Practical tight-binding models for Twisted Bilayer Systems.

 Connection to ab-initio calculations.Arkadiy Davydov
Uinversity of Zürich

Oct 2019

Outline

(1) Introduction
(2) Tight binding approximation
(3) Slater-Koster approach

4 Reducing dimentionality
(5) What about the symmetry?
(6) Conclusion

Introduction
Tight binding approximation Slater-Koster approach
Reducing dimentionality What about the symmetry?

Conclusion

Some physics of TBG

Nature 556, p. 43-50 (2018)
Arkadiy Davydov Practical tight binding models $3 / 23$

AA and AB double layers of graphene

AA bilayer graphene

$A B$ bilayer graphene

Moiré pattern

STM : Phys. Rev. B 81, 045403

Introduction
Tight binding approximation
Slater-Koster approach
Reducing dimentionality What about the symmetry?

Conclusion

Commensurate : (1)21.79, (2)13.17, ..., (30)1.08, (31)1.05

Numerical challenge

- Unit cell at magic angle (1.05) contains about 12 thousand atoms
- This results in 2.3×10^{9} matrix elements of Hamiltonian on SIESTA's simplest basis, which is around 34 GB per k-point.
- One needs a smaller model/basis set to handle the problem

Tight-binding Hamiltonian

- Single-particle Hamiltonian in localised basis set :

$$
H_{n m}(\mathbf{R})=\left\langle\varphi_{n}(\mathbf{r})\right| H(\mathbf{r})\left|\varphi_{m}(\mathbf{r}-\mathbf{R})\right\rangle
$$

real-space form of Hamiltonian is encoded in a matrix

- At this stage one could get the spectra $\epsilon_{j \mathrm{k}}$:by

- Can we substitute $H_{n m}(\mathbf{R})$ with model parameters $t_{n m}(\mathbf{R})$-hopping amplitudes?

Tight-binding Hamiltonian

- Single-particle Hamiltonian in localised basis set :

$$
H_{n m}(\mathbf{R})=\left\langle\varphi_{n}(\mathbf{r})\right| H(\mathbf{r})\left|\varphi_{m}(\mathbf{r}-\mathbf{R})\right\rangle
$$

real-space form of Hamiltonian is encoded in a matrix

- At this stage one could get the spectra $\epsilon_{j \mathbf{k}}$:by :
(1) $H_{n m}(\mathbf{k})=\sum_{\mathbf{R}} e^{i \mathbf{k} \cdot \mathbf{R}} H_{n m}(\mathbf{R})$
(2) $\hat{H}_{\mathbf{k}} \vec{C}_{j \mathbf{k}}=\epsilon_{j \mathbf{k}} \vec{C}_{j \mathbf{k}}$
- Can we substitute $H_{n m}(\mathbf{R})$ with model parameters $t_{n m}(\mathbf{R})$-hopping amplitudes?

Tight-binding Hamiltonian

- Single-particle Hamiltonian in localised basis set :

$$
H_{n m}(\mathbf{R})=\left\langle\varphi_{n}(\mathbf{r})\right| H(\mathbf{r})\left|\varphi_{m}(\mathbf{r}-\mathbf{R})\right\rangle
$$

real-space form of Hamiltonian is encoded in a matrix

- At this stage one could get the spectra $\epsilon_{j \mathbf{k}}$:by :

$$
\begin{aligned}
& \text { (1) } H_{n m}(\mathbf{k})=\sum_{\mathbf{R}} e^{i \mathbf{k} \cdot \mathbf{R}} H_{n m}(\mathbf{R}) \\
& \text { (2) } \hat{H}_{\mathbf{k}} \vec{C}_{j \mathbf{k}}=\epsilon_{j \mathbf{k}} \vec{C}_{j \mathbf{k}}
\end{aligned}
$$

- Can we substitute $H_{n m}(\mathbf{R})$ with model parameters $t_{n m}(\mathbf{R})$-hopping amplitudes?

