf , (16.4)

which will be normal to the wall, as in Fig. 16.2c and this causes a small force

Fi “
∆pi

∆t
. (16.5)

There are actually many gas molecules constantly transferring small amounts of momentum
to the wall, roughly of the order of Avogadro’s number, NA Op1023q. The net force will
be experienced as a constant pressure P . We will study this in more detail as part of the
topic of statistical mechanics and thermodynamics in PHY121.

16.3 Bulk modulus

Even though we often assume solids and liquids are incompressible, in reality, they will
be somewhat compressed by a large enough pressure P . As a measure of a material’s
compressibility, we define the bulk modulus

Bulk modulus.
B “

´P

∆V {V
, (16.6)

where the total change in volume is ∆V . The minus sign makes B positive, as ∆V ă 0.
For gases the bulk modulus is very small and depends on temperature. For liquids and

solids, which are harder to compress, the bulk modulus are larger. Some examples are
listed in Table 16.2.

16.4 Pressure variation with depth

What is the pressure inside a liquid? Suppose you have a cylindrical container which is
closed at the bottom, but open at the top as in Fig. 16.3a. First consider the total force

Table 16.2: Some examples of the bulk modulus B.

Material B [Pa]
Iron 100
Lead 8
Water 2
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mg

FN

Fatm

P0 = Patm

P

A

h

(a) The force on the bottom of a container of
fluid with height h, area A is PA “ P0A` ρAhg.

h

P1P1

P2P2

P [Pa]

y [m]

y1

y2

Patm P1 P2

(b) Pressure increases linearly with depth y. The dif-
ference between y1 and y2 is ∆P “ ρgpy2 ´ y1q.

Figure 16.3: The pressure in a fluid varies with depth due to weight.

on the bottom of the container. The fluid has a mass density ρ and a height h, and the
cross-sectional area of the container is A, so the total weight is

Fg “ pρV qg “ ρAhg. (16.7)

At the same time, the atmosphere pushes down on the top with a pressure P0 “ Patm,

Fatm “ P0A. (16.8)

At the bottom there is a normal force holding everything in place, so at equilibrium,

FN “ Fatm ` Fg. (16.9)

Call the total pressure on the bottom P “ FN{A, then

PA “ P0A ` ρAhg, (16.10)

and so the total pressure on the bottom is

Pressure variation with depth (at hydrostatic equilibrium).

P “ P0 ` ρgh. (16.11)

Note that the cross-sectional area A cancels out, so the shape of the area really does not
matter, it can be a circle, rectangle, heart, or whatever. It can even vary over the height,
as the force is always “spread” out over the total area, P “ F {A.

The argumentation and result above do not only hold at the bottom of the container,
but also in every point in the fluid and on the walls at any depth. So the pressure increases
linearly with depth, but, the pressure is the same in all points as the same depth and in all
directions at equilibrium. So the pressure difference between any two depths, say y1 and
y2 is

∆P “ ρgpy2 ´ y1q “ ρgh, (16.12)

if h “ y2 ´ y1 as in Fig. 16.3b.
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Figure 16.4: The atmospheric pressure varies strongly with altitude. At sea-level, it is
typically about P “ 1013.25 hPa. Around h “ 5.5 km, the pressure is already halved.

16.4.1 Air pressure variation with altitude and weather

Air pressure in reality varies by altitude. The higher you go, the less air that weighs
down on you is above you. It is more or less exponential as shown in Fig. 16.4 instead of
linear, because the density and pressure of a gas also strongly depends on the temperature.
The pressure at the top of Mount Everest at 8850m is already one third of that at sea-
level, making it extremely hard to breathe for most people. The difference in pressure
is noticeable when you take a sealed bag of chips up a mountain, or by the feeling on
your eardrums when you take off in an airplane (even though the cabin inside is partially
pressurized).

16.4.2 Air pressure variation with weather

Local air pressure can vary wildly throughout the day from Patm “ 1013.35 hPa due to
weather, with typically changes by less than 10 hPa. This is mostly caused by changes in
temperature and creates so-called pressure systems that allow meteorologists to forecast
the weather. Namely, air typically flows from high to low pressure regions. Humid air
from low-pressure regions rise up, and can condense into rain clouds, while sinking air in
low-pressure regions often brings dryer and nicer weather.

