Reciprocal Lattice

Recap

Basis • $(0,0)$

- $\left(1 / 21^{1 / 2}\right)$

$$
\text { CRYSTAL }=\text { LATTICE }+ \text { BASIS }
$$

translation symmetry

$$
\vec{r}^{\prime}=\vec{r}+\vec{T}=\vec{r}+u_{1} \bar{a}_{1}+u_{2} \bar{a}_{2}+u_{3} \bar{a}_{3}
$$

\bar{a}_{i} : primitive lattice vectors
u_{i} : arbitrary integers

Learning outcomes of today

A crustal can also be seen as made up of equidistant planes

Lattice planes

A crystal lattice may be considered as an aggregate of a set of parallel equidistant planes of high density of lattices points

A lattice plane (or crystal plane) is a plane containing at least three non-collinear (and therefore an infinite number of) points of the lattice

Lattice planes - Index system: Miller Indices

Miller indices are integers m_{1}, m_{2} and m_{3} that refer to the intercepts made by a plane on axes a_{1}, a_{1} and a_{3}.

- Determine the intercepts of the plane along the axes x, y and z in terms of the lattice constant a_{1}, a_{2}, a_{3}. $1 a_{1} 1 a_{2} 1 a_{3}$
- Determine the reciprocals of these numbers: $1 / m_{1}, 1 / m_{2}, 1 / m_{3}$.

- Find the least common denominator (LCD) and multiply each by this lcd.
(111)

The result is written in the form (hel) and is called the Miller Indices of the plane.

Indices (KC) might denote a single plane or a set of parallel planes

Lattice planes - Index system: Miller Indices

Miller indices are integers m_{1}, m_{2} and m_{3} that refer to the intercepts made by a plane on axes a_{1}, a_{1} and a_{3}.

- Determine the intercepts of the plane along the axes x, y and z in terms of the lattice constant $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$.
$3 a_{1} 2 a_{2} \quad 2 a_{3}$
- Determine the reciprocals of these numbers: $1 / m_{1}, 1 / m_{2}, 1 / m_{3}$.

- Find the least common denominator (LCD) and multiply each by this lcd.
(233)

Reduce them to integers having the same ratio (usually the smallest)

The result is written in the form (hl) and is called the Miller Indices of the plane.

Lattice planes in cubic crystals
it indicates that intercept at the negative side

$$
\frac{1}{1} \frac{1}{0} \frac{1}{0} \longrightarrow(100)
$$ of the origin

In a cubic crystal, the (001), (010), (100), (00T), (0T0), (T00) planes are equivalent by symmetry

$$
\{100\}
$$

Draw a plane for the given miller indices:
(110)

it ats $a_{3} @ \frac{1}{2}$
 (112)

A family of lattice planes is an infinite set of equally separated parallel lattice planes which taken together contain all points of the lattice

Some Families of Lattice Planes for Simple Cubic Lattice

Family of Lattice Planes for BCC Lattice

(001)NOT a Family of Lattice
Planes for BCC Lattice

* plane (002): parallel to (001) but outing a_{3} at 1/2a

How can we study crystals?

A number of techniques allow to obtain experimental evidence of the periodicity of atomic structures:

(1) x-ray diffraction
(2) neutron diffraction
(3) electron diffraction
(4) High resolution electron microscopy
(5) Scanning tunneling microscopy

Diffraction: constructive interference of the scattering from a large number of
cells.

Bragg Law

- Elastic scattering ($E=\hbar \omega$ is conserved)
- Condition for constructive interference:

Constructive Interference

Destructive Interference

$2 d \sin \theta=n \lambda \Longrightarrow \lambda \leqslant 2 d$

$$
d v 5 \AA
$$

Meaning of d

$$
2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda
$$

Simulated diffraction patterns for $\lambda=1.5406 \AA$ and different distance between planes

Determine the lattice parameter for NaCl

$$
\begin{aligned}
2 d \sin \theta & =n \lambda \\
d & =\frac{n \lambda}{2 \sin \theta}
\end{aligned}
$$

(200)

