Principles of X-ray and Neutron Scattering

Lecture 10: Neutron Polarization Analysis

15.02.'24

Lectures by: Prof. Philip Willmott, Prof. Johan Chang and Dr. Artur Glavic

Course Outline

Monday	Tuesday	Wednesday	Thursday	Friday
Lecture 1	Lecture 4	Lecture 7	Lecture 10	Lecture 13
10-10h45	10-10h45	10-10h45	10-10h45	10-10h45
Philip	Philip	Artur	Artur	Johan
Lecture 2	Lecture 5	Lecture 8	Lecture 11	Lecture 14
11-11h45	11-11h45	11-11h45	11-11h45	11-11h45
Philip	Philip	Artur	Artur	Johan
Lunch - Mensa	Lunch - Mensa	Lunch - Mensa	Lunch - Mensa	Lunch - Mensa
Lecture 3	Lecture 6	Lecture 9	Lecture 12	Lecture 15
13h00-13h45	13h00-13h45	13h00-13h45	13h00-13h45	13h00-13h45
Philip	Philip	Artur	Artur	Johan
		Exercise Class 14h30-16		Exercise Class 14h30-16

Neutron Lectures:

- 7: Neutrons & Scattering to Determine Structure
- 8: Inelastic Neutron Scattering to Investigate Dynamics
- 9: Magnetic Scattering
- 10: Neutron Polarization Analysis
- 11: Studying quantum matter for nanoscale applications
- 12: Neutron Instrument Development

X-ray scattering

Neutron Scattering

Resonant x-ray scattering

Theoretical Background

Polarization considerations in scattering

Practical Implementation

- Instruments with polarization (analysis)
- Polarization control devices
- Full polarimetry

Example Application

- Separating nuclear and magnetic inelastic scattering
- Molecular magnets

Lecture 10: Magnetic Scattering and Neutron Polarization Analysis

Further Reading

- "Neutron Diffraction of Magnetic Materials"
 Y. A. Izyumov, V. E. Naish, and R. P. Ozerov.
 Plenum Publishing Corporation, New York (1991)
- "Introduction to the Theory of Thermal Neutron Scattering"
 G. L. Squires
 Dover Publication (1978)
- "Theory of Neutron Scattering from Condensed Matter" Vol.I/II.
 S. W. Lovesey
 Oxford Science Publications (1984).
- "Neutron Scattering"
 T. Brückel, et al. (2012) / Available Open Access: <u>https://juser.fz-juelich.de/record/136390/files/Schluesseltech_39.pdf</u>
- "Neutron Data Book" Albert-José Dianoux and Gerry Lander https://www.ill.eu/fileadmin/user_upload/ILL/1_About_ILL/Documentation/NeutronDataBooklet.pd

Polarization of a Neutron Beam

→ A neutron is a spin-1/2 particle and its spin can be expressed as

 $|a|^2$ and $|b|^2$ are the probabilities to be in the up or down state.

For normalization:

$$\chi^{\dagger}\chi = |a|^2 + |b|^2 = 1$$

→ We can define the polarization of a single neutron as the unit vector pointing in the direction of the spin (see for example: Lovesey, Pauli matrices $\hat{\sigma}$ as before):

$$P \equiv \langle \hat{\boldsymbol{\sigma}} \rangle = \chi^{\dagger} \hat{\boldsymbol{\sigma}} \chi = Tr(\hat{\varrho}\hat{\boldsymbol{\sigma}}),$$

where $\hat{\varrho} = \chi \chi^{\dagger} = \begin{pmatrix} |a|^2 & ab^* \\ ba^* & |b|^2 \end{pmatrix}$

is a *density matrix operator* that gives the probability of a certain spin state.

