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Abstract

The aim of this paper is to analyse geodetic motion in first order near to the equa-
torial plane of a Kerr black hole. We briefly describe the dynamics in the equatorial
plane and proceed to solve the radial equation of motion with a harmonic approxima-
tion of the effective potential. We recover the Schwarzschild and Kerr precession terms
for a semi-Newtonian orbit. Next, we use the geodesic equation to find a linearised
equation of motion that couples radial oscillations to the azimuthal angle. We find
an interesting interaction between radial and azimuthal oscillations that results in a
complex precession of the orbital angular momentum.
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1 Introduction

1.1 The Kerr Metric

Found by Roy Kerr in 1963, the Kerr metric is the most general stationary and axis-
symmetric solution of the Einstein field equations for empty space [1]. For the scope of
this work, we will assume that it accurately describes space-time around a rotating black
hole.

A black hole of mass M and angular momentum J is characterised by two parameters:
the Schwarzschild radius rs = 2GMc−2 and the spin a = JM−1c−1, where G0 is Newton’s
gravitational constant and c is the speed of light. In spherical coordinates (t, r, θ, φ) aligned
with the axis of rotation, the line element of the metric assumes the characteristic form [2]:

ds2 = (1− rrs
ρ2

)dt2 + 2
rrsa

ρ2
sin(θ)2dtdφ− Σ2

ρ2
sin(θ)2dφ2 − ρ

∆
dr2 − ρ2dθ2 (1)

where we define various variables:

ρ2 = r2 + a2cos(θ)2

∆ = r2 − rrs + a2

Σ2 = (r2 + a2)2 − a2∆sin(θ)2

Note that we are using natural units where the speed of light c = 1 and the gravitational
constant G = 1.

From the form of the metric, i.e. stationary and axis-symmetric, we can identify two
Killing fields, namely ∂t and ∂φ [2]. The field ∂t is time-like only on the exterior of the

region characterised by the radius 2rE(θ) = rs+
√
r2
s − 4a2cos(θ)2. This region is commonly

referred to as the ergosphere. In addition to the ergosphere we find two singular surfaces at
∆(r) = 0. We will restrict the study of geodesics to the exterior of the surface at the radius
2r+ = rs +

√
r2
s − 4a2, the inner surface being completely inaccessible.

A quick warning is always due when dealing with the Kerr metric: the spin parameter
a of a Kerr black hole is connected to angular momentum. However, no solution of the
Einstein field equations for a rotating, oblate mass density that matches the Kerr metric has
been found yet [4]. Moreover, if we wish to avoid the possibility of naked singularities, the
spin of a Kerr black hole must always be smaller than a half of the Schwarzschild radius.

After noting these points, we can proceed with the study of geodesic motion.

1.2 Conserved Quantities and Equations of Motion

To simplify the equations, it is useful to identify the constants of motion of the Kerr metric.
By using the Killing fields and the conservation of the space-time interval we obtain three
constants:

k ≡ 1

2
L(ẋ, ẋ) (2)

ε ≡ (∂t, ẋ) (3)

l ≡ (∂φ, ẋ) (4)
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The physical interpretation of these constants will become more apparent in the study of
equatorial geodesics. The constant k can be normalised to either 1 for massive particles or
0 for light rays.

There also exists a fourth conserved quantity, the Carter constant [5], which historically
has proven more difficult to identify and interpret. The existence of four constants of motion
for four variables make the problem of geodetic motion in a Kerr space-time fully integrable
and thus easily solvable with numerical methods.

The analytical treatment of geodetic motion in Kerr space-time is very complex and
generally not possible. We will make our life easier by starting with geodesics in the equatorial
plane.

2 Equatorial Plane

From the special symmetry of the metric, we deduce that there exists a class of geodesics
that are bound to the equatorial plane [3]. For such geodesics we set the angle θ = π/2 and
the angular velocity θ̇ = 0. Restricting ourselves to the equator will allow us to reduce the
problem to a single equation of motion.