Slater-Koster approach for TBG : one p_{z} orbital per site

Slater-Koster approach

- Hopping parameters are modulated as a function of vector conecting orbital centers ${ }^{12}$:

$$
t_{i j}=t\left(\mathbf{r}_{i j}\right)=\left(1-n^{2}\right) t_{\pi}\left(r_{i j}\right)+n^{2} t_{\sigma}\left(r_{i j}\right)
$$

1. M. Koshino et.al, Phys. Rev. X 8, 031087
2. G. Trambly de Laissardière, et.al., Phys. Rev. B 86,125413

Slater-Koster approach

- Hopping parameters are modulated as a function of vector conecting orbital centers ${ }^{12}$:

$$
t_{i j}=t\left(\mathbf{r}_{i j}\right)=\left(1-n^{2}\right) t_{\pi}\left(r_{i j}\right)+n^{2} t_{\sigma}\left(r_{i j}\right)
$$

$$
\begin{aligned}
n & =z_{i j} / r_{i j} \\
t_{\pi}\left(r_{i j}\right) & =t_{\pi}^{0} e^{q_{\pi}\left(1-\frac{r_{i j}}{a_{\pi}}\right)} \\
t_{\sigma}\left(r_{i j}\right) & =t_{\sigma}^{0} e^{q_{\sigma}\left(1-\frac{r_{i j}}{a_{\sigma}}\right)}
\end{aligned}
$$

1. M. Koshino et.al, Phys. Rev. X 8, 031087
2. G. Trambly de Laissardière, et.al., Phys. Rev. B 86,125413

Wannierisation of DFT result

- Can we get a similar to SK parametrisation using ab-initio tight binding?
- We follow the next path :
(1) Fix in-plane hoppings $\left(t_{\| \mid}\right)$to ones for the SLG
(2) Obtain all possible out-of-plane hoppings (t_{\perp}) from ab-initio calculations for large angles (21.79)
(3) Construct an analytic function which reproduces (2) approximately as a function of distance (or other geometrical parameters)
(4) Use this function to obtain t_{\perp} for any smaller angles and plug it into a tight-binding Hamiltonian

$t_{\perp}(r)$ function

Introduction
Tight binding approximation
Slater-Koster approach
Reducing dimentionality What about the symmetry? Conclusion

Bandstructure

Reducing Dimensions

- It is possible to reproduce the part of Hilbert space for low-energy Bloch states (blue lines) with further Wannierisation :

$$
A_{m n \mathbf{k}}=\left\langle\psi_{m \mathbf{k}} \mid \tau_{n}\right\rangle
$$

- This gives a basis $\varphi_{n} \leftarrow \psi_{m \mathbf{k}}$, and the old Hamiltonian in this new basis is :

$$
t_{n m}(\mathbf{R})=\left\langle\varphi_{n}(\mathbf{r})\right| H(\mathbf{r})\left|\varphi_{m}(\mathbf{r}-\mathbf{R})\right\rangle
$$

Final Wannier functions

- In principle we can trace back the real-space shape of Wannier orbitals
- But it is more practical to work with p_{z}-expansion :

$$
w(\mathbf{r})=\sum_{i} C_{i} p_{z}\left(\mathbf{r}-\mathbf{r}_{i}\right), \mathbf{r}_{i}=\text { original C-atom position }
$$

layer 1

layer 2

$\begin{array}{llll}0.020 & 0.024 & 0.028 & 0.032\end{array}$
p_{z} component weight of w_{2}

What about the symmetry?

- In principle, we have symmetry operations in the real space, so we can :

$$
g w(\mathbf{r})=w\left(g^{-1} \mathbf{r}\right) \rightarrow C_{n \leftrightarrow m}
$$

layer 1

layer 2

p_{z} component weight of $w_{2}\left(g_{2}\right)$

What about the symmetry?

