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Abstract

This thesis explores possible algorithms for the detection of rings of Cherenkov photons
which are produced by particles travelling through a RICH detector in the LHCb exper-
iment. These rings can be detected with the help of a Hough transform. After a brief
introduction to LHCb and the RICH detector, this thesis gives a short introduction to the
linear Hough transform (which detects straight lines) to give a rough idea about what
a Hough transform can do. This is followed a brief look at the circle Hough transform
(which detects circles). This part is split in 3 sections, discussing 1D, 2D and 3D Hough
transforms. The 1D Hough transform can be used when the center of the circle is given
and only its radius needs to be found. The 2D Hough transform looks for the position
of circle centers ((x, y) coordinate) for a given radius. The 3D Hough transform is used
when neither center nor radius of the ring are known. This is the case for the data from
LHCb where there are data points (photons from several Cherenkov rings and noise hits)
and the algorithm has to find all the rings.

Apart from the standard Hough transform with a 3D accumulator space this thesis de-
velops a new approach for a Hough transform. This approach works on the basis that
each circle is defined by 3 points. Given 3 points one can calculate the circumcenter (the
center of the circle we are intersted in) and the radius of the circumcircle.

For the development of these algorithms python was used in combination with differ-
ent modules such as numpy, scipy, matplotlib. The source code for this thesis can be
found on github.com [1].
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1 Introduction

1.1 LHC - Large Hadron Collider

Fig. 1.1 – The LHC ring with its four large experiments: ATLAS, CMS, ALICE and LHCb

The Large Hadron Collider (LHC) is the largest and highest-energy particle accelerator
in the world colliding protons on protons at beam energies of up to 6.5 TeV and lead ions
at beam energies up to 5.5 GeV/nucleon. It was built by the European Organisation for
Nuclear Research (CERN) from 1998 to 2008. It aims to test the predictions of different
theories in high-energy particle physics, in particular for the search of the Higgs boson
(which has been confirmed last year) and signs for possible new physics beyond the
Standard Model of particle physics. The LHC lies in a tunnel 27 km in circumference and
up to 100 m below the surface of the French-Swiss border near Geneva. The LHC was
built in collaboration with over 10000 scientists and engineers from over 100 countries.
The accelerator has been running with a center of mass energy of

√
s = 13 TeV since 20

May 2015.

The LHC hosts four large experiments [2–5]:

ATLAS/CMS

• The two multi-purpose experiments at the LHC with the main goal of probing p− p
collisions for direct searches of new particles.
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1.2. The LHCb experiment CHAPTER 1. INTRODUCTION

Fig. 1.2 – LHCb Detector: The beams collide inside the Vertex Locator. The RICH1 is
positioned before the tracking station (TT) and the magnet. RICH2 is set up after the
magnet and the tracking stations (T1-T3) and before the calorimeters (SPD/PS, ECAL,
HCAL) and muon stations (M1-M5)

ALICE

• ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy ion detec-
tor at the CERN LHC which focuses on QCD, the strong interaction sector of the
Standard Model, e.g. searching for evidence for quark-gluon plasma.

LHCb

• LHCb is testing the Standard Model by confronting its predictions with precise
measurements in CP violation and rare decays of particles containing b and c quarks.

1.2 The LHCb experiment

The main goal of the LHCb experiment is the study of decays of particles containing b
and b̄ quarks (such as B-Mesons). During the p− p collisions at the LHC these particles
are produced mostly at small polar angles with respect to the beam axis. This is reflected
in the design of the LHCb detector which is a foward arm spectrometer 20 meters long
with subdetectors arranged along the beam pipe as shown in figure 1.2.

10



1.2. The LHCb experiment CHAPTER 1. INTRODUCTION

A brief overview of the detector parts [6].

VELO The VErtex LOcator surrounds the region where the beams collide and b/b̄ pairs
are produced. The VELO measures the distance between the p − p collision point and
the point where the B particles decay. B particles are short-lived (decaying after typically
1 cm) thus their properties are not measured directly but inferred from the separation of
these two points and the properties of their decay products.

RICH The RICH detectors are built for particle identification in particular to distinguish
charged kaons from pions. One detector on each side of the magnet is used to cover dif-
ferent momentum ranges. RICH detectors work by measuring emissions of Cherenkov
radiation which is produced if a particle travels faster than the speed of light through a
certain medium (often compared to breaking the sound barrier). The emission angle de-
pends on the speed of the particle, so knowing the speed and the momentum (from the
curvature of the track induced by the magnet) the mass of the particle can be inferred.

