Exercise 1 Binding energy

a) Show that for a potential of the form $U(R)=-\frac{A}{R^{m}}+\frac{B}{R^{n}}$ an equilibrium can only be reached if $n>m$.
b) For a pure van der Waals attraction the potential is often written as

$$
\begin{equation*}
U(R)=4 \epsilon\left[\left(\frac{\sigma}{R}\right)^{12}-\left(\frac{\sigma}{R}\right)^{6}\right] . \tag{1}
\end{equation*}
$$

Calculate the binding energy (cohesive energy) E_{B} and the equilibrium distance R_{0}.
c) Calculate the effect of thermal expansion, $\Delta R_{0}(T) / R_{0}$, on a linear chain of atoms with the potential of part b. Assume that the thermal energy $k_{\mathrm{B}} T \ll E_{\mathrm{B}}$ allows motion of the atoms around the equilibrium position. Think about in what boundaries the atoms can move. From this deduce the average position and compare the result with R_{0}. Hint: Use the expansion $1 /(1 \pm \epsilon) \approx 1 \mp \epsilon+\epsilon^{2}+\ldots$ up to the second order and $\sqrt[n]{1+\epsilon}=$ $1+\epsilon / n+\ldots$ for $\epsilon \rightarrow 0$.

Exercise 2 Madelung constant

Calculate the Madelung constant for an infinitely long, evenly spaced, linear chain of ions with alternating anions and cations of charge $\pm e$.

Exercise 3 Linear ionic crystal

Consider a line of $2 N$ ions of alternating charge $\pm q$ with a repulsive potential energy A / R^{n} between nearest neighbours.
a) Show that the expression for the potential energy can be approximated by

$$
\begin{equation*}
U(R)=N\left[\frac{2 A}{R^{n}}-\frac{2 \ln 2 q^{2}}{4 \pi \epsilon_{0} R}\right] . \tag{2}
\end{equation*}
$$

b) Show that at the equilibrium separation

$$
\begin{equation*}
U\left(R_{0}\right)=-\frac{2 N q^{2} \ln 2}{4 \pi \epsilon_{0} R_{0}} \cdot\left(1-\frac{1}{n}\right) . \tag{3}
\end{equation*}
$$

c) Let the crystal be compressed so that $R_{0} \rightarrow R_{0}(1-\delta)$. Show that the work done in compressing a unit length of the crystal has the leading term $\frac{1}{2} C \delta^{2}$, where

$$
\begin{equation*}
C=\frac{(n-1) q^{2} \ln 2}{4 \pi \epsilon_{0} R_{0}} . \tag{4}
\end{equation*}
$$

Note: Use the complete expression for $U(R)$ instead of $U\left(R_{0}\right)$.

