

Solid State Physics Exercise Sheet 4 Crystal Binding

HS19 Prof. Dr. Marta Gibert

Assistant: Gabriele De Luca

Received on 11th October Discussed on 18th October

Noble gas crystals

Exercise 1 Lennard-Jones potential

- 1. Show that for a potential of the form $U(R) = -\frac{A}{R^m} + \frac{B}{R^n}$ an equilibrium structure can only be reached if n > m.
- 2. The potential energy of attraction between two atoms of noble gas separated by a distance R is of the form $\frac{A}{R^6}$ (van der Waals attraction) and the repulsive energy due to the overlapping of electronic orbitals is of the form $\frac{B}{R^{12}}$. The Lennard-Jones potential has the form:

 $U(R) = 4\epsilon \left[\left(\frac{\sigma}{R} \right)^{12} - \left(\frac{\sigma}{R} \right)^{6} \right]. \tag{1}$

Calculate the binding energy (cohesive energy) $E_{\rm B}$ and the equilibrium distance R_0 and describe qualitatively the role of ϵ and σ

3. Calculate the binding energy for a BCC and an FCC lattice

Ionic crystals

Exercise 2 1D chains

- 1. Consider a very long row of equidistant ions with alternating charges of $\pm 2q$. Determine the Madelung energy for an ion placed at the center of the chain and for another at the end.
- 2. Consider a linear crystal with the following basis: an ion A with charge -2q at 0 and two ions B with charge +q symmetrically located relative to A at 1/4 and -1/4. Find the Madelung energy at position A and position B.

(Hint: it is useful to regroup the terms BAB to evaluate the series...)

Exercise 3 Stability of crystals

In the alkali halides one can assume that the ions are hard spheres of radius r_+ (cation) and r_- (anion).

- 1. What inequality should the ratio r_-/r_+ satisfy so that in a simple cubic structure of CsCl type (basis 1 Cs at (0,0,0) and 1 Cl at $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$), the + and ions are in contact along the diagonal without the largest Cl⁻ ions overlapping at the corners of the cube?
- 2. What inequality should the ratio r_-/r_+ satisfy so that in the FCC lattice of the NaCl type (basis 1 Na at (0,0,0) and 1 Cl at $(\frac{1}{2},0,0)$), the ions of opposite signs located along the [100] direction are in contact without overlapping the biggest ions Cl⁻ located along the [110] direction?
- 3. Suppose that both CsCl and NaCl can crystallize in either a simple cubic lattice or a FCC lattice. For both hypotheses, find the distance R_0 between nearest neighbors of opposite signs and the lattice parameter a of the cube.
 - Use $r_{+}(Na^{+}) = 0.98 \text{ Å}$; $r_{+}(Cs^{+}) = 1.67 \text{ Å}$; $r_{-}(Cl^{-}) = 1.81 \text{ Å}$ as ionic radius.
- 4. In the alkali halides the binding energy $E_{\rm B}$ can be approximately described by

$$E_B = \left(\frac{\alpha e^2}{4\pi\epsilon_0 r_0}\right) \left(1 - \frac{\rho}{r_0}\right) \tag{2}$$

where α is the Madelung constant and $\rho = 0.345$ Å. For both CsCl and NaCl, find the value of the ratio of cohesive energies for both simple cubic (SC) and face-centered cubic (FCC) lattices. Use $\alpha(SC) = 1.7626$; $\alpha(FCC) = 1.7476$. Discuss the results.