Magnet Particles normally move in a straight line but a magnetic field causes the path
of charged particles to curve according to the Lorentz force

F = q (E + (v× B))

thus allowing to determine the charge sign of the particle. Also the track curvature can
be used to measure the momentum of the particle.

Tracking System The tracking system is based on 4 planar tracking stations. It is used to
determine the momentum of charged particles by measuring the bending of the trajectory
in the magnetic field. Two types of tracking detectors are used in LHCb. In the silicon
detector a passing particle generates electron-hole pairs which induce a charge on the
readout strips. In the straw tube detector a particle ionises the gas molecules in gas-filled
tubes which induce charges on a readout wire.

Calorimeters They are designed to stop particles and measure their energy. The design
of the stations is sandwich like with alternating metal and scintillator plates. Interactions
in the metal plate cause a secondary shower of charged particles which induce scintilla-
tion light in the scintillator plates. The energy lost is proportional to the amount of light
emmitted. Calorimetry is also the main way of identifying neutral particles (e.g. photons,
neutrons).

Muon system Muons are easy to identify and play an important role in many analyses.
There are five planar stations at the end of the detector each consisting of an iron absorber
and a detection plane. The total area covered by these stations is about 435 m2 [7]. The
goal of the absorber is to stop all particles except muons who still can pass. The muons
get detected in the gaseous detectors where their trajectory is measured.

11



1.2. The LHCb experiment CHAPTER 1. INTRODUCTION

1.2.1 Particle identification

An important requirement at LHCb is particle identification. This is handled by the
calorimeters, Muon and RICH sub-detectors. The Calorimeters beside measuring en-
ergies and positions of electrons, photons and hadrons also provide identification of said
particles e.g. by measuring the shape of the induced showers. The Muon system identi-
fies muons to a very high level of purity.

Hadron identification i.e. separation of kaons, pions and protons is important for many
analyses. The LHCb RICH system provides this, covering a momentum range of approx-
imately 1–100 GeV. It is composed of two detectors. One is positioned upstream of the
dipole magnet and the other one is positioned downstream of the dipole magnet. Their
setup is briefly described in Section 2.2.

12



2 Theory

2.1 Cherenkov radiation

The speed of light in vacuum, c = 299′792 km/s, is a universal physical constant. Ac-
cording to Einstein’s special theory of relativity, c is the maximum speed at which all
matter (or information) in the universe can travel. The speed at which light propagates
in a medium is given by c

n , where n is the refractive index of the medium and can be
significantly less can c.

Cherenkov radiation results when a charged particle travels through a dielectric medium
with a speed greater than the speed of light through said medium. The velocity that
must be exceeded is the phase velocity (vPhase or short vP) and not the group velocity
(vGroup = ∂ω

∂k ),

vP =
c
n
=

λ

T
=

ω

k
,

where λ is the wavelength of the light, T the oscillation period, ω the angular frequency
and k the wavenumber.

As a charged particle travels through the medium, it disrupts the local electromagnetic
field. If the particle travels slower than the speed of light then the disturbance elastically
relaxes to the equilibrium as the particle passes. However, if the particle travels at the
speed β · c faster than the speed of light i.e. β > 1/n, the limited response speed of the
medium means that a disturbance is left in the wake of the particle, and the energy in
this disturbance radiates as a coherent shockwave.

c
n

t

βct
θ

Fig. 2.1 – The geometry of the Cherenkov radiation
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As illustrated in Figure 2.1, the shockwave is emited under an angle

cos θ =
xp

xem
=

c
n t

βct
=

1
nβ

(2.1)

with respect to the direction of flight of the particle. Figure 2.2 shows the Cherenkov
angle vs momentum for different particles and different radiators in LHCb.

2.2 RICH detector

Particle identification is a fundamental requirement for many analyses at the LHCb ex-
periment. LHCb is unique at the LHC in the sense that it uses RICH detectors for hadronic
particle identification, unlike other LHC experiments such as ATLAS or CMS. The advan-
tage of using RICH detector is that it yields superior particle identification performance.
Using three different radiators, the RICH detectors cover a wide range of momentum
(1-100 GeV/c).