First, we calculate the line element for the metric in the equatorial plane:

ds2 = (1− rs
r

)dt2 + 2a
rs
r
dtdφ− (r2 +

a2(r + rs)

r
)dφ2 − r2

a2 + r2 − rrs
dr2 (5)

2.1 Radial Equation of Motion

We can obtain a first order differential equation for the radius r by eliminating the variables
φ̇ = φ̇(r, ε, l) and ṫ = ṫ(r, ε, l) from equation (2). Luckily enough we have found the constants
of motion ε and l that let us do just that from equations (3) and (4):

φ̇ =
aεrs − l(r − rs)
ra2 + r2(r − rs)

(6)

ṫ =
εr3 + alrs + a2ε(r + rs)

ra2 + r2(r − rs)
(7)

=⇒ k =
r3(ε2 − ṙ2) + 2aεlrs − l2(r − rs) + a2ε2(r + rs)

2ra2 + 2r2(r − rs)
(8)

We would like to arrange equation (8) in the form of a relativistic energy conservation
equation in a potential: 1

2
ṙ2 = E−Veff (r), where we define a total energy E and an effective

radial potential Veff (r).
With some computation, the radial equation of motion becomes:

1

2
ṙ2 = ε2 − k +

krs
r

+
a2(ε2 − k)− l2

r2
+
a2ε2rs + 2aεlrs + l2rs

r3
(9)

From which we recognise the total energy E and the effective potential V :

Ek ≡ ε2 − k (10)

Veff (r) ≡ −k
rs
r

+
l2

r2
− rs

l2

r3
− a2 ε

2 − k
r2

− a2εlrs
r3
− a2 ε

2a2rs
r3

(11)
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We can immediately distinguish Schwarzschild and Kerr terms in the effective potential (11)
by taking the limit a→ 0. From this limiting case we also recover the interpretation of the
constant l as the conserved angular momentum of the geodesic. We can see a typical plot of
the effective potential in Figure (1).

(a) k = 1, rs = 1 m, l = 5 m (b) k = 1, rs = 1 m, l = 5 m

(c) k = 1, rs = 1 m, l = −5 m (d) k = 1, rs = 1 m, l = −5 m

Figure 1: Behaviour of the effective potential near to the extremal points for different choices
of parameters. The solid black lines are identical in both plots.

Notice how the behaviour is dependant on the relative direction of the orbital angular
momentum and the black hole spin. This will also have an effect on the radius of the circular
orbits, which are the topic of the next section.

2.2 Circular Equatorial Orbits

The simplest results that we can derive from the effective potential are the radii of the
possible circular orbits around a Kerr black hole. We will denote them with r0 for null and
r± for time-like geodesics.

To obtain the radii, we have to set the derivative of the effective potential to zero:

∂rV (r) = 0 ; for k = 0, 1

Which will give us an equation for the radius r. From this point on, we will separate the
null and the time-like cases for the sake of clarity.

After some computation we obtain the results:
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r0 =
3

2
rs
l + aε

l − aε
(12)

r± =
l2 − a2E

rs
±

√
−3(a

√
E + 1 + l)2 +

(l2 − a2E)2

r2
s

(13)

Which we can compare to the well known Schwarzschild solutions by linearising in the
spin parameter a:

r0 ≈
3

2
rs + 3εrs ×

a

l
+O[(

a

l
)2]

r± ≈
l2

rs
(1±

√
1− 3

r2
s

l2
) ∓ 3

√
E + 1rs√
l2 − 3r2

s

× a

l
+O[(

a

l
)2]

We can recognise the Schwarzschild circular orbit in the zero order terms in the expansion
and observe the behaviour of the full solution in Figure (2):

(a)

(b) (c)

Figure 2: Behaviours of the different solutions for the circular orbits. Plot 2.a is normalised
with the schwarzschild radius whereas plots 2.b and 2.c are normalised with the respective
schwarzschild outer and inner circular orbits.

We observe that the larger the orbital angular momentum, the less relevant the Kerr
correction becomes. This makes sense, as a larger angular momentum corresponds to a
larger radius, which is less influenced by non Newtonian terms in the effective potential.
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For a light ray orbiting the black hole in opposite direction to the spin, some peculiar
circular orbits exist inside the ergo-sphere. We will however not analyse these any further
and instead take the next step to finding a more general solution to the radial equation of
motion.