 \rightarrow The following choice for *a* and *b* is a valid normalization:

$$a = \cos\frac{\theta}{2}e^{i\frac{\phi}{2}} \qquad b = \sin\frac{\theta}{2}e^{-i\frac{\phi}{2}}$$

→ And we find a more physical representation (Bloch sphere):

$$\chi = a\chi_{\uparrow} + b\chi_{\downarrow} = a\begin{pmatrix}1\\0\end{pmatrix} + b\begin{pmatrix}0\\1\end{pmatrix}$$

$$\boldsymbol{P} = \begin{pmatrix} 2\Re(a^*b) \\ 2\Im(a^*b) \\ |a|^2 - |b|^2 \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi \\ \sin\theta\sin\phi \\ \cos\theta \end{pmatrix} = \hat{\boldsymbol{n}}$$

Polarization of a Neutron Beam

 \rightarrow The polarization of a beam is then:

$$P = \frac{1}{N} \sum_{i} P_{i} = <<\hat{\sigma} >>_{beam},$$

→ A polarized beam can be manipulated by magnetic fields. This is known as *Larmor precession*:

$$rac{doldsymbol{P}(t)}{dt} = -\gamma_L(oldsymbol{P}(t) imesoldsymbol{B}).$$

- → The precession frequency is $\omega_L = \frac{\gamma e}{m_p} B = \gamma_L B$ where $\gamma_L = 2\pi \cdot 2913 \frac{rad}{sG}$
- → the direction parallel to the magnetic field is conserved. This implies that, if the magnetic field direction is changed with a frequency slow compared to the Larmor frequency, the polarization vector will follow.

Lecture 10: Neutron Polarization Analysis

The Blume-Maleyev Equations (from Lovesey)

→ The most general expression for the cross-section, taking into account the neutron spin is:

$$\frac{d^{2}\sigma}{d\Omega dE'} = \frac{k_{f}}{k_{i}} \frac{1}{2\pi\hbar} \int dt \sum_{\sigma_{i},\sigma_{f}} p_{\sigma} \langle \sigma_{i} | V_{\boldsymbol{Q}}^{\dagger}(0) | \sigma_{f} \rangle \langle \sigma_{f}, | V_{\boldsymbol{Q}}(t) | \sigma_{i} \rangle \exp(-i\omega t),$$

where $V_{\boldsymbol{Q}}(t) = \langle k_{f} | V(t) | k_{i} \rangle = N_{\boldsymbol{Q}}(t) + (\gamma r_{0})\hat{\sigma} \cdot M_{\perp \boldsymbol{Q}}(t).$

Nuclear Structure Factor Magnetic Interaction Vector

 \rightarrow The probability function p_{σ} can be expressed using the density matrix operator:

$$\hat{\varrho} = \sum_{\sigma_i, \sigma_f} p_\sigma |\sigma\rangle \langle \sigma|,$$

 \rightarrow With this, the sum and average can be expressed such as that

$$\sum_{\sigma_i,\sigma_f} p_{\sigma} \langle \sigma_i, |V_{\boldsymbol{Q}}^{\dagger}(0)|\sigma_f \rangle \langle \sigma_f, |V_{\boldsymbol{Q}}(t)|\sigma_i \rangle = \sum_{\sigma_i} \langle \sigma_i |V_{\boldsymbol{Q}}^{\dagger}(0)V_{\boldsymbol{Q}}(t)\hat{\varrho}|\sigma_i \rangle = Tr(\hat{\varrho}V_{\boldsymbol{Q}}^{\dagger}(0)V_{\boldsymbol{Q}}(t))$$

 \rightarrow And the corresponding cross-section is

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{k_f}{k_i} \frac{1}{2\pi\hbar} \int dt Tr(\hat{\varrho} V_{\boldsymbol{Q}}^{\dagger}(0) V_{\boldsymbol{Q}}(t)) \exp(-i\omega t).$$