Both RICH-1 and RICH-2 are located in low magnetic field regions to keep the trajectories
of charged particles straight while they pass through the radiators. They both also have
tilted spherical focusing primary mirrors and secondary flat mirrors to limit the length
of the detector along the beam pipe and minimize the amount of detector material. The
spherical focusing mirrors use the property that photons generated at a fixed angle with
respect to the particle trajectory are focused onto a ring in the photon detector plane (via
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Fig. 2.3 – RICH-1 detector [9]

the secondary flat mirror) where hybrid photon detectors (HPD) are used to measure the
spatial position of emitted Cherenkov photons. These photon detectors have a spatial
resolution of 2.5 mm × 2.5 mm. The total area of the two detector planes in the RICH-
1 detector is 1302 mm ×555 mm each and 710 mm ×1477 mm for RICH-2. The HPD is
a vacuum photon detector in which a photoelectron, released from the conversion in a
photocathode of an incident photon, is accelerated by and applied voltage onto a silicon
detector [4].

The RICH-1 in front of the magnet covers the lower momentum range from 1-60 GeV/c.
It uses two radiators 5 cm thick aerogel tiles with n = 1.03 which is suited for the lowest
momentum tracks and directly behind about 1 m of C4F10 (n = 1.0014) which covers
the intermediate region of momentum. For the highest momentum tracks, gaseous CF4
(n = 1.0005) is used in the RICH-2 [8].

There is a strong correlation between the polar angle and the momentum of the charged
particles produced in LHCb. Particles with a larger polar angle tend to have lower mo-
mentum. This is why RICH-1 with the aerogel is located before the dipole magnet so
tracks with low momentum will be covered before they are swept out of the acceptance
by the magnet. See Figure 2.3 for a schematic of the RICH-1 detector.

2.3 Hough transform

The Hough transform [10] is a feature extraction technique used in image analysis, com-
puter vision and digital image processing.
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2.3. Hough transform CHAPTER 2. THEORY

Its purpose is to find imperfect instances of objects within a certain class of shapes by a
voting procedure. This voting procedure is carried out in a parameter space from which
object candidates are obtained as local maxima in a so called accumlator space that is
explicitly constructed by the algorithm for computing the Hough transform.

Initially the Hough transform was concerned with finding straight lines [11] but it has
been extended to identifying positions of more complicated shapes, such as circles and
ellipses.

2.3.1 Linear Hough transform

A linear function is often parametrized as:

f (x) = m · x + b

where m is the slope of the line and b the intercept. For the Hough transform, however,
this representation is not ideal. For a vertical line, m would go to infinity which gives
an unbound parameter space for m. For this reason, Duda and Hart suggested the r-θ
parametrization [10].

r = x cos θ + y sin θ (2.2)

where r is the distance from the origin to the closest point on the line and θ is the angle
between the x-axis and the line connecting the origin with that closest point.

y

x
θ

r

Fig. 2.4 – r-θ parametrisation

This means given a single point in the (x, y) plane, the set of all lines going through this
point form a sinusoidal curve in r-θ space. Another point that lies on the same straight
line in the (x, y) plane will produce a sinusoidal curve that intersects with the other at
(r-θ) and so do all the points lying on the same straight line.
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r− θ parameters for each line of this set. Since there are three points there are three curves.
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Fig. 2.6 – Example of a linear Hough transform where points do not lie on a line. Since any
two points can form a line there are still intersections but never more than 2.
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2.4. Datasets CHAPTER 2. THEORY

Radiator
Average Npe from data

tagged D0 → K−π+ pp→ pp µ+µ−

Aerogel 5.0± 3.0 4.3± 0.9
C4F10 20.4± 0.1 24.5± 0.3
CF4 15.8± 0.1 17.6± 0.2

Tab. 2.1 – Comparison of photoelectron yields (Npe) determined from D∗ →D0π+ decays and
pp → pp µ+µ− events in data, using the selections and methods described in the text [12]

2.3.2 Circle Hough transform

For this thesis we are interested in circle detection so we need to adapt the linear Hough
transform in order to find circles. In a two dimensional space (x, y), a circle can be de-
scribed by:

(x− cx)
2 + (y− cy)

2 = r2 (2.3)

Where (cx, cy) are the coordinates of the center of the circle and r is its radius. The possible
parameters for the parameters space are now cx, cy and r. This means if the center of
the circle is known the parameter space is one-dimensional, if the radius of the circle is
known the parameter space is two-dimensional and of course if nothing is known the
parameter space is three-dimensional.

