Solid State Physics Exercise Sheet 4

FS18 Prof. Dr. Johan Chang

TA: Daniel Destraz

Due on 28th March

Exercise 1 Binding energy

- a) Show that for a potential of the form $U(R) = -\frac{A}{R^m} + \frac{B}{R^n}$ an equilibrium can only be reached if n > m.
- b) For a pure van der Waals attraction the potential is often written as

$$U(R) = 4\epsilon \left[\left(\frac{\sigma}{R} \right)^{12} - \left(\frac{\sigma}{R} \right)^{6} \right]. \tag{1}$$

Calculate the binding energy (cohesive energy) $E_{\rm B}$ and the equilibrium distance R_0 .

c) Calculate the effect of thermal expansion, $\Delta R_0(T)/R_0$, on a linear chain of atoms with the potential of part b. Assume that the thermal energy $k_{\rm B}T \ll E_{\rm B}$ allows motion of the atoms around the equilibrium position. Think about in what boundaries the atoms can move. From this deduce the average position and compare the result with R_0 .

Hint: Use the expansion $1/(1 \pm \epsilon) \approx 1 \mp \epsilon + \epsilon^2 + \dots$ up to the second order and $\sqrt[n]{1 + \epsilon} = 1 + \epsilon/n + \dots$ for $\epsilon \to 0$.

Exercise 2 Madelung constant

Calculate the Madelung constant for an infinitely long, evenly spaced, linear chain of ions with alternating anions and cations of charge $\pm e$.

Exercise 3 Linear ionic crystal

Consider a line of 2N ions of alternating charge $\pm q$ with a repulsive potential energy A/R^n between nearest neighbours.

a) Show that the expression for the potential energy can be approximated by

$$U(R) = N \left[\frac{2A}{R^n} - \frac{2\ln 2q^2}{4\pi\epsilon_0 R} \right]. \tag{2}$$

b) Show that at the equilibrium separation

$$U(R_0) = -\frac{2Nq^2 \ln 2}{4\pi\epsilon_0 R_0} \cdot \left(1 - \frac{1}{n}\right). \tag{3}$$

c) Let the crystal be compressed so that $R_0 \to R_0(1-\delta)$. Show that the work done in compressing a unit length of the crystal has the leading term $\frac{1}{2}C\delta^2$, where

$$C = \frac{(n-1)q^2 \ln 2}{4\pi\epsilon_0 R_0}. (4)$$

Note: Use the complete expression for U(R) instead of $U(R_0)$.