D. Lancierini
http://www.physik.uzh.ch/de/lehre/PHY213/FS2018.

Exercise 1: SU(3) Color algebra
Each QCD quark-gluon vertex contains a color matrix $t_{i j}^{a}$. The $t_{i j}^{a}$ matrices are generators of the $\mathrm{SU}(3)$ color algebra, and they are hermitean and traceless (NOTE: $t_{i j}^{a}=\lambda_{i j}^{a} / 2$ from page 16 Lecture 1).

When performing QCD loop calculations, it is necessary to sum over all color configurations of one diagram and thus a convenient way of evaluating color coefficients is needed. An example of this procedure can be seen when setting the normalization of the bare QCD coupling g_{s}.

Figure 1: Quark loop in a gluon propagator

When considering the diagram in figure (1), the term $\operatorname{Tr}\left(t^{a} t^{b}\right)=t_{i j}^{a} t_{j i}^{b}=T_{F} \delta^{a b}$ has to be evaluated (summation over repeated indices is understood), and by convention T_{F} is set to $1 / 2$.
Using $\mathrm{su}(3)$ generators properies, determine the value of the color coefficients C_{F} and C_{A} for the following loop diagrams
a) Quark self energy involving the product: $\left(t^{a} t^{a}\right)_{i j}=C_{F} \delta_{i j}$

Figure 2: Quark self-energy diagram
b) Correction to the quark-gluon vertex where the product $\left(t^{b} t^{a} t^{b}\right)_{i j}$ appears.

Figure 3: Correction to quark-gluon vertex

Exercise 2: W Vector boson polarization sums
The top quark decays to a bottom quark and a W^{+}boson via the diagram in figure:

Figure 4: $t \rightarrow b W^{+}$Feynman diagram
Where the momenta of the incoming and outcoming particles are labeled, as well as the polarization vector ϵ_{i}^{μ} for the W^{+}boson.
a) Write down the matrix element for the decay

The differential decay width $d \Gamma$ for such decay is proportional to

$$
\begin{equation*}
d \Gamma \propto \frac{1}{2} \frac{1}{3} \sum_{i=1}^{3} \mathcal{M}^{\mu} \mathcal{M}^{* \nu} \epsilon_{\mu}^{i} \epsilon_{\nu}^{* i} \tag{1}
\end{equation*}
$$

b) Can you guess the reason for the $1 / 2$ and $1 / 3$ prefactors?
c) Knowing that

$$
\begin{equation*}
\frac{1}{2} \frac{1}{3} \mathcal{M}^{\mu} \mathcal{M}^{* \nu}=\frac{g^{2}}{6}\left|V^{t t}\right|\left(p^{\mu} p^{\prime \nu}-\left(p \cdot p^{\prime}\right) g^{\mu \nu}+p^{\nu} p^{\mu}\right) \tag{2}
\end{equation*}
$$

Show that it makes no difference if using the polarization sums tensor

$$
\begin{equation*}
\Sigma^{\mu \nu}=\sum_{i=1}^{3} \epsilon^{i \mu} \epsilon^{* i \nu}=\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{m_{W}^{2}}\right) \tag{3}
\end{equation*}
$$

where $g^{\mu \nu}$ is the metric tensor, or the explicit polarization vectors ϵ_{μ}^{i} (cfr. page 5 of Lecture 3), when summing over the W^{+}boson polarizations.
d) EXTRA: Recalling the two body phase space factor $d \phi_{2}$ from exercise class 1 of KTI

$$
\begin{equation*}
d \phi_{2}=\frac{1}{32 \pi^{2}}\left(1-\frac{m_{W}^{2}}{m_{t}^{2}}\right) d(\cos \theta) d \phi \tag{4}
\end{equation*}
$$

Determine the decay width for the process.

Exercise 3: Bilinear covariants under parity
Bilinear covariants are decompositions of $\bar{\psi} \Gamma \psi$ where ψ is a Dirac spinor, Γ is any combination of gamma matrices and $\bar{\psi}$ is the adjoint spinor (defined as $\bar{\psi}=\psi^{\dagger} \gamma^{0}$), that transform in a definite way under Lorentz transformation.

Using properties of gamma matrices show that:
a) The product $\bar{\psi} \gamma^{\mu} \psi$ transforms as a vector
b) The product $\bar{\psi} \gamma^{5} \psi$ transforms as a pseudoscalar