Beside variations due to weather, sea-level air pressure rises and falls up to 3 hP (closer
to the equator) in 12 hour cycles due to atmospheric tides. The tides are mainly caused
by thermal radiation by the sun, and to a lesser extend, the gravitational pull from the
moon.

16.5 Measuring pressure

16.5.1 Manometer

A manometer is an instrument that can measure the pressure. Figure Fig. 16.5a shows
how a U-shaped tube with one open end can measure the pressure P on the closed end by
simply measuring the height difference of the fluid columns. If P ą Patm, the column on
the open end will be higher by a height h and vice versa if P ă Patm. If P ă Patm, then
the pressure P on the close end must be

P “ Patm ` ρgh, (16.13)

where ρgh corresponds to the extra weight of the highest column. We measure the height,
which can be expressed as

h “
P ´ Patm

ρg
. (16.14)
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P

Patm

h

(a) A U-tube manometer can mea-
sure the pressure P in the closed end.

Patm

P = 0

h

(b) A barometer measures
the air pressure.

h

P = 0

Patm

(c) Torricelli’s experiment. The weight
of the column creates a vacuum.

Figure 16.5: Pressure can be measured with the height of a fluid column.

16.5.2 Barometer

A barometer measures the air pressure. The open end is again exposed to atmospheric
pressure, while the closed end is completely filled with a fluid as in Fig. 16.5b. The
atmospheric pressure cannot compensate for the weight of the column if it is too high,
causing the column to drop, leaving behind a vacuum where P “ 0. The air pressure then
can be measured by total height of the fluid’s column:

Patm “ ρgh. (16.15)

16.5.3 Torricelli’s experiment

This is in fact how Evangelista Torricelli (1608–1647) performed his famous experiment in
1643. He filled a tube closed on one end with mercury, which is more than 13 times denser
than water, and put it upside down in a bowl as in Fig. 16.5c. This creates a vacuum on
the closed end. He used a tube of one meter, such that the mercury column height was
about

h “
Patm

ρg
« 0.76m. (16.16)

This is why the unit of pressure named after him is defined as

1 torr “
1

760
atm, (16.17)

where 760mm is the nicely rounded column height. A different, but closely related unit is
the mmHg, which is almost exactly the same as one torr. This type of units are still used
in medicine as well as in weather reporting and scuba diving.

Table 16.3: Some examples of volumetric mass densities ρ. Some metals are indicated
with atom number Z.

Material ρ [kg{m3]
Gold (Z “ 79) 19 320
Lead (Z “ 82) 11 340
Mercury (Z “ 80) 13 534
Iron (Z “ 26) 7870
Cooking oil 910–930
Ice 916.7
Fresh water 1000
Salt water 1030
Wood 400–1000
Air (at sea-level) 1.2
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In the 4th century B.C., Aristotle postulate that “nature abhors a vacuum”, meaning
that a vacuum cannot exist stably in Nature, as surrounding matter will always fill it.
With his experiment, Torricelli proved otherwise. His work led to the first speculations of
atmospheric pressure and invention of the barometer.

16.5.4 Drinking from a long straw

So what about water? The density of water is

ρ “ 1000 kg{m3 “ 1 kg{L (16.18)

by the old definition of kilogram. How long does the tube have to be to create a vacuum?
Well, the minimum length is given by the condition Eq. (16.15), so about h “ 10.3m.

When you drink cola through a straw, you create a lower pressure at the end in your
mouth by sucking. The higher atmospheric pressure then “pushes” up the cola. But if
you have straw longer than 10.3 meters, you cannot create a pressure lower than vacuum
anymore, so you will not be able to drink!

Until Torricelli’s work, people were very puzzled why their suction pumps could not
pump water from wells higher than 10 meters.

16.6 Pascal’s principle

The following is very useful.

Pascal’s principle. A change in pressure in any point of an enclosed, incompress-
ible fluid is transmitted undiminished to every other point in the the fluid and the
walls of the container.