2.4 Datasets

Two Monte-Carlo generated sets of simulated data were used for this thesis. The algo-
rithms were trained on a data set of 250 simulated events and the performance of the
algorithms was tested on a data set consisting of 10’000 simulated events with a total of
49’979 rings across all events. The properties of these events (radiuses, number of points
per ring, number of rings per event) are taken from both simulation of LHCb events and
real data taken from the experiment. The number of points per ring is determined by
the photoelecton yield Npe which is shown in Table 2.1. Figure 2.7 shows the number of
points per circle and Figure 2.8 the number of circles per event for the test data set.

The average radius of Cherenkov rings can be found in [13]. Rings from the C4F10 radia-
tor in RICH-1 have radiuses generally smaller than 0.15 m. Rings from the aerogel have
slightly bigger radiuses of around 0.20 m). All generated rings in the test data set have a
radius that is smaller than 0.15 m. The distribution of the radiuses in the test data set is
shown in Figure 2.9.

18



2.5. Existing algorithm CHAPTER 2. THEORY

0 5 10 15 20 25 30 35 40 45
Points

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
u
m

b
e
r 

o
f 

ci
rc

le
s

Fig. 2.7 – Number of points per circle (Npe) for the 10’000 simulated events in the test data
sample
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Fig. 2.8 – Number of circles per event in the test data sample

2.5 Existing algorithm

There is already an algorithm in place in LHCb [13]. The disadvantage of the existing
algorithm is due to the fact that it uses tracks to reconstruct the circles. All charged tracks
that are reconstructed by the tracking system are reflected at the RICH mirrors in order
to define a center for a potential Cherenkov ring.
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Fig. 2.9 – Distribution of ring radiuses in the test data sample
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3 Methods

3.1 Conventional Hough transforms

In the following subsections we discuss conventional Hough transforms for the cases of a
one, two and three dimensional parameter space (known center, known radius, unkonwn
radius and center). These methods were mainly considered to get an idea of what was
possible with the conventional Hough transform. The conventional Hough transforms
use the accumulator space which is essentially a histogram. As such it depends on the
size of the binning. The finer the binning is the higher the accuracy with which param-
eter (r and/or (x, y) coordinate) can be extracted. On the other hand the execution time
depends on the binning; the finer the binning the longer the execution time.

For closer study the method of choice was the combinatorial triplet Hough transform
discussed in section 3.2.

3.1.1 1D: Known center - find radius

In this case the centers of all circles are known and the algorithm has to find the radiuses.
For the radius, a one dimensional array is defined with a minimum value and with a fixed
stepsize to the maximum possible radius. For the example studied here, the minimum
was chosen to be 0, the maximum radius to be 1 and the stepsize equal to 0.001. The
following scoring function η(r) was used to calculate the distance of a data point (x, y)
from the given center (cx, cy) as a function of the radius r:

η(r) = (cx − x)2 + (cy − y)2 − r2. (3.1)

For η(r) = 0, the particular point (x, y) would lie on the circle of radius r with center
(cx, cy). A Gaussian distribution

w(η) =
1√
2πσ

exp
(
−η2

2σ2

)
, (3.2)

is used to have a well defined value for such points. A point (x, y) that is not exactly on
the circle will still contribute to the total score. The smaller the parameter σ, the tighter
the range is in which a point will be considered lying on a circle or not.

The value from equation 3.2 is added to the bin in the radius histogram which corre-
sponds to the value of r used to calculate the weight.
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Fig. 3.1 – Using the probability density function of the normal distribution to calculate the
score of a point in order to have a well defined maximum if a point lies directly on the circle
and η(r) = 0. Increasing the σ increases the width of the function and by extension increases
the score of points that do not lie directly on the circle

Equation 3.1 is of course just the circle equation with cx, cy being the known coordinates
of the center of the circle, x, y are the data points and r is the radius. If many data points
have the same distance r from the circle center there will be a high score for this par-
ticular radius. The index of the bin with the highest score can then be used to find the
corresponding radius. The pseudo code for this Hough transform is shown in Code Snip-
pet 3.1. An example of a resulting radius histogram is shown in figure 3.2