Fast Fourier transform

Analogy

Real space

$$
\vec{r}^{\prime}=\vec{r}+\vec{T}
$$

$$
n(\vec{r})=n(\vec{r}+\vec{T})
$$

[A$]$

Reciprocal time
Angular freq: $\omega=\frac{2 \pi}{T}\left[s^{1}\right]$

Reciprocal space
$\frac{2 \pi}{a}$
$\left[\dot{A}^{-1}\right]$

Fourier analysis

Fourier analysis 1D
ID $\vec{r} \rightarrow x \Rightarrow$ periodicity $n(x+a)=n(x)$
n : it can be expanded in a Fourier series

$$
\begin{aligned}
& n(x)=n_{0}+\sum_{\lambda>0}\left[c_{p} \sin \left(\frac{2 \pi}{a} p x\right)+s_{p} \sin \left(\frac{2 \pi}{a} p x\right)\right] \\
& \text { p: positive Fourier coefficients to ensure periodicity } \\
& n(x+a)=n_{0}+\sum_{p>0}\left[c_{p} \cos \left(\frac{2 \pi}{a} p x+\frac{2 \pi}{\not a} p \alpha\right)+s_{p} \sin \left(\frac{2 \pi}{a} p x+\frac{2 \pi}{\alpha} p \alpha\right)\right]=n(x)
\end{aligned}
$$

Fourier analysis ($1 D$)
Complex notation is useful because it is more compact:

$$
\begin{array}{ll}
n(x)=\sum_{p \in \mathbb{Z}} u_{p} \exp \left(i \frac{2 \pi}{a} x\right) & n(x+a)=n(x) \\
\text { all }{ }_{i} \text { tegers } & \\
\text { complex number: to ensure } n(x) \text { is real: } u_{p}^{*}=u_{p}
\end{array}
$$

$G_{p} \equiv \frac{2 \pi}{a} p=0, \pm \frac{2 \pi}{a}, \pm \frac{4 \pi}{a} \cdots \quad \begin{array}{r}\text { These points constitute the } \\ \text { reciprocal lattice if Fo rn }\end{array}$ redprocal lattice in Fourier space

We can also write the periodic function: $n(x)=\sum_{p} n_{p} e^{i G_{p x}}$
analogy: each Gp would be the harmavic and up its awpledude
https://www.falstad.com/fourier/

Real and reciprocal lattice in 1D

How is the Reciprocal Lattice constructed

Reciprocal Lattice vectors
iv $1 D \quad G_{p}=\frac{2 \pi}{a} p$
$3 D \quad n(\vec{r})=\sum_{\vec{G}} n_{\vec{G}} \exp (i \vec{G} \cdot \vec{r})$
If \vec{a}_{1}, \vec{a}_{2} and \vec{a}_{3} are primitive vectors of the crystal lattice, the reciprocal lattice can be generated by:

$$
\overrightarrow{b_{i}} \cdot \vec{a}_{i}=2 \pi \delta_{i j}
$$

$$
\left.\begin{array}{l}
\vec{b}_{1}=2 \pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}} \\
\vec{b}_{2}=2 \pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}} \\
\vec{b}_{3}=2 \pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}}
\end{array}\right\} \rightarrow \begin{aligned}
& \overrightarrow{b_{i}} \cdot \overrightarrow{a_{\imath}}=2 \\
& \bar{b}_{2} \cdot \vec{a}_{2}=2 \pi \\
& \bar{b}_{2} \cdot \bar{a}_{1}=0 \\
& \frac{2 \pi}{v_{c}} \overline{a_{1}} \times \bar{a}_{2}
\end{aligned}
$$

$$
\delta_{i j}=1 \quad i=j
$$

$$
\delta_{i j}=0 \quad i \neq j
$$

$\bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}$ are primitive lattice vectors $5_{1}, b_{2}, b_{3}$ will be primitive vectors of the reciprocal Lattice