This is best understood with the example of the hydraulic lift shown in Fig. 16.6. A force
F1 pushes down on the left piston with are A1. By doing so, it creates a change in pressure

∆P “
F1

A1
, (16.19)

which must equal the change in pressure on the piston on the right, so

∆P “
F1

A1
“

F2

A2
, (16.20)

where there is a force on the right piston,

F2 “
A2

A1
F1. (16.21)

This has many applications. It allows us to lift heavy things such as cars or the arm of an
excavator.

Say you want to lift a car of M “ 1500 kg from a circular hydraulic lift platform of
radius r2 “ 1m. If the smaller circular piston has a radius r1 “ 0.1m, then what force do
we need to hold the car in place? Using F2 “ Mg and A “ πr2, we roughly find

F1 “
A1

A2
F2 “

r21
r22

F2 “ 150N, (16.22)
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F1 F2

0

x1

0

x2

Figure 16.6: A hydraulic press demonstrating Pascal’s principle. A force F1 of the left
piston with area A1 causes an force F2 “ pA2{A1qF1 on the right piston with area A2.

which is the equivalent to a weight of only about 15 kg! So a 15 kg weight can compensate
for the total weight of the car, thanks to the factor of r21{r22.

So what if we want to lift the car by a height x2 “ 1 cm? The work to accomplish this
is

W “ F2x2, (16.23)

where F2 is the work done by the average force F2 on the large piston. The smaller piston
performs exactly this amount of work with some average force F1, and so

F1x1 “ F2x2. (16.24)

The smaller piston has to move a distance

x1 “
F2

F1
x2 “

A1

A2
x2 “ 1m, (16.25)

to move the car by a one meter with a force of about 150N!

16.7 Buoyancy

Suppose you fully submerge an object of density ρobj in a fluid with density ρℓ. Everyone
knows intuitively that the object will sink if ρobj ą ρℓ, and float if ρobj ă ρℓ. Even if it
sinks, the object will appear lighter; it will have “less weight”. The force that makes an
object float or feel lighter is called the buoyant force Fb, and it is caused by the difference
in pressure with depth.

Let’s have a closer look at what exactly happens in Fig. 16.7. The fully submerged
object feels a difference in pressure between the top and bottom. The pressure on the sides
cancel. The net upward force due to this pressure difference is

Fb “ F2 ´ F1 “ P2A ´ P1A, (16.26)

m

F2

F1mg

0

h1

h2

P

Patm

P1

P2

(a) Mass submerged at some depth. The total force
due to pressure on the top is F1, and F2 on the bottom.

F2

+

F1

=

Fb

(b) The net upward force due to
pressure is the buoyant force Fb.

Figure 16.7: A mass m that is completely submerged in a fluid at some depth experiences
a pressure differential. The pressure P2 on the bottom is larger than the pressure P1 on
the top. Pressure on the sides balance.
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where A is the top and bottom area of the object. From Eq. (16.12),

Fb “ pρℓghobjqA, (16.27)

where hobj is the object’s total height. The object’s total volume is then Vobj “ Ah, so the
buoyant force for a fully submerged object is

Buoyant force (fully submerged).

Fb “ ρℓVobjg. (16.28)

Clearly, if Fb ą mg, then the object will float to the top, while if Fb ă mg, it will sink.
The mass of the object is given by m “ ρobjVobj, so the weight is given by

Wobj “ mg “ ρobjVobjg. (16.29)

Comparing to Fb “ ρℓVobjg, we see that as expected the object floats when ρobj ă ρℓ and
sinks when ρobj ą ρℓ.

16.7.1 Archimedes’ principle

What if the object floats and is only partially submerged as in Fig. 16.8a? The pressure
on the top of the object is Patm, while on the bottom there is a pressure difference ρℓghsub,
where hsub is the height of the object that is submerged. Therefore, we can write the
buoyant force as

Fb “ ρℓVℓg, (16.30)

where Vℓ “ hsubA is the total volume of the object that is submerged. Notice that Vℓ is
actually the volume of the fluid that was displaced! This volume of the liquid has weight
Wℓ “ ρℓVℓg. This is Archimedes principle:

Archimedes’ principle. Body (partially or completely) submerged in fluid is forced
up by a buoyant force equal to the weight of fluid that is displaced; Fb “ ρℓVℓg.

If the body if fully submerged, h “ hsub and Vobj “ Vℓ, and we retrieve the previous
Eq. (16.28). Before it is fully submerged, the buoyant force varies linearly with depth hsub,
as shown in Fig. 16.8c.

hsub
m

Fb

mg

(a) The object is partially sub-
merged and floats if ρ ă ρℓ,
such that Fb ě mg.

mVobj
= V`

ρ`V`

ρobjVobj

(b) At equilibrium, the weight
of displaced fluid in (a) equals
the object’s weight ρℓVℓg “ mg.

Fb
=
ρ `
Ag
h su

b

Fb
=
ρ `
Ag
h su

b

Depth hsub

Fb

ρ`Vobjg

mg = ρobjVobjg

hobjheq

partial
submersion

full
submersion

(c) Buoyant force varies with submersion hsub.
Partially submerged, Fb “ ρℓAghsub. Once fully
submersed, the buoyant force is Fb “ ρℓVobjg.

Figure 16.8: Archimedes’ principle says that the buoyant force equals the weight of the
displaced liquid, Fb “ ρℓVℓg. If ρobj ă ρℓ, the object will float, with ρℓVℓg “ mg “

ρobjVobjg at hydrostatic equilibrium.
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At hydrostatic equilibrium, the buoyant force Fb must exactly balance the object’s
weight,

Fb “ ρobjVobjg, (16.31)

or,

Condition for floating at hydrostatic equilibrium.

ρobjVobj “ ρℓVℓ, (16.32)

where Vℓ is the volume of the displaced fluid, or equivalently of the part of the object that
is submerged.

16.7.2 Example: Iceberg

What fraction of a iceberg floating freely in salt water is submerged? Ice has a density of
ρi “ 916.7 kg{m3, smaller than that of salt water with ρw “ 1030 kg{m3. The volume Vsub

of the iceberg that is submerged is given by Eq. (16.32):

Vsub “
ρi
ρw

Vi, (16.33)

where Vi is the full volume of the iceberg. Therefore, the fraction that is submerged is

Vsub

Vi
“

ρi
ρw

“ 89%.

So the tip of the iceberg you see above sea water is only about 11% of the whole iceberg.

16.7.3 Archimedes’ trick: Measuring density

The famous legend tells the story that the king of Syracuse asked Archimedes (ca. 287–212
BC) to determine if his crown was made out of pure gold without damaging it. Archimedes
accepted the challenge and started thinking. When he visited one of the public bath houses
and lowered himself in the tub of water, he noticed the water level rising. This gave him
a great idea to find out the density of the crown. He was so excited, he ran out into the
streets, still naked, yelling “Eureka!” (“I have found it!”). It turned out that the goldsmith
had indeed deceived the king and mixed in the cheaper and less dense silver.

Let’s study this problem. Say you have a mass m that is denser than water, ρobj ą ρℓ.
You submerge it fully in a container with water and hold it in the middle with a wire like in
Fig. 16.9. Without the water, the wire would have a tension T “ mg equal to the weight,
but now there is the additional buoyant force making the mass appear lighter:

T “ mg ´ Fb. (16.34)

m

FbT

mg

Figure 16.9: Object with higher mass density than the fluid, ρ ą ρℓ is held in place by
a wire.
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With a scale we can measure the weight Wobj “ mg and the new apparent weight T . Since
the object is fully submerged, Fb “ ρℓVobjg, which is the weight

Wℓ “ mℓg “ ρℓVℓg (16.35)

of the total volume of displaced fluid, Vℓ “ Vobj, with mass mℓ “ ρℓVℓ. Therefore, we can
write the object’s density relative to water as

ρobj
ρℓ

“
m{Vobj

mℓ{Vℓ
. (16.36)

The volumes cancel and we can substitute the weights

ρobj
ρℓ

“
m

mℓ
“

mg

Wℓ
. (16.37)