2.3 Harmonic Approximation

Equation (9) is too complicated to solve analytically. A possible way to tackle the problem is
to linearise the metric and then proceed to perturb around a Newtonian ellipse, just as one
would do for the Schwarzschild case. An other possibility is to take the effective potential
and expand it around a minimum to obtain a harmonic approximation. We have chosen the
latter approach.

To find the minima in the effective potential, we have to assure that the second derivative
of the effective potential be positive. From this condition, we expect to find some relations
between the different parameters of the geodesic and of the black hole. We can reduce the
condition of a minimum in the potential to the following statements:

∂2
rV (r)| r=r0 > 0 =⇒ |l| < a|ε| for k = 0 (14)

∂2
rV (r)| r=r+ > 0 =⇒ ε < 0; [l = −a

ε
] ∨ [rs <

1√
3

l2 − a2E

l + aε
] for k = 1 (15)

∂2
rV (r)| r=r− > 0 =⇒ ε < −1; [|l| < a

√
E] ∧ [rs <

1√
3

l2 − a2E

l + aε
] for k = 1 (16)

It turns out, that condition(16) is never satisfied for non over-extremal black hole with
a < 0.5rs. Condition (14) in turn leads to a negative value for the supposed stable radius.
this leaves us only with one case which may be satisfied with the correct choice of parameters.

We thus have found that there exists only one stable circular orbit around a non over-
extremal black hole at the radius r+. It corresponds to the stable orbit in the Schwarzschild
limit a→ 0.

Now, let’s proceed with the approximation of the equation of motion (9) by replacing the
radius with a circular orbit rC plus a small perturbation δr:

1

2
δ̇r

2
= E − V (rC + δr) ≈ E − V (rC)− δr2

2
∂2
rV (r)| r=rC +O[δr3]

By defining the energy of the harmonic oscillation EH ≡ 2Ek − 2V (rC) and separating the
variables, we obtain:

dδr

dλ
=

√
EH − ∂2

rV (r)| r=rCδr2

Which has the solution:

r(λ) = rC + Asin(ωλ− ψ0) (17)

A =

√
EH

∂2
rV (r)| r=rC

(18)

ω =
√
∂2
rV (r)| r=rC (19)
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For such a harmonic motion to be allowed, the energy of the oscillator must be positive. We
therefore gain another condition that goes together with condition (15):

EH | r=r+ > 0 =⇒ E +
r2
s

4l2
+O[(

rs
l

)4] > 0 (20)

At this point, we have to introduce the main approximations that will be often used in the
rest of this work: the Semi-Newtonian limit l � rs. It corresponds to an orbit that is only
slightly affected by the effects that would occur near to the black hole. In this limit we
expect the solutions for the geodesic to closely resemble ellipses.

2.3.1 Massive Particle, Semi-Newtonian Limit, Outer Solution

By combining (13) and (19) and taking the limit for large l, we obtain the final condition
for a stable harmonically oscillating orbit:

− r
2
s

4l2
< E < 0 ∧ a <

|l|√
E + 1

(21)

These conditions are always met if the total energy of the orbit is negative and very small
and if the black hole is not over-extremal. To simplify further calculations it will be useful to
define a new parameter 0 > e > 1 that describes the energy through the following equation.

E = −e2 r
2
s

4l2
(22)

In this limit and using these conditions, we can analyse the amplitude of the oscillation with
respect to the circular orbit and the frequency of the oscillation with respect to the circular
orbital frequency:

A

r+

≈ e+O[e2 rs
l

] (23)

ω

φ̇|r=r+
≈ 1− 3r2

s

4l2
− ar

2
s

l3
− 4a2(4− e2)r2

s + 27r4
s

32l4
+O[(

rs
l

)5] (24)

From equation (23) we see that we can make the amplitude of oscillation as small as we want
by choosing an orbit with a small energy parameter e. In fact, for a very small parameter
e we can approximate a precessing ellipse with low eccentricity! If the angular velocity
is approximately constant and the affine parameter is proportional to the proper time, or
φ(t) ≈ ωt ∝ ωλ, we obtain :

r(λ)

r+

= 1− e cos(ωλ) ≈ 1

1 + e cos(ωλ)
≈ 1

1 + e cos(φ)

which has the form of an ellipse with orbital frequency ω and ellipticity e.
We observe the perihelion precession by looking at the extra terms in equation (24).The

the most relevant term of the precession is a Schwarzschild effect of second order whereas
the Kerr metric contributes with a term in third order. Higher order corrections are present
both in a pure Schwarzschild black hole as well as due to the spin.