Reciprocal Lattice
any point of the reciprocal lattice can be described by the reciprocal lattice vector $\vec{G}=\eta \bar{b}_{1}+K \bar{F}_{2}+e \bar{b}_{3}$ with $h_{1} K, l=0, \pm 1, \pm 2 \ldots$
these $\overline{\text { on }}$ vectors are the
ones entering one

$$
n(\vec{r})=Z_{\sigma} n_{G} \exp (i \bar{\sigma} \vec{r})
$$ ones entering one Farrier series

given that the crystal is invariant under \vec{T} :

$$
\begin{aligned}
& n(\vec{r}+\vec{T})=Z_{G} n_{G} \exp (i \vec{\sigma}(\vec{r}+\vec{T}))=Z_{G} n_{G} \exp (i \bar{\sigma} \vec{r}) \underbrace{\exp (i \bar{\sigma} \bar{T})}_{111}=n(\vec{r}), \\
& \vec{G} \cdot \vec{T}=2 \pi(\underbrace{h u_{1}+K u_{2}+l u_{3}})=2 \pi p \rightarrow \exp (i G T)=1 \\
& \sigma_{\imath} a_{j}=2 \pi \delta_{i j} \\
& e^{i \overrightarrow{\vec{G}} \cdot \vec{T}}=1 \\
& \text { Vectors of the } \\
& \text { reciprocal Lattice } \\
& \text { are defined } \\
& \text { through this } \\
& \text { expression }
\end{aligned}
$$

So, every arystal has 2 Lattice associated:

Reciprocal lattices in 3D
Reciprocal lattice to simple cubic

$$
\begin{array}{cc}
\vec{a}_{1}=a \hat{x} & \vec{a}_{2}=a \hat{y} \\
\vec{b}_{1}=2 \pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}} & \\
\vec{b}_{2}=2 \pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}} \\
\vec{b}_{3}=2 \pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}} & \\
\vec{b}_{1}=\frac{2 \pi}{a} \hat{x} \quad \vec{b}_{2}=\frac{2 \pi}{a} \hat{y} & \vec{b}_{3}=\frac{2 \pi}{a} \hat{z}
\end{array}
$$

the reciprocal Lattice of a simple cube is a cube of lattice constant $\frac{2 \pi}{a}$

A lattice plane (or crystal plane) is a plane containing at least three non-collinear (and therefore an infinite number of) points of the lattice

A family of lattice planes is an infinite set of equally separated parallel lattice planes which taken together contain all points of the lattice

Reciprocal lattice points as families of lattice planes

The families of lattice planes there are in one-to-one correspondence with the possible directions of the reciprocal lattice vectors, to which they are normal.

For a family of planes separated d,

The reciiprocal vector $\vec{G}=h \vec{b}_{1}+k \vec{b}_{2}+l \vec{b}_{3}$ is perpendicular to the real lattice plane with index $h k l$.

Further, the spacing between these lattice planes is

$$
d=\frac{2 \pi}{\left|\vec{G}_{\text {min }}\right|}
$$

where $\vec{G}_{\text {min }}$ is the minimum length reciprocal lattice vector in this normal direction.

Square Lattice

$$
\begin{aligned}
& \bar{T}=u_{1} \bar{a}_{1}+u_{2} \overline{a_{2}} \\
& \left.\bar{a}_{2} \uparrow \quad \begin{array}{l}
\\
\bar{a}_{1}=a(1,0) \\
\overline{a_{2}}=a(0,1)
\end{array}\right\} \quad \begin{array}{l}
\\
\bar{a}_{1}=\frac{2 \pi}{a}(1,0) \\
\bar{a}_{2}=\frac{2 \pi}{a}(0,1)
\end{array}
\end{aligned}
$$

Ex. 1) $\vec{G}_{1}=\vec{b}_{1} \quad d_{10}=\frac{2 \pi}{|G|}=\frac{2 \pi}{\frac{2 \pi}{a}}=a$
Ex 2) $\vec{G}_{2}=b_{1}+b_{2} \quad d_{11}=\frac{2 \pi}{|G|}=\frac{2 \pi}{\frac{2 \pi}{a} \sqrt{2}}=\frac{a}{\sqrt{2}}=\frac{a \sqrt{2}}{2}$

Quiz

- Determine the reciprocal lattice vectors associated to
a) $1,9,17, \ldots$
b) $1,5,9, \ldots$
c) $1,3,5, \ldots$
d) $1,2,3,4, \ldots$
e) $1,2,5,6, \ldots$