By Archimedes’ principle, Fb “ Wℓ, such that

ρobj
ρℓ

“
mg

mg ´ T
. (16.38)

There are two ways to find the density ratio: Either you weigh the displaced water to find
mℓ, or you measure the tension T . The displaced water can be weighed by pouring off the
water above the normal level and placing it on a scale, or if you know the container’s area
and ρℓ simply by measuring difference of the water level. The tension can be measured
with a Newton meter, like a spring scale, or an old-fashioned balance scale.
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Chapter 17

Fluids in Motion

17.1 Continuity equation

Suppose you have a pipe as in Fig. 17.1a that has two sections with different cross-sectional
areas A1 and A2. Water flows through the pipe, and now suppose some section of water of
volume V1 enters the first section with some velocity v1. The volume can be expressed as

V1 “ A1v1∆t, (17.1)

where ℓ1 “ v1∆t is the distance traveled in time interval ∆t. By the same argument, the
volume in the second section is

V2 “ A2v2∆t. (17.2)

We assume that the fluid is incompressible, such that for the same ∆t, V1 “ V2, and

A1v1∆t “ A2v2∆t, (17.3)

or,

A1v1 “ A2v2 “ const. (17.4)

We define the volume flow rate, or current flow,

Current flow.
Iv “ Av, (17.5)

which has units m3{s. We now arrive at a special equation that deserves its own box:

Continuity equation.
Iv “ Av “ const. (17.6)

This equation simply tells us that the flow that goes in a pipe on what end, must come
out on the other. So if the area A gets bigger, then the velocity gets bigger, then velocity
decreases.

215
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(a) Pipe with two segments of cross-sectional area
A1 and A2.

P1

P2

v1

v2
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A2

h1

h2F1

(b) Pipe with two segments of volumes V1 and V2 and
cross-sectional area A1 and A2 at different heights.

Figure 17.1: Fluids in pipes with different shapes and cross-sectional areas.

17.2 Bernouilli’s equation

What if the pipe changes height in a gravitational field as in Fig. 17.1b? If the fluid is
raised by some height h, it will lose some kinetic energy and gain potential energy, and
vice versa if the fluid is lowered by some height. In some ∆t, some small volume ∆V of the
fluid with mass ∆m “ ρ∆V gets lifted by a height h “ h2 ´ h1. The change in potential
energy for such a volume is

∆U “ ∆mgh “ ρ∆V gh, (17.7)

which can be negative or positive depending on the sign of h “ h2 ´h1. The corresponding
change in kinetic energy is,

∆K “
1

2
∆mv22 ´

1

2
∆mv21 (17.8)

The work-energy theorem states that the total work done by the fluid is

W “ ∆U ` ∆K, (17.9)

or,

W “ ρ∆V gh `
1

2
ρ∆V pv22 ´ v21q. (17.10)

But we know that work comes from force times distance, W “ F∆x, so where does the
force come from? In the case of these fluids, there has to some pressure that pushes the
fluid through the pipe. The force at the bottom of the pipe, F1, comes from some pressure
P1, and the opposing force F2 at the top of the pipe comes from pressure P2. At the
bottom, we have

W1 “ F1∆x1 “ P1A1∆x1 “ P1∆V , (17.11)

while at the top for ∆V “ A2∆x2,

W2 “ ´P2∆V , (17.12)

where the minus sign indicates that F2 is opposite to ∆x2 and F1. Then, the total work
done is

W “ W1 ` W2 “ pP1 ´ P2q∆V . (17.13)

We compare this equation to Eq. (17.13), and find

P1 ´ P2 “ ρgh `
1

2
ρpv22 ´ v21q (17.14)

Reshuffling, we arrive at Bernoulli’s equation:
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Bernoulli’s equation. Between any two points in a pipe,

P1 ` ρgh1 `
1

2
ρv21 “ P2 ` ρgh2 `

1

2
ρv22. (17.15)

In other words, the sum of quantities on either side always stay constant throughout the
pipe. Note that this is basically the equivalent of energy conservation for fluids. The
ρgh terms corresponds to gravitational potential energy and 1

2ρv
2 corresponds to kinetic

energy. The P1 and P2 terms correspond to the work done by forces pushing the fluid. As
with potential energy, we will see that differences ρgph2 ´ h1q and P2 ´ P1 are important
than their individual values.