Collecting all of these results we see that semi-Newtonian equatorial orbits are in fact
precessing ellipses, with a modified precession term.
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3 Azimuthal Perturbations

After having dealt with the equatorial plane, we want to further our analysis to the azimuthal
angle. If we take a closer look at the metric (1), we can notice that it depends on the angle
θ only in quadratic order around the equatorial plane θ = π/2. This means that we can
analyse the equations of motion in first order without recurring to the Carter constant, as
the θ dependence of the constants of motion (3) and (4) defined previously on vanishes.

3.1 Equation of Motion

We would like to obtain an equation of motion for the angle θ that only has linear terms. If
we try to use the Lagrangian approach as we did for the radial equation (9) we will end up
with an equation of motion that is quadratic in θ̇. This defeats the proposition of linearising
the metric to avoid the Carter constant.

We therefore use the geodesic equation θ̈ = Γθµν ẋ
µẋν and trade a quadratic first order

differential equation for a linear second order differential equation.
To use the geodesic equation we have to calculate the relevant linearised Christoffel

symbols. We set the angle θ = π/2 + ηδθ with a small parameter η. Moreover, we linearise
the radius around a stable orbit rc + ηδr. We eliminate the cross terms δθ × δr which are
considered to be of quadratic order in η. This leads us to the following equation of motion:

δ̈θ = Crδ̇r + Cθδθ (25)

Here we have defined the constant coefficients Cr = Cr(rs, a, l, ε; rc) and Cθ = Cθ(rs, a, l, ε; rc)
according to the results of the linearisation. These coefficients are very complicated and are
better studied within certain limits corresponding to previous results.

If we look at the form of equation (25), we recognise a harmonic oscillator in θ with a
natural frequency (

√
|Cθ| and a drive term proportional to the radial velocity.

Before tackling the full problem, let’s solve the case for δ̇r = 0, which corresponds to a
circular orbit.

3.1.1 Inclined Spherical Orbit:

Lets fix the radius to be the only stable orbit r+ we have found in the previous parts. The
equation of motion (24) reduces to a simple harmonic oscillator, which we can solve by
setting the initial conditions for the amplitude Aθ and the phase θ(0) = Aθ. We obtain:

θ(λ) = Aθcos(
√
|Cθ|λ) (26)

If we compare the orbital frequency and the frequency of the azimuthal perturbation we find:√
|Cθ|

φ̇|r=r+
= 1 +

a2(2E + 3)r2
s

8l4
+O[(

rs
l

)5] (27)

As in the case for the radial oscillation, we find a precession term in the expansion. This
is however a purely Kerr effect of fourth order known as the Lense-Thirring precession [6].
Due to the spin of the black hole, the orbital plane will slowly precess around the symmetry
axis, which results in the precession term we see in equation (27)

9



3.2 Full Linearised Solution

Having characterised the azimuthal oscillation we go back and take a closer look at the
driving term in equation (25), which is proportional to the radial velocity.

We have seen that the metric depends on the angle θ only quadratically. Therefore we
expect the radial equation of motion to be unchanged in linear order. This means that we
can use the harmonic solution of the radial equation of motion (15) and plug it in equation
(25) to obtain:

δ̈θ = CrArωrcos(ωrλ− ψ0) + Cθδθ (28)

=⇒ δθ(λ) = C1cos(ωθλ) + C2sin(ωθλ) + ArCrωr
cos(ωrλ− ψ0)

ω2
θ − ω2

r

(29)

This is an equation describing a resonating harmonic oscillator. As we guessed before, we
can identify the natural frequency ωθ and the driving frequency ωr. The parameters C1 and
C2 are constants of integration that will be eliminated by choosing initial conditions. The
parameter ψ0 describes the phase difference between the radial and the azimuthal oscillation.

