Reciprocal Lattice

Recap

CRYSTAL = LATTICE + BASIS
translation symmetry

$$\vec{r}' = \vec{r} + \vec{T} = \vec{r} + 2\sqrt{a_1} + 2\sqrt{a_2} + 2\sqrt{a_3}$$

 $\vec{a}_i : \text{ primitive lattice vectors}$
 $u_i : arbitrary integers$

٠

Bassis ● (0,0) ● (1/2,1/2)

A crystal can also be seen as made up of equidistant planes

Lattice planes

A crystal lattice may be considered as an aggregate of a set of parallel equidistant planes of high density of lattices points

A *lattice plane* (or *crystal plane*) is a plane containing at least three non-collinear (and therefore an infinite number of) points of the lattice

Lattice planes – Index system: Miller Indices

Miller indices are integers m_1 , m_2 and m_3 that refer to the intercepts made by a plane on axes a_1 , a_1 and a_3 .

(111) plane

Х

āz

Primitive or Simple

01

Ô.

- Determine the intercepts of the plane along the axes x, y and z in terms of the lattice constant a_1 , a_2 , a_3 .
- Determine the reciprocals of these numbers: $1/m_1$, $1/m_2$, $1/m_3$.
- Find the least common denominator (LCD) and multiply each by this lcd.
 (111)

The result is written in the form (hkl) and is called the Miller Indices of the plane.

Indices (hKe^l) might denote a single plane or a set of parallel planes

Lattice planes – Index system: Miller Indices

Miller indices are integers m_1 , m_2 and m_3 that refer to the intercepts made by a plane on axes a_1 , a_1 and a_3 .

- Determine the intercepts of the plane along the axes x, y and z in terms of the lattice constant a_1 , a_2 , a_3 . 304 202 203
- Determine the reciprocals of these numbers: $1/m_1$, $1/m_2$, $1/m_3$.
- Find the least common denominator (LCD) and
 multiply each by this lcd. (233)

Reduce them to integers having the same ratio (usually the smallest)

The result is written in the form (hkl) and is called the Miller Indices of the plane.

A *family of lattice planes* is an infinite set of equally separated parallel lattice planes which taken together contain all points of the lattice

How can we study crystals?

A number of techniques allow to obtain experimental evidence of the periodicity of atomic structures:

- (1) x-ray diffraction
- (2) neutron diffraction
- (3) electron diffraction
- (4) High resolution electron microscopy
- (5) Scanning tunneling microscopy

beam (x-ray Diffraction: constructive interference of the scattering from a large nomber of cells.

Bragg Law

Constructive Interference

$$2d\sin\theta = n\lambda \implies \lambda \le 2d$$

 $d \ge 5\hat{A}$

Meaning of *d*

 $2d \sin\theta = n\lambda$

Simulated diffraction patterns for λ = 1.5406 Å and different distance between planes

Determine the lattice parameter for NaCl

Fast Fourier transform

Fourier analysis
1D
1D
1D
1D
1D
1D
1D
1D
1D
Fourier Aualysis 1D
1D

$$\vec{r} \rightarrow x \Rightarrow$$
 perioducity $n(x+a) = n(x)$
 $n(x) = N_0 + Z \left[cp \sin(\frac{2T}{a}px) + sp \sin(\frac{2T}{a}px) \right]$
 $p: perioducity$
 $n(x+a) = N_0 + x = perioducity$
 $p: perioducity$
 $n(x+a) = n(x)$
 $n(x+a) = n(x)$
 $p: perioducity$
 $n(x+a) = n(x)$
 $n(x) = N_0 + Z \left[cp \sin(\frac{2T}{a}px) + sp \sin(\frac{2T}{a}px) \right]$
 $p: perioducity$
 $n(x+a) = N_0 + Z \left[cp \cos(\frac{2T}{a}px + \frac{T}{a}px) + sp \sin(\frac{2T}{a}px + \frac{2T}{a}px) \right] = n(x)$

https://www.falstad.com/fourier/

Real and reciprocal lattice in 1D

How is the Reciprocal Lattice conctructed

Reciprocal Lattice vectors

in 1D
$$G_{p} = \frac{2\pi}{a}p$$

3D
$$n(\vec{r}) = \sum_{\vec{G}} n_{\vec{G}} \exp(i\vec{G} \cdot \vec{r})$$

a

If \vec{a}_1 , \vec{a}_2 and \vec{a}_3 are primitive vectors of the crystal lattice, the reciprocal lattice can be generated by:

$$\vec{b}_{1} = 2\pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}}$$

$$\vec{b}_{2} = 2\pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}}$$

$$\vec{b}_{2} = 2\pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}}$$

$$\vec{b}_{3} = 2\pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}}$$

$$\vec{b}_{3} = 2\pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}}$$

$$\vec{b}_{3} = 2\pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}}$$

$$\vec{b}_{3} = 2\pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}}$$

$$\vec{b}_{3} = 2\pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}}$$

$$\vec{b}_{3} = 2\pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}}$$

$$\vec{b}_{3} = 2\pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}}$$

$$\vec{b}_{3} = 2\pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}}$$

Reciprocal Lattice

any point of the reciprocal lattice can be described by the reciprocal
lattice vector
$$\vec{G} = h \vec{b}_1 + K \vec{b}_2 + \ell \vec{b}_3$$
 with $h_1 K_1 \ell = 0, \pm 1, \pm 2...$
(these \vec{o} vectors are the
ones entering the Faurier series
 $n(\vec{r}) = Z n_6 \exp(i\vec{G}\vec{r})$
 $T = u_1 \vec{a}_1 + u_2 \vec{a}_2 + u_3 \vec{a}_3$
given that the crystal is invariant under $\vec{\tau}$:
 $n(\vec{r} + \vec{T}) = Z n_6 \exp(i\vec{G}(\vec{r} + \vec{T})) = Z n_6 \exp(i\vec{G}\vec{r}) \exp(i\vec{G}\vec{T}) = n(\vec{r})$
 $\vec{C} \cdot \vec{T} = 2\pi (hu_1 + Ku_2 + \ell u_3) = 2\pi p \rightarrow \exp(i\vec{G}\vec{T}) = 1$
 $t_1 = t_1 \vec{a}_1 + u_2 \vec{a}_2 + u_3 \vec{a}_3$
 $t_2 = 2\pi Si_1$
 $t_3 = 2\pi Si_1$
 $t_4 = t_1 + u_2 \vec{a}_2 + u_3 \vec{a}_3$
 $t_4 = t_1 + u_2 \vec{a}_2 + u_3 \vec{a}_3$
 $t_5 \cdot \vec{T} = 2\pi (hu_1 + Ku_2 + \ell u_3) = 2\pi p \rightarrow \exp(i\vec{G}\vec{T}) = 1$
 $t_6 \cdot \vec{T} = 1$
 $t_7 = u_1 \vec{a}_1 + u_2 \vec{a}_2 + u_3 \vec{a}_3$
 $t_7 = u_1 \vec{a}_1 + u_2 \vec{a}_2 + u_3 \vec{a}_3$
 $t_7 = u_1 \vec{a}_1 + u_2 \vec{a}_2 + u_3 \vec{a}_3$
 $t_8 \cdot \vec{r} = 2\pi Si_1$
 $t_8 \cdot \vec{r} = 1$

50, every crystal has 2 lattice associated:

Reciprocal lattices in 3D

Reciprocal lattice to simple cubic $\vec{a}_3 = a \hat{\mathbf{z}}$ $\vec{a}_1 = a\hat{x}$ $\vec{a}_2 = a\hat{y}$ $\vec{b}_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot \vec{a}_2 \times \vec{a}_2}$ $\vec{b}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_1 \cdot \vec{a}_2 \times \vec{a}_2}$ $\vec{b}_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_1 \cdot \vec{a}_2 \times \vec{a}_2}$ $\vec{b}_1 = \frac{2\pi}{a}\hat{x}$ $\vec{b}_2 = \frac{2\pi}{a}\hat{y}$ $\vec{b}_3 = \frac{2\pi}{a}\hat{z}$

the reciprocal lattice of a simple cube is a cube of lattice constant $\frac{2T}{a}$

A *lattice plane* (or *crystal plane*) is a plane containing at least three non-collinear (and therefore an infinite number of) points of the lattice

A *family of lattice planes* is an infinite set of equally separated parallel lattice planes which taken together contain all points of the lattice

Reciprocal lattice points as families of lattice planes

The families of lattice planes there are in one-to-one correspondence with the possible directions of the reciprocal lattice vectors, to which they are normal.

For a family of planes separated d,

The recip**roc**al vector $\vec{G} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3$ is perpendicular to the real lattice plane with index *hkl*.

Further, the spacing between these lattice planes is

$$d = \frac{2\pi}{\left|\vec{G}_{min}\right|}$$

where \vec{G}_{min} is the minimum length reciprocal lattice vector in this normal direction.

Square Lattice

 $T = u_1 \overline{a_1} + u_2 \overline{a_2}$ ā2 $\bar{a}_{1} = a (1, 0) \\ \bar{a}_{2} = a (0, 1)$ $\bar{b}_{1} = \frac{2\pi}{a} (1, 0) \\ \bar{b}_{2} = \frac{2\pi}{a} (0, 1)$ Ex. 1) $\vec{G}_1 = \vec{D}_1$ $d_{10} = \frac{27T}{|G|} = \frac{27T}{2T_1} = \alpha$ Ex 2) $\vec{G}_2 = \vec{b}_1 + \vec{b}_2$ $d_n = \vec{2T} = \frac{\vec{2T}}{\vec{G}_1} = \frac{\vec{2T}}{\vec{Q}_2} = \frac{\vec{a}_1}{\vec{Q}_2} = \frac{\vec{a}_1}{\vec{Q}_2}$

1

Quiz

• Determine the reciprocal lattice vectors associated to