At rest, the kinetic terms drop, and we find our previous result Eq. (16.11):

P2 “ P1 ` ρgph1 ´ h2q. (17.16)

17.2.1 Torricelli’s law

As an example, consider a tank of fluid with holes in it, as in Fig. 17.2. A water stream
will be pouring out the holes. The pressure is higher the deeper you go in the fluid, so the
lower the hole, the higher the initial velocity of the stream. Apply Bernoulli’s equation
(17.15) to the top of the fluid and on hole. We can simplify this equation by setting h1 “ h
on the top and h2 “ 0 at the hole:

P1 ` ρgh `
1

2
ρv21 “ P2 `

1

2
ρv22. (17.17)

The top and the hole are exposed to the atmosphere, and therefore we also know that
P1 “ P2 “ Patm. Furthermore, if the tank is very large, we can assume that the tank level
stays constant, neglecting the velocity of fluid at the top as the water level lowers. This
means that v1 « 0. We are left with

ρgh “
1

2
ρv22. (17.18)

Rewriting this, give us

Torricelli’s law.
v “

a

2gh. (17.19)

Notice that this is the same result as for an object falling freely over a height h, see
Section 4.3.1.

h
v

Figure 17.2: The initial velocity of streams in leaks depends on the height.
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A1 A2

v1 v1v2v2

P1

P2

Figure 17.3: Pipe with two segments of cross-sectional area A1 and A2.

17.2.2 Venturi effect

Now consider a fluid moving trough a pipe with a cross-sectional area A1 that has a narrow
middle section with area A2 ă A1 as in Fig. 17.3. We assume that the pressure P1 is the
same on either end, and that the height does not change. We are therefore left with the
continuity equation,

v2 “
A1

A2
v2. (17.20)

If A2 is more narrow, A2 ă A1, then the velocity has to be larger there, v2 ą v1. What is
the pressure there? Bernouilli’s equation reduces to

P1 `
1

2
ρv21 “ P2 `

1

2
ρv22. (17.21)

Since v2 ą v1, the pressure will drop in the narrow section, P2 ă P1. This is called the
Venturi effect.

Venturi effect. The pressure of a fluid decreases when its speed increases.

When large vehicles, like trucks or trains, move by very fast, it can feel as if they are
sucking you in due to the pressure drop. Similarly, when a train enters a narrow tunnel
at high speed, the air between the train and tunnel walls suddenly speed up, and you can
sometimes feel the difference in pressure on your ear drums.

An experiment that you can try at home is the following. Hold a piece of paper by the
corners of a short end close to your mouth, and blow above it. Because the fast air passing
above, the paper will lifted upward. This is similar to how some airplane wings can create
a lift: Due to its shape, the air above the wing will travel faster than the air below.

17.3 Current resistance & viscous flow

Bernouilli’s equation states pressure is the same anywhere in a pipe at constant height and
constant area. However, in practice, we see that there is a pressure drop ∆P across the
pipe. This can be explained by a drag force on the fluid coming from the pipe’s surface and
from each the fluid itself. To see why the fluid exerts a drag force on itself, imagine different
concentric layers of the fluid as in Fig. 17.4a. The outer layer is dragged by the surface, and
gets slowed down. This layer in turn, slows down the next layer due to internal friction,
etc. Typically, the fluid will move faster in the center than close to the pipe’s surface.
There is a pressure difference that is proportional to the current flow,

Pressure drop due to drag.

∆P “ P1 ´ P2 “ RIv, (17.22)
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with Iv “ vA again, and where R is a constant of resistance. The larger R, the larger the
drag, and the larger the pressure drop. The resistance for steady flow in a pipe is

Resistance for steady flow in a cylindrical pipe.

R “
8ηL

πr4
, (17.23)

where L and r are the length and radius of the pipe, respectively, and η is the coefficient
of viscosity that depends on the material. A high viscosity means a large drag (like honey
or crude oil), while low viscosity means the fluid can easily flow with too much drag (like
water).