Lets choose the initial conditions, so that the perturbation is extremal at λ = 0:

δθ(0) = Aθ =⇒ C1 = Aθ − ArCrωr
cos(ψ0)

ω2
θ − ω2

r

δ̇θ(0) = 0 =⇒ C2 = −ArCrω2
r

sin(ψ0)

ωθ(ω2
θ − ω2

r)

If we plug the coefficients back in the equation, we indeed observe that the amplitude of
the harmonic components depend on the phase parameter ψ0. Moreover, the drive term is
controlled by the amplitude A3, which we expect to vanish for a non rotating black hole.

δr(λ) = Arsin(ωrλ− ψ0) (30)

δθ(λ) = A1(ψ0)sin(ωθλ) + A2(ψ0)cos(ωθλ) + A3cos(ωrλ− ψ0) (31)

With the coefficients:

A1 = −ArCrω
2
rsin(ψ0)

ωθ(ω2
θ − ω2

r)
(32)

A2 = Aθ −
ArCrωrcos(ψ0)

ω2
θ − ω2

r

(33)

A3 =
ArCrωr
ω2
θ − ω2

r

(34)

The value of ψ0 may be chosen freely. It describes all the possible orientations of an orbit.
Two natural choices would be ψ0 = 0 and ψ0 = π/2, which correspond to an out of phase and
an in phase oscillation respectively. An out of phase orbit has both aphelion and perihelion
crossing the equatorial plane, whereas if ψ0 = π/2, aphelion and perihelion will be the
points furthest from the equatorial plane. We will analyse both cases separately, but before,
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let us compute the magnitudes of the relevant coefficients for a semi-Newtonian orbit by
reintroducing the square eccentricity p:

A3 =
ars

√
|p|

3l
+O[(

rs
l

)2] (35)

ωθ

φ̇|r=r+
= 1 + 3

a2r2
s

8l4
+O[(

rs
l

)5] (36)

ωr

φ̇|r=r+
= 1− 3r2

s

4l2
− ar

2
s

l3
− 4a2(4 + p)r2

s + 27r4
s

32l4
+O[(

rs
l

)5] (37)

ωθ − ωr
φ̇|r=r+

=
3r2

s

4l2
+ a

r2
s

l3
+ 3

a2r2
s

8l4
+

4a2(4 + p)r2
s + 27r4

s

32l4
+O[(

rs
l

)5] (38)

ωθ + ωr

φ̇|r=r+
= 2− 3r2

s

4l2
− ar

2
s

l3
+ 3

a2r2
s

8l4
− 4a2(4 + p)r2

s + 27r4
s

32l4
+O[(

rs
l

)5] (39)

We immediately see that the amplitude of the driving term vanishes if we set a = 0. More-
over, just like the radial oscillation, the magnitude of A3 is controlled by the eccentricity of
the geodesic. Looking at the other terms, we recognise the ellipse precession term coming
from the Schwarzschild metric, the ellipse precession term coming from the Kerr metric and
the orbital plane precession term, also coming from the Kerr metric:

∆φS ≡
3r2

s

4l2
(40)

∆φK ≡ a
r2
s

l3
(41)

∆θ ≡ 3
a2r2

s

8l4
(42)

Now lets take a closer look at the two special cases.

3.2.1 In and Out of Phase Oscillations

If we set set ψ0 to 0. Equation (30) and (31) simplify to:

δr(λ)|ψ0=0 = Arsin(ωrλ) (43)

δθ(λ)|ψ0=0 = Aθcos(ωθλ) + 2A3sin(
ωθ − ωr

2
λ)sin(

ωθ + ωr
2

λ) (44)

If we instead set ψ0 to π/2. Equation (30) and (31) simplify to:

δr(λ)|ψ0=π/2 = Arcos(ωrλ) (45)

δθ(λ)|ψ0=π/2 ≈ Aθcos(ωθλ) + 2A3sin(
ωθ − ωr

2
λ)cos(

ωθ + ωr
2

λ) (46)

For equation (46) we have used the fact that the ratio of radial and azimuthal perturbation
is 1 up to quadratic order in the usual expansion. We can plot a typical solution to visualise
the in and out of phase cases in Figure (3), where we have collected the terms arising from
the Kerr metric the modulation contribution M(λ):
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(a) ψ = 0 (b) ψ = π/2

Figure 3: Solution of the azimuthal angle for in and out of phase special cases plotted as
a function of the number of completed revolutions around the black hole. The parameters
of the plot have been chosen to maximise the visibility of the effects, without changing the
qualitative behaviour of the system. In this case rs = 1 m, a = 0.5 m and l = 4 m. The
energy parameter e has been chosen to be 1. Also plotted is the contribution of the modulation
M to the angle.