DMENSION = 1001
r= linspace(0,1,DIMENSION)
for c_x, c_y in centers:
scores = zeros(DIMENSION)
for x,y in allPoints:
s = 2∗BIN_WIDTH
eta = (c_x−x)∗∗2 + (c_y−y)∗∗2 − r∗∗2
scores += 1. / ( sqrt( 2 ∗ Pi ) ∗ s )

∗ exp( −( eta ∗∗ 2 )
/ ( 2 ∗ s ∗∗ 2 ) )

index = max(scores)
circle = {}
circle[’center’] = c
circle[’radius’] = r[index]

Code Snippet 3.1 – Pseudo code for the 1D Hough transform. r is an array of length 1001
so η will also be an array of length 1001. Scores is the array in which the score for each
iteration is stored. For each point the score is computed and added to the scores array and
at the end the index with the highest score is the index we need to extract the radius
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Fig. 3.2 – Visualisation of a 1D radius score histogram. The peak between 0.2 and 0.3 has
by far the highest score and the bin position of the peak is the radius candidate for a given
circle center (cx, cy)

Complexity

The complexity of this algorithm is of O(n) where n is the number of bins in the radius
histogram.

3.1.2 2D: Known radius - find center

In this case the radius is known and the x and y coordinates of the center (cx, cy) are
unknown. The accumulator is two dimensional. The range of that space is the dimension
of the detection plane which for this thesis is set to [−0.5, 0.5]. The size of the bins is
chosen to be 0.001 since the known radiuses given from the test data were given with this
precision. If the detection plane was in reality 1 m by 1 m (approximately the dimension
of the RICH detectors) the binning of the accumulator in each dimension is 1 mm which
is better than the resolution of the HPDs (2.5 mm × 2.5 mm) . As in the one dimensional
case we use the scoring function 3.1 in combination with the weight function 3.2. Since
it is likely that two rings have very similar radiuses within the precision of the binning a
mechanism has to be introduced to remove points from the data set that have been used
for a ring. For two circles with the same radius the algorithm would only ever find the
one with the higher score. To avoid this once a circle has been found a check for each
data point is made to see whether or not it lies on the circle and if yes it is removed (see
Code Snippet 3.3).
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DIMENSION = 1001
xbins = linspace(−0.5,0.5,DIMENSION)
ybins = linspace(−0.5,0.5,DIMENSION)
x, y = broadcast_arrays( xbins[..., newaxis],

ybins[newaxis ,...] )

for r in Radiuses:
weights = zeros( (DIMENSION ,DIMENSION) )
for xd,yd in allPoints:
s = 2∗BIN_WIDTH
eta = (xd−x)∗∗2 + (yd−y)∗∗2 − r∗∗2
weights += 1. / ( sqrt( 2 ∗ pi ) ∗ s )

∗ exp( −( eta ∗∗ 2 )
/ ( 2 ∗ s ∗∗ 2 ) )

i, j = argmax(weights)
removeUsedPoints()
circle[’Center’] = (xbins[i], ybins[j])
circle[’Radius’] = r

Code Snippet 3.2 – Pseudo code for the 2D Hough transform. xbins and ybins are one-
dimensional arrays of length 1001. Here we use array broadcasting in order to avoid for loops
and the weights can be evaluated in one line.

for x,y in data_points:
if ( x − c_x )∗∗2 + ( y − c_y )∗∗2 − r∗∗2 < 0.002:
<delete x,y from the list>

Code Snippet 3.3 – Pseudo code for removing data points that lie on a ring. The value
of 0.002 is twice the bin size to make sure all the points that belong to that ring will be
removed. (cx, cy) is the center found by the algorithm and r is given from the data.

Complexity

The complexity of this algorithm is O(n×m) where n and m are the number of bins per
coordinate respectively of the histogram. The calculation of the weight has to be done for
each data point of the 2D histogram. So in a 1000× 1000 histogram with 400 data points
we calculate 400’000’000 times the weight of a grid point. Reducing the dimensions of
the histogram weakens the accuracy of the algorithm but can speed up the calculations
considerably. With a 1000 × 1000 histogram the resolution in each space dimension is
1 mm. The RICH Technical Design Report states the resolution of the HPD is 2.5 mm ×
2.5 mm.

