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Introduction

Commensurate : (1)21.79, (2)13.17,...,(30)1.08, (31)1.05
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Introduction

Numerical challenge

e Unit cell at magic angle (1.05) contains about 12 thousand
atoms

@ This results in 2.3 x 10 matrix elements of Hamiltonian on
SIESTA’s simplest basis, which is around 34 GB per
k-point.

@ One needs a smaller model /basis set to handle the problem
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Tight binding approximation

Tight-binding Hamiltonian

o Single-particle Hamiltonian in localised basis set :
Hym(R) = (pn(r)[H(r)|om(r —R))

real-space form of Hamiltonian is encoded in a matrix
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Tight binding approximation

Tight-binding Hamiltonian

o Single-particle Hamiltonian in localised basis set :
Hym(R) = (pn(r)[H(r)|om(r —R))

real-space form of Hamiltonian is encoded in a matrix

o At this stage one could get the spectra €;i :by :
(1) Hpm(k) = Zelk RHpm(R)

2) B Cpe = €jijk
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Tight binding approximation

Tight-binding Hamiltonian

o Single-particle Hamiltonian in localised basis set :
Hym(R) = (pn(r)[H(r)|om(r —R))

real-space form of Hamiltonian is encoded in a matrix

o At this stage one could get the spectra €;i :by :

ZeszH )

2) B Cpe = €jijk

(1) Hym(k)

e Can we substitute H,,,,(R) with model parameters
tnm (R)-hopping amplitudes 7
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Slater-Koster approach

Slater-Koster approach for TBG : one p, orbital per site
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Slater-Koster approach

Slater-Koster approach

e Hopping parameters are modulated as a function of vector
conecting orbital centers!? :

tij = t(rij) = (1 = n®)tx(rij) + n’to(rij)

oshino et.al, Phys. Rev. X 8, 031087
Trambly de Laissardiére, et.al., Phys. Rev. B-86, 125413

Q=
s
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Slater-Koster approach

Slater-Koster approach

e Hopping parameters are modulated as a function of vector
conecting orbital centers!? :

tij = t(rij) = (1 = n®)tx(rij) + n’to(rij)

noo= zij/Tij
i
tr(rij) = tgreq”( ar)
_rij
to(rij) = 097 (1=55)

oshino et.al, Phys. Rev. X 8, 031087
Trambly de Laissardiére, et.al., Phys. Rev. B-86, 125413

Q=
s
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Slater-Koster approach

Wannierisation of DFT result

o Can we get a similar to SK parametrisation using ab-initio
tight binding ?
e We follow the next path :

(1) Fix in-plane hoppings (#|,) to ones for the SLG

(2) Obtain all possible out-of-plane hoppings (¢, ) from
ab-initio calculations for large angles (21.79)

(3) Construct an analytic function which reproduces (2)
approximately as a function of distance (or other
geometrical parameters)

(4) Use this function to obtain ¢, for any smaller angles and
plug it into a tight-binding Hamiltonian
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Slater-Koster approach

t, (r) function

i = 1 structure (21.79°)
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Reducing dimentionality

Bandstructure
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Reducing dimentionality

Reducing Dimensions

@ It is possible to reproduce the part of Hilbert space for
low-energy Bloch states (blue lines) with further
Wannierisation :

Amnk = <wmk|7—n>

e This gives a basis ¢, <= ¥k, and the old Hamiltonian in
this new basis is :

trm(R) = (o0 (r)|H(r)|@m(r — R))
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Reducing dimentionality

Final Wannier functions

o In principle we can trace back the real-space shape of
Wannier orbitals
e But it is more practical to work with p,-expansion :

w(r) = Z Cip.(r — r;),r; = original C-atom position
i

layer 1 layer 2

0000 0004 0008 0012 0016 0020 0024 0028 0032

p- component weight of wy
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What about the symmetry 7

What about the symmetr

o In principle, we have symmetry operations in the real
space, SO we can :

gu(r) = w(g™'r) = Coosm

layer 1 layer 2

0000 0004 0008 0012 0016 0020 0020 0028 0032

p. component weight of ws(gs)
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What about the symmetry 7

What about the symmetry ?

o Symmetry of Hamiltonian in a mathematical sense :

gH = D(9)HD(g™")
o LA definition :

w; = Z Djjw;
i

Dij = (wilgw;)

e In principle, w; = gw;, and as a consequence :
(wilgw;) = bij

e However (w;|gw;) — 0.9 in my case
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What about the symmetry 7

How to fix that ?

(1) Do the cycle transformation :
- Ao —1 0
wgl' = D(gl )glw]’
(2) Construct the difference with original function :
1,0 _ -1
0j = wj — Ww;

(3) Extract the orthogonal projection onto (5]1- :

1 0 1,0\ 51
(4) do it for all symmetry operation consequently :
-1 -1
v = vj — <5j\vj )03

(5) go to (1) with ij < vj
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Conclusion

Conclusion

We made ab-initio calculation for larger angles (smaller
UC) of TBG, to extract out-of plane hoppins

Fit those to an analytic function ¢, (7, &)

Solve the tight-binding Hamiltonian for an arbitrary angle
using (2)

Project the tight-binding Hamiltonian on a smaller basis
set defined by the solutions of (3).

Gerenrate symmmetrised Wannier basis from (4)

Try to compute matrix elements of Hamiltonian directly on
this symmetrised basis (next weeks project)
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Conclusion

Symmetry representations p,

@ Our first TB model is written in "one p, orbital per site"
basis :

P(r) = Z Cirp-(r —1r; — R)
iR
o We know the p, basis transformation for sure

gp-(r —1; —R) =p.(g"{r —1r; - R})

@ just to to know where centers transfrom :

Diari(9) = (p:(r —r; = R)|g|p:(r —1r; — R'))

DP= acts on coordintates Cj
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Conclusion

Symmetry representations w, g

e knowing DP=, we can construct symmetry representaion for
wannier functions

Dy gr(9) = (warlglwwrs)
<wnR‘Dpz (g)‘wn’R’>

= Z <wnR(T+ r;)

i TT

D (9)| wrme (T + 1))
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Conclusion

Partial density of states
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