From the equations and the plots, we see that the Kerr metric couples the azimuthal and
the radial oscillation through the parameter a contained in the amplitude A3. The effect
results in a modulated oscillation of the angle θ over the course of many orbits.

By noting that all relevant frequencies are described in terms of the various precession
terms, we deduce that the physical reason for this modulation is the interplay between the
ellipse precession and the orbital plane precession. Such an interplay is only possible in the
Kerr metric, as there is no precession of the orbital plane in the Schwarzschild case.

By comparing the out of phase solution in Figure (3.a) and the in phase solution in
Figure (3.b) we see how the modulation is effectively changing the maximal amplitude of
the natural harmonic oscillation over the course of many orbits. We will analyse this effect
in the next subsection.

3.2.2 The Effective Amplitude

Following the consideration in section 3.2.1, we rewrite the solution for θ as a harmonic
oscillation with λ dependant amplitude:

δθ(λ) ≈ Aeff(λ)cos(ωθλ) (47)

This term fully describes the variation of the solution from a harmonic oscillation with
a natural frequency ωθ. By using a few trigonometric identities and following the usual
procedures to create an envelope of a signal, equation (44) can be transformed into an
expression for the effective amplitude. It turns out that this transformation only works
nicely for the out of phase orbit and we will concentrate on that one only:

Aeff = Aθ + A3(
cos(ωrλ)

cos(ωθλ)
− 1) ≈ Aθ − A3sin2((ωθ − ωr)λ) for ψ0 = 0 (48)

A plot of the envelope can be seen in Figure (4):
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Figure 4: Plot showing how a squared sinus effective amplitude envelopes the oscillation in
the out of phase case. In this plot rs = 1 m, a = 0.5 m and l = 4 m. The energy parameter
e has been chosen to be 1 to maximise the effect of the modulation.

With this description, it becomes apparent (at least in the ψ0 = 0 case) what the physical
effect of the modulation is: it introduces a rocking motion around the equatorial plane with
a frequency of ωθ − ωr ∝ ∆φS + ∆φK . So as the ellipse itself and the orbital plane precess,
the orbital plane also oscillates in its angle respective to the equatorial plane at the same
rate at which the precession of the ellipse occurs. We can elegantly describe this effect as a
complex precession of the angular momentum vector, as we will see in section 4.3.

4 The Perturbed Outer Time-like Geodesic

4.1 Linearisation of the Polar angle and of the Time Coordinate

We now have found an analytic, perturbed solution around the outer stable circular orbit
of a Kerr black hole for the radial and the azimuthal coordinate. To complete the geodetic
solution we have to solve the equations for φ and t also. We use equations (3) and (4) to find
expressions for φ̇ and ṫ which we can linearise in the radial perturbation and in the azimuthal
perturbation, just as we did until now. Moreover, we take the usual limit of semi-Newtonian.
The equations simplify in a way that is not too surprising:

φ̇ ≈ (1− rs
l2
δr)× φ̇|r=r+ ≈ const. ≡ ωo (49)

ṫ ≈ (1− r3
s

4l4
δr)× ṫ|r=r+ ≈ const. (50)

We can see, that the corrections of the rates of change of the two other coordinates are
of higher order in our semi-Newtonian limit. We can safely set them to a constant value,
namely the value they would have if the orbit were circular.

4.2 The Solution

After all these considerations we are finally ready to present a solution to the geodesic
equations in Kerr space-time, valid close to the stable equatorial circular orbit, computed in
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a semi-Newtonian limit:

t(λ) = ṫ|r=r+λ+ t0 (51)

r(λ) = r+ + Arsin(ωrλ− ψ0) (52)

φ(λ) = ωoλ+ φ0 (53)

θ(λ) =
π

2
+ A1(ψ0)sin(ωθλ) + A2(ψ0)cos(ωθλ) + A3cos(ωrλ− ψ0) (54)

Where r+ denotes the analytical stable circular orbit on the equatorial plane, ωo the orbital
frequency at that radius and t(λ) = ṫ|r=r+ the rate of change of time at that radius. The
coefficients Ar and A1,2,3 are dependent on the parameters of the black hole and of the orbit.
The trivial free parameters of this solution are the initial time t0 and the initial angle φ0.
The only important free parameter is the phase ψ0, which governs the interactions between
the radial and the azimuthal oscillations.

4.3 The Precession of the Angular Momentum Vector

In the previous sections, we have seen how the driving term in equation (25) affects the
behaviour of the angle θ: the orbital plane oscillates in its angle with respect to the equatorial
plane. To quantify and interpret this effect it is very useful to take a look at the angular
momentum vector of the orbit.

~L = ~r × ~v (55)

We can construct the position and the velocity vectors from our general solutions (51-54).

Then obtain ~L by calculating the cross product. However we have to be careful: When talking
about the angular momentum we have to remember that it is a conserved quantity only in
the case of exact Newtonian mechanics. Moreover, our solution is only an approximation of
an ellipse. This means that we expect the magnitude of the angular momentum defined in
(55) to vary slightly as the particle travels through its orbit. This does not however broadly
affect the precession of the angular momentum, as it occurs over many orbits.

We want to describe the orientation of the orbital plane. Therefore we are allowed to
normalise the position and the velocity vectors. We replace ~r → ~nr and ~v → ~nv in equation
(55) and normalise the angular momentum.

If we project the angular momentum unit vector back to the XY plane we should get an
idea of the precession.

We can see the effects of the modulation very clearly in Figure (5): It introduces an
additional nutation effect to the precession of the orbital plane. The nutation occurs essen-
tially at the rate of the ellipse precession (see Section 3.2.1 and 3.2.2). We can now also
understand what the effect of varying the phase ψ0 is: namely it turns the graph of the
precessing angular momentum vector anticlockwise as it increases from 0 to 2π (not shown
in figure 5). Notice the fuzziness of the graphs: the very small scale features represent the
small variations in the angular momentum magnitude occurring periodically every orbit.
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(a) Circular p = 0 ; ψ = 0, π/2 (b) Elliptical p = 0.05 ; ψ = 0

Figure 5: Precession of the angular momentum vector projected on the plane. The parameters
are chosen to make the effects visible but are in line with all approximations. In this plot
rs = 1 m, a = 0.5 m, l = 4 m, Aθ ≈ 11o. The ’precession dance’ takes over 2700 orbits to
complete with these parameters.

From these considerations we can compute an interesting number: the number small of
twirls Nt during a full 2π precession of the angular momentum vector. This will simply be
the ratio of the ellipse precession rate and the plane precession rate.

Nt ≡
ωr − 1

ωθ − 1
≈ 2

l2

a
+

8l

3a
+

4

3
− e2

3
+

9r2
s

4a2
(56)

For the parameters in Figure (5.b) we obtain about 160 twirls.
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5 Conclusion

5.1 Brief Summary of Results

A few points can broadly sum up what we have found to be the behaviour of a semi-
Newtonian, quasi-circular and quasi-equatorial stable geodesic with angular momentum l
and eccentricity e around a Kerr black hole with Schwarzschild radius rs and spin a.

• The orbit will precess in the plane with a modified precession term ∆φ = 3r2s
4l2

+ a r
2
s

l3
.

• The orbital plane will undergo a Lense-Thirring precession around the black hole spin

axis with a precession term of ∆θ = 3a
2r2s
8l4

• The orbital plane will slightly oscillate on its intersection with the equatorial plane.
This is equivalent to adding a nutation effect to the precession of the angular momen-
tum unit vector. The amplitude of the nutation in the angle θ is arse

3l
and the frequency

is approximately equal the precession term of the ellipse ∆φ = 3r2s
4l2

+ a r
2
s

l3
.
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