The need (not entirely true – see below) to calculate the weight for each grid point and
data point means that there is a loop over all data points and two loops over the x and y
coordinates of the grid. To improve upon that there is the possibility of array broadcast-
ing.
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Array broadcasting

Consider following one dimensional arrays where both x and y are a 1D histograms bin-
ning entries from 1 to 4:

x = [1, 2, 3, 4]
y = [1, 2, 3, 4]

All combinations between an element of x and and element of y represent a 2D grid
((1, 1), (1, 2), ...). To iterate through all those grid points one would have to create 2 for-
loops iterating through x and y as shown in this pseudo code snippet:

def noBroadcast():
a = np.random.randn(100)
b = np.random.randn(100)
for x in a:
for y in b:
print (1−x)^2 + (2−y)^2 − 9

This is not only slow but also does not look nice if there are even more loops (readability
of the code). Broadcasting turns the one dimensional arrays of length n into two n by n
matrices

x =


1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4


and

y =


1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4


And with this the loops can be omitted as shown in the following example,

def withBroadcast():
a = np.random.randn(100)
b = np.random.randn(100)
x,y = np.broadcast_arrays(a[...,np.newaxis],

b[np.newaxis ,...])
print (1−x)^2 + (2−y)^2 − 9

which prints a 4 by 4 array with the function evaluated for each combination of entries
of x and y 

−8 −9 −8 −5
−7 −8 −7 −4
−4 −5 −4 −1
1 0 1 4


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A runtime comparison shows

In [3]: %timeit withBroadcast()
10000 loops, best of 3: 76.8 us per loop

In [4]: %timeit noBroadcast()
100 loops, best of 3: 7.99 ms per loop

The version with broadcasting is 100 times faster than the double loop. And the memory
consumption is moderate since the broadcasted entries are not new memory locations
but just refer to the initial array.

Optimizations

It was claimed before that for each data point the weight for the whole grid has to be
calculated. This is in fact not true. In the 2D case each grid point is a potential center
for a circle only if it is not further away from a data point than the maximum ring radius
RT, so if a grid point is further away than RT this calculation could be skipped. This
could probably be done even smarter with the use of a sub grid so only points in the
surrounding sub grids are considered of being possible centers rather than the whole
grid.

Simple example: 2 circles without background

Fig. 3.3 – (Left) 2D weight matrix in the first iteration of the Hough transform algorithm.
(Right) Second iteration of the 2D weight matrix of the Hough transform. Data points that
satisfied the condition of being less than a certain distance ε away from the circle found in
the first iteration are removed, leaving (hopefully) only data points available that belong to
the second ring
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3.1.3 3D: All parameters unknown

In this case all that is known are the data points and the algorithm has to retrieve both
the centers and the radiuses of all rings. Moreover, the total number of rings is not neces-
sarily known. The accumulator space is now three dimensional, two for the coordinates
of the center and one for the radius. Similar to the 2D case, array broadcasting (see code
snippet 3.4) is used to speed up the calculations of the weights. Furthermore, the algo-
rithm has to decide itself whether or not all circles have been found a condition has to be
set to decide when there are no more circles.

For deciding whether or not the algorithm has found all rings, a simple score threshold is
used that whenever the highest score of the weight matrix is less than this threshold, the
algorithm stops and it is assumed that all circles have been found. The threshold used
in this thesis has been determined by trial and error and was set to a score of 3500. The
pseudo code for calculating the weights and the threshold check is shown in 3.5. As in the
2D Hough transform, the algorithm has to remove data points that have contributed to
the highest score. If this is not done, the algorithm will loop endlessly because always the
same score will be found. Once the highest score has been found, the center coordinates
and radius are extracted from the histogram and the algorithm calculates for every data
point, if a data point lies on the circle given the extracted center and radius. If the data
point lies within the distance oftwo times the bin width from the circle, it will be removed
(see Code Snippet 3.6).

xbins = np.linspace(−0.5,0.5,DIMENSION)
ybins = np.linspace(−0.5,0.5,DIMENSION)
rbins = np.linspace(0,0.5, R_DIMENSION)

x,y,r = np.broadcast_arrays(\
xbins[np.newaxis ,...,np.newaxis],\
ybins[np.newaxis,np.newaxis ,...],\
rbins[...,np.newaxis,np