- Symmetry of Hamiltonian in a mathematical sense :

$$
g H=D(g) H D\left(g^{-1}\right)
$$

- LA definition :

$$
\begin{aligned}
\tilde{w}_{j} & =\sum_{i} D_{i j} w_{i} \\
D_{i j} & =\left\langle w_{i} \mid g w_{j}\right\rangle
\end{aligned}
$$

- In principle, $\tilde{w}_{j}=g w_{j}$, and as a consequence :

$$
\left\langle\tilde{w}_{i} \mid g w_{j}\right\rangle=\delta_{i j}
$$

- However $\left\langle\tilde{w}_{j} \mid g w_{j}\right\rangle \rightarrow 0.9$ in my case

How to fix that?

(1) Do the cycle transformation :

$$
\tilde{w}_{j}^{1}=\hat{D}\left(g_{1}^{-1}\right) g_{1} w_{j}^{0}
$$

(2) Construct the difference with original function :

$$
\delta_{j}^{1}=w_{j}^{0}-\tilde{w}_{j}^{1}
$$

(3) Extract the orthogonal projection onto δ_{j}^{1} :

$$
v_{j}^{1}=w_{j}^{0}-\left\langle\delta_{j}^{1} \mid w_{j}^{0}\right\rangle \delta_{j}^{1}
$$

(4) do it for all symmetry operation consequently :

$$
v_{j}^{s}=v_{j}^{s-1}-\left\langle\delta_{j}^{s} \mid v_{j}^{s-1}\right\rangle \delta_{j}^{s}
$$

(5) go to (1) with $w_{j}^{0} \leftarrow v_{j}^{s}$

Conclusion

(1) We made ab-initio calculation for larger angles (smaller UC) of TBG, to extract out-of plane hoppins
(2) Fit those to an analytic function $t_{\perp}(r, \vec{\alpha})$
(3) Solve the tight-binding Hamiltonian for an arbitrary angle using (2)
(4) Project the tight-binding Hamiltonian on a smaller basis set defined by the solutions of (3).
(5) Gerenrate symmmetrised Wannier basis from (4)
(6) Try to compute matrix elements of Hamiltonian directly on this symmetrised basis (next weeks project)

Introduction

Symmetry representations p_{z}

- Our first TB model is written in "one p_{z} orbital per site" basis :

$$
\psi(\mathbf{r})=\sum_{i \mathbf{R}} C_{i \mathbf{R}} p_{z}\left(\mathbf{r}-\mathbf{r}_{i}-\mathbf{R}\right)
$$

- We know the p_{z} basis transformation for sure

$$
g p_{z}\left(\mathbf{r}-\mathbf{r}_{i}-\mathbf{R}\right)=p_{z}\left(g^{-1}\left\{\mathbf{r}-\mathbf{r}_{i}-\mathbf{R}\right\}\right)
$$

- just to to know where centers transfrom :

$$
D_{i j \mathbf{R R}} p^{p_{z}}(g)=\left\langle p_{z}\left(\mathbf{r}-\mathbf{r}_{i}-\mathbf{R}\right)\right| g\left|p_{z}\left(\mathbf{r}-\mathbf{r}_{j}-\mathbf{R}^{\prime}\right)\right\rangle
$$

$D^{p_{z}}$ acts on coordintates $C_{i \mathbf{R}}$

Symmetry representations $w_{n R}$

- knowing $D^{p_{z}}$, we can construct symmetry representaion for wannier functions

$$
\begin{aligned}
D_{n n^{\prime} \mathbf{R R}^{\prime}}^{12}(g) & =\left\langle w_{n \mathbf{R}}\right| g\left|w_{n^{\prime} \mathbf{R}^{\prime}}\right\rangle \\
& =\left\langle w_{n \mathbf{R}}\right| D^{p_{z}}(g)\left|w_{n^{\prime} \mathbf{R}^{\prime}}\right\rangle \\
& =\sum_{i j \mathbf{T T}^{\prime}}\left\langle w_{n \mathbf{R}}\left(\mathbf{T}+\mathbf{r}_{i}\right)\right| D_{i j}^{p_{z} \mathbf{T T}^{\prime}}
\end{aligned}(g)\left|w_{n^{\prime} \mathbf{R}^{\prime}}\left(\mathbf{T}^{\prime}+\mathbf{r}_{j}\right)\right\rangle
$$

Partial density of states