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

The Blume-Maleyev Equations (from Lovesey)

$$\begin{aligned} \frac{d^2\sigma}{d\Omega dE'} &= \frac{k_f}{k_i} \frac{1}{2\pi\hbar} \int dt \Big\{ & \langle N_{\boldsymbol{Q}} N_{\boldsymbol{Q}}^{\dagger} \rangle + & \text{pure nuclear contribution} \\ &+ (\gamma r_0)^2 \langle M_{\perp \boldsymbol{Q}} M_{\perp \boldsymbol{Q}}^{\dagger} \rangle + & \text{pure magnetic contribution} \\ &+ (\gamma r_0) P_0 \left[\langle N_{\boldsymbol{Q}}^{\dagger} M_{\perp \boldsymbol{Q}} \rangle + \langle M_{\perp \boldsymbol{Q}}^{\dagger} N_{\boldsymbol{Q}} \rangle \right] - & \text{nuclear-magnetic interference} \\ &- i(\gamma r_0) P_0 \langle M_{\perp \boldsymbol{Q}} \times M_{\perp \boldsymbol{Q}}^{\dagger} \rangle & \text{chiral magnetic contribution} \\ &\Big\} \exp(-i\omega t), \end{aligned}$$

 \rightarrow Here P_0 describes the polarization of the incident beam.

→ This equation describes a half-polarized experiment (incident beam polarized but no polarization analysis).

→ Can this already be useful?

The Blume-Maleyev Equations

→ Change of polarization during scattering process is given by

$$\begin{aligned} \boldsymbol{P'} &= \frac{Tr(\hat{\varrho}V_{\boldsymbol{Q}}^{\dagger}\hat{\boldsymbol{\sigma}}V_{\boldsymbol{Q}})}{Tr(\hat{\varrho}V_{\boldsymbol{Q}}^{\dagger}V_{\boldsymbol{Q}})}, \quad \boldsymbol{P'}\frac{d^{2}\sigma}{d\Omega dE'} = \frac{k_{f}}{k_{i}}\frac{1}{2\pi\hbar}\int dt Tr(\hat{\varrho}V_{\boldsymbol{Q}}^{\dagger}(0)\hat{\boldsymbol{\sigma}}V_{\boldsymbol{Q}}(t))\exp(-i\omega t) \\ \\ \boldsymbol{P'}\frac{d^{2}\sigma}{d\Omega dE'} &= \frac{k_{f}}{k_{i}}\frac{1}{2\pi\hbar}\int dt \Big\{\boldsymbol{P}_{0}\langle N_{\boldsymbol{Q}}N_{\boldsymbol{Q}}^{\dagger}(t)\rangle - (\gamma r_{0})^{2}\boldsymbol{P}_{0}\langle M_{\perp\boldsymbol{Q}}M_{\perp\boldsymbol{Q}}^{\dagger}(t)\rangle + \\ &+ (\gamma r_{0})^{2}\langle(\boldsymbol{P}_{0}M_{\perp\boldsymbol{Q}}^{\dagger}(t))M_{\perp\boldsymbol{Q}}\rangle + (\gamma r_{0})^{2}\langle M_{\perp\boldsymbol{Q}}^{\dagger}(t)(\boldsymbol{P}_{0}M_{\perp\boldsymbol{Q}})\rangle + \\ &+ (\gamma r_{0})\Big(\langle N_{\boldsymbol{Q}}^{\dagger}M_{\perp\boldsymbol{Q}}(t)\rangle + \langle M_{\perp\boldsymbol{Q}}^{\dagger}N_{\boldsymbol{Q}}(t)\rangle\Big) + \\ &+ i(\gamma r_{0})\boldsymbol{P}_{0}\times\Big(\langle M_{\perp\boldsymbol{Q}}^{\dagger}N_{\boldsymbol{Q}}(t)\rangle - \langle N_{\boldsymbol{Q}}^{\dagger}M_{\perp\boldsymbol{Q}}(t)\rangle\Big) + \\ &+ i(\gamma r_{0})^{2}\langle M_{\perp\boldsymbol{Q}}\times M_{\perp\boldsymbol{Q}}^{\dagger}(t)\rangle\Big\exp(-i\omega t). \end{aligned}$$