To define the viscosity η, take two plates that each have an area A and are separated
by a height z. Suppose there is a fluid in between, that we imagine has different layers as in
Fig. 17.4b. We push the top plate with some force F , such that it has a constant horizontal
velocity v. The fluid below will also start to move due to drag, but the drag is larger closer
to either plates. We see that the velocity continuously varies with z. Experimentally, it is
found that

F “
ηvA

z
. (17.24)

By measuring the speed v for a given force F , we obtain η. Notice that the units of η are
Ns{m2 or Pa s. It even has its own units of Poise (P),

1P “ 0.1Pa. (17.25)

From Eqs. 17.22 and 17.23 we see that the flow for a cylindrical pipe is

Iv “ ∆P

ˆ

πr4

8ηL

˙

. (17.26)

There are several interesting conclusions one can draw from this equation. For the same
pressure difference ∆P , the flow rate depends on r4. For the same pressure difference ∆P
and radius r, the flow rate is inverse proportional to the pipe’s length L.

17.4 Laminar & turbulent flow

A flow that can be thought of as moving in separate, adjacent layers that do not mix as
in Fig. 17.4a, is called laminar.

Consider you put an obstacle in a fluid that is in laminar flow. For small velocities, the
fluid will smoothly flow around the object without mixing its layers, such that after passing

(a) Pipe with laminar flow: Layer close to the wall go slower due
to drag forces. The dashed line is the laminar boundary layer.

F
v

Az

0

h

(b) Defining the viscosity η by moving
the the top plate.

Figure 17.4: In laminar flow, you can cleanly divide up the moving fluids into layers
moving with their own speed.
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(a) Laminar flow with an obstacle. The
layers do not mix.

(b) Under some conditions, an object
causes turbulence after.

Figure 17.5: An obstacle in a flow of fluid can cause turbulence.

the obstacles, it will still continue as laminar flow. This is shown in Fig. 17.5a. (Note that
the velocity of flow is relative: The fluid can move, while the object is stationary, but the
object can also be moving in a stationary fluid.)

At large velocities, however, there will be a transition from laminar to turbulent flow,
depicted in Fig. 17.5b. Here the layers of the fluids start mixing and the moving in a chaotic,
unpredictable pattern. This happens at some critical velocity, which can be understood
with Reynold’s number,

Reynold’s number in a cylindrical pipe.

NR “
2rρv

η
. (17.27)

The Reynold’s number does not have any units. It gives the condition of type of flow. If
NR ă 2000, then the flow will be laminar. If NR ą 3000, then the flow will be turbulent.
Between 2000 and 3000 there will be some transition regime. So if a laminar fluid starts
moving very fast, it will become more turbulent.

If the pressure difference ∆P across a pipe is higher, the velocity v and Reynold’s
number NR will become larger and the flow will become turbulent. The turbulence will
reduce the overall flow as shown in Fig. 17.6.

17.5 Magnus effect

A object that is rotating and moving relative to a fluid will experience a net force. This is
called the Magnus effect and is depicted in Fig. 17.7.

Remember the Venturi effect: If the fluid’s velocity increases, then the pressure de-
creases. Because the object is rotating, the relative velocity between the object’s surface
and the fluid will be larger on one side than the other. This generates a pressure difference,
and therefore a net force that tends to push the object from the high pressure toward the
low pressure.

Pressure difference ∆P

F
lo

w

laminar turbulent

Figure 17.6: Flow becomes turbulent at large pressure differences ∆P . At higher ∆P ,
the velocity v and Reynold’s number NR will become larger.



17.5. MAGNUS EFFECT 221

v

FMag
low

pressure

high
pressure

Figure 17.7: A rotating object moving relative to a fluid will feel a difference in pressure,
causing a net force FMag.

The Magnus effect allows players in baseball and football to curve a ball by giving it
the right spin when throwing or kicking it. Similarly, a golf ball with backspin will spin
higher into the air than with the same velocity but no spin.
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Chapter 18

Surface Tension

As we have seen in the last few chapters, a random point inside a fluid feels pressure from
all sides due to molecules constantly colliding into each other and their container. However,
the molecules of the fluid can in addition be attracted to each other due to cohesive forces.
A random molecule inside a liquid will feel an equal attractive force from all directions,
causing them to cancel. A molecule that is on the surface of the liquid, however, will only
feel a cohesive force from this liquid below and from the sides, shown in Fig. 18.1a. The
forces from the liquid molecules underneath are therefore unbalanced, and causes a pull
inward. This generates some internal pressure that will deform the surface to minimize
the area. The so-called surface tension is the total unbalanced force from the molecules of
liquid below. The liquid’s surface, as a consequence, acts as a stretchable membrane that
can carry the weight of a light object that would otherwise sink (ρobj ą ρℓ), like a needle
or insect.

If you look more closely at the cross section of a floating needle on a water surface, you
would see that the surface, otherwise flat, is indented as in Fig. 18.1b. Over the whole area
where the needle is touching the water, there is a force Fst which is balancing the force
of gravity Fg “ mg. In general, the surface tension Fst on a thin object like a needle, is
proportional to the total length L of the object,

Surface tension on a thin, long object.

Fst “ γL, (18.1)

where γ is a constant that depends on the liquid and its temperature. It is defined as the

(a) The attractive force on a molecule inside the
liquid cancel, but not on the surface. The surface
will act as a stretchable membrane.

mg

Fst,1Fst,2 θ θ

mg

Fst,1Fst,2 θ θ

(b) The total surface tension Fst from the points of contact
balances the weight of the needle, Fg “ mg. The weaker
the surface tension, the deeper the indent.

Figure 18.1: The surface tension of a liquid can balance a metal needle with ρobj ą ρℓ.

223
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θCθC

(a) Convex meniscus with θC ą 90˝ has
stronger cohesion than adhesion.

θCθC

(b) Concave meniscus with θC ă 90˝ has
stronger adhesion than cohesion.

Figure 18.2: Capillary action

amount of force per unit length,

γ “
Fst

2L
. (18.2)

The needle indents the surface, and there is a surface tension form either side, as shown in
Fig. 18.1b. Therefore, the vertical component of the total surface tension is

Fst,y “ Fst,1 cos θ ` Fst,2 cos θ “ pγLq cos θ. (18.3)

The needle floats as long as Fst,y ą mg, and the surface will change shape to find equilib-
rium.

The angle θ decreases for larger needle’s mass m. The maximum mass mmax of a needle
with length L that the surface tension can carry is when θ “ 0, such that

mmax “
2γL

g
. (18.4)

18.1 Surfactants & soap bubbles

Soap, whose molecule has one hydrophilic end that attracts water, can lower the surface
tension of water, causing an insect of needle to sink through. Soap is therefore called a
surfactant (from “surface-active agent”).

Surfactants in combination with water can create foam and bubbles. Without a surfac-
tant, the water surface tension is too large to form stable bubbles. Soapy water will create
a film, which is a thin layer of water that is between two layer of soap. Soap molecules
have one greasy, hydrophobic end that stick out to the outside of the film and protects
the water from evaporation, prolonging the bubble’s lifetime. When a soap film encloses
some air, it will form a sphere to minimize the surface tension, and therefore the area. The
pressure of the trapped air is slightly increased to balance the internal pressure due to the
surface tension.

18.2 Capillary action

One consequence of surface tension is capillary action. This comes from the attractive
adhesive forces between the liquid and walls of the container. If the adhesive forces with
the wall are larger than the cohesive forces between the molecules, the surface will make
a “U” shape (i.e. concave). If the cohesive forces are larger than the adhesive forces, the
surface will curve upward in the middle (i.e. convex ). A curved surface of a liquid is called
a meniscus. This can be described by the contact angle between the surface and the wall,
θC, shown in Fig. 18.2.

The contact angle θC depends on the fluid and container materials. For water in a glass
container, θC “ 0, creating a very concave-shaped meniscus. For mercury with glass, it is
θC “ 140˝, creating a concave meniscus.
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