M. Blume. Phys. Rev., 133 (5A) (1964)

Yu. A. Izyumov and S.V. Maleyev. Sov. Phys. JETP, 14, 1668 (1962)

The Blume-Maleyev Equations

$$P' = \tilde{P}P_0 + P''$$

$$\sigma \tilde{\boldsymbol{P}} = \begin{pmatrix} (N-M^y - M^z) & iI^z & -iI^y \\ -iI^z & (N+M^y - M^z) & M_{mix} \\ iI^y & M_{mix} & (N-M^y + M^z) \end{pmatrix}, \quad \sigma \boldsymbol{P''} = \begin{pmatrix} C \\ R^y \\ R^z \end{pmatrix}$$
$$\sigma \equiv \frac{d^2\sigma}{d\Omega dE'} = \underbrace{N+M^y + M^z}_{\text{independent of } \boldsymbol{P_0}} - \underbrace{P_0^x C + P_0^y R^y + P_0^z R^z}_{\text{dependent on } \boldsymbol{P_0}}.$$

→ The actually measured quantity is the polarization tensor

$$\mathbf{P}_{ij} = (P_{i0}\tilde{P}_{ji} + P_j'')/|\mathbf{P}_0|,$$

with *i* and *j* (*i*, j = x, y, z) being the components of the incident and final polarization vectors.

P. J. Brown, Physica B, 297, 198 (2001) M. Janoschek Physica B, 397, 125 (2007).

Relevant Terms in Polarization Tensor

$$\sigma \tilde{\boldsymbol{P}} = \begin{pmatrix} (N-M^y - M^z) & iI^z & -iI^y \\ -iI^z & (N+M^y - M^z) & M_{mix} \\ iI^y & M_{mix} & (N-M^y + M^z) \end{pmatrix}, \qquad \sigma \boldsymbol{P''} = \begin{pmatrix} C \\ R^y \\ R^z \end{pmatrix}$$

Item	correlation functions	description
A.T.	Keine arts	
IN	$\frac{N}{k}\langle N_{Q}N_{Q}\rangle_{\omega}$	nuclear contribution
My/z	$(\gamma r_{0})^{2} \frac{k_{f}}{M} / M^{y/z} M^{\dagger y/z}$	u and z components of the magnetic con-
IVI	$(\gamma 0) \frac{1}{k_i} \sqrt{M_\perp Q} \frac{1}{Q} \frac{1}{\omega}$	g- and z-components of the magnetic con-
		tribution.
$R^{y/z}$	$(\gamma r_0) \frac{k_f}{N} \langle N^{\dagger} M^{y/z} \rangle_{u} + \langle M^{\dagger y/z} N_0 \rangle_{u}$	real parts of the nuclear-magnetic interfer-
10	$(\gamma 0)_{k_i} \langle \gamma Q \gamma 1 \perp Q \rangle \omega + \langle \gamma 1 \perp Q \gamma 2 \vee Q \rangle \omega$	real parts of the nuclear-magnetic interfer-
		ence term.
Iy/z	$(\gamma r_0) \frac{k_f}{N} N^{\dagger} M^{y/z} = (M^{\dagger y/z} N_0)$	imaginary parts of the nuclear-magnetic
1	$(\gamma_{0})_{k_{i}} \langle \gamma_{Q} \gamma_{\perp} Q \rangle \omega = \langle \gamma_{\perp} Q \gamma_{\omega} Q \rangle \omega$	imaginary parts of the nuclear-magnetic
		interference term.
C	$i(\gamma r_0)^2 \frac{k_f}{(\langle M^y, M^{\dagger z}, \rangle)} = \langle M^z, M^{\dagger y}, \rangle$	chiral contribution
C	$(\mathcal{W}_{i})_{k_{i}} (\mathcal{W}_{i} \mathcal{Q}_{i} \mathcal{Q}_{i}) = (\mathcal{W}_{i} \mathcal{Q}_{i} \mathcal{Q}_{i})$	chiral contribution
M_{mix}	$(\gamma r_0)^2 \frac{\kappa_f}{k} (\langle M^y_{\perp O} M^{\dagger z}_{\perp O} \rangle_{\omega} + \langle M^z_{\perp O} M^{\dagger y}_{\perp O} \rangle_{\omega})$	mixed magnetic contribution or magnetic-
		magnetic interference term
		magnetic interference term

P. J. Brown, Physica B, 297, 198 (2001) M. Janoschek Physica B, 397, 125 (2007).

Meaning of Terms

→ Consider: $M_{\perp Q} = m \left[\hat{e}_y \cos(\alpha) + \hat{e}_z \sin(\alpha) \right]$

$$\Rightarrow \quad M^y + M^z = m^2 \cos^2(\alpha) + m^2 \sin^2(\alpha) = m^2. \\ -M^y + M^z = -(M^y - M^z) = -m^2 \cos^2(\alpha) + m^2 \sin^2(\alpha) = -m^2 \cos(2\alpha). \\ M_{mix} = m^2 \cos(\alpha) \sin(\alpha) + m^2 \sin(\alpha) \cos(\alpha) = m^2 \sin(2\alpha). \\ C = 0 \text{ as } \mathbf{M}_{\perp \mathbf{Q}} \text{ is real and therefore } \mathbf{M}_{\perp \mathbf{Q}} \parallel \mathbf{M}_{\perp \mathbf{Q}}^{\dagger}.$$

$$\rightarrow \sigma = m^2 \text{ and } \mathbf{P} = \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & \cos(2\alpha) & \sin(2\alpha) \\ 0 & \sin(2\alpha) & -\cos(2\alpha) \end{array} \right)$$

Take home message:

- Polarization component parallel to $M_{\perp Q}$ stay
- Polarization component perpendicular to $M_{\perp Q}$ flip

Neutron Spin Echo – Polarization as Clock

Classes of polarized neutron experiments

Experiment	P. Incoming	P. Outgoing	Information
Unpolarized	Х	X	Propagation vector of magnetic order, μ AF-ordered (few exceptions)
("Half") polarized	P_{\pmZ}	Х	+ μ FM order along B P _z
Polarization analysis	P_{\pmZ}	P _{±Z}	+ Separate $M_{ z}$ and $M_{\perp z}$ components + Separate N from $M_{\perp z}$
XYZ polarization analysis	$P_{\pm X} / P_{\pm Y} / P_{\pm Z}$	$P_{\pm X} / P_{\pm Y} / P_{\pm Z}$	 + Separate spin-incoherent scattering + Separate N from M_Z - No fixed direction magnetic field at sample
Polarimetry (Spherical pol. analysis)	$\begin{array}{c} P_{\pm \mathrm{X}} / P_{\pm \mathrm{Y}} / P_{\pm \mathrm{Z}} \\ P_{\pm \mathrm{X}} / P_{\pm \mathrm{Y}} / P_{\pm \mathrm{Z}} \\ P_{\pm \mathrm{X}} / P_{\pm \mathrm{Y}} / P_{\pm \mathrm{Z}} \end{array}$	$\begin{array}{c} P_{\pm \mathrm{X}} / P_{\pm \mathrm{X}} / P_{\pm \mathrm{X}} \\ P_{\pm \mathrm{Y}} / P_{\pm \mathrm{Y}} / P_{\pm \mathrm{Y}} \\ P_{\pm \mathrm{Z}} / P_{\pm \mathrm{Z}} / P_{\pm \mathrm{Z}} \end{array}$	 + Magnetic interaction terms (complex spin structures) - No magnetic field around sample

Classes of polarized neutron experiments

Experiment	P. Incoming	P. Outgoing	Implementation		
Unpolarized	Х	Х	sample detector		
("Half") polarized	P_{\pmZ}	Х	polarizer flipper		
Polarization analysis	P_{\pmZ}	P_{\pmZ}			
XYZ polarization analysis	$P_{\pm X} / P_{\pm Y} / P_{\pm Z}$	$P_{\pm X} / P_{\pm Y} / P_{\pm Z}$	Helmholtz XYZ coils		
Polarimetry (Spherical pol. analysis)	$\begin{array}{c} P_{\pm \mathrm{X}} / P_{\pm \mathrm{Y}} / P_{\pm \mathrm{Z}} \\ P_{\pm \mathrm{X}} / P_{\pm \mathrm{Y}} / P_{\pm \mathrm{Z}} \\ P_{\pm \mathrm{X}} / P_{\pm \mathrm{Y}} / P_{\pm \mathrm{Z}} \end{array}$	$\begin{array}{c} P_{\pm \mathrm{X}} / P_{\pm \mathrm{X}} / P_{\pm \mathrm{X}} \\ P_{\pm \mathrm{Y}} / P_{\pm \mathrm{Y}} / P_{\pm \mathrm{Y}} \\ P_{\pm \mathrm{Z}} / P_{\pm \mathrm{Z}} / P_{\pm \mathrm{Z}} \end{array}$	spin rotator field free		

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Neutron polarizers

@Rob Dimeo

Neutron scattering lengths and cross sections							
Isotope	conc	Coh b	Inc b	Coh xs	Inc xs	Scatt xs	Abs xs
He		3.26(3)		1.34	0	1.34	0.00747
3He	0.00014	5.74-1.483 <i>i</i>	-2.5+2.568 <i>i</i>	4.42	1.6	6	5333.(7.)
4He	99.99986	3.26	0	1.34	0	1.34	0
4He	99.99986	3.26	0	1.34	0	1.34	0

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Neutron spin-flippers

Mezei flipper Lamor-precession

+ simple and cheap- only single wavelength

μ-metal or superconductor

- + broad wavelength band (ToF)
- losses in intensity
- can lead to partial depolarization

Resonant / radio frequency

+ broad wavelength band

- + very high efficiency (>99%)
- more costly
- requires more space

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Neutron polarimetry devices

MuPAD

CryoPAD

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Discerning Magnetic from Nuclear Inelastic Scattering

- 1. The best way is to try to find Brillouin zones that only have nuclear or magnetic scattering (nuclear vs. magnetic structure factor).
- 2. In general measure phonons at higher and magnons at lower Q to take advantage of $Q^2 vs f(Q)$.
- 3. Magnetic scattering can sometimes be excluded via geometric selection rule.

TABLE I. Nuclear (F_N^2) and magnetic (F_M^2) structure factors of MnSi at 0 K. F_M^2 includes the magnetic form factor. a = 4.558 Å, $u_{Mn} = 0.138$, $u_{Si} = 0.845$, $M = 0.4\mu_B$.

h	k	1	F_N^2	F_M^2
1	0	0	0	0
0	1	1	2.362	0.0269
1	1	1	2.624	0.0230
2	0	0	0.143	0.0015
2	0	1	3.479	0.0225
0.	2	2	0.036	0.0000
3	0	0	0	0
1	2	2	0.308	0.0005
2	2	2	8.016	0.0122

- 4. Subtract intensities that are unwanted by using independent measurements (careful).
- **5. Polarization analysis** (very powerful, unfortunately decreases intensity by roughly factor 2-3 and you have to measure 4-18 different combinations to get information)

Subtracting Unwanted Background/Phonons

What is the issue with the second example?

Separating magnetic and nuclear scattering (inelastic)

Separating magnetic and nuclear scattering (elastic)

Molecular magnets are tiny crystals with a well defined atomic structure and some magnetic atoms that have a magnetic order.

The small magnetic signal can be extracted from the nuclear dominated scattering by the use of XYZ-polarization analysis measurements.

Z. Fu, et al., New Journal of Physics 12, 083044 (2010)

15. 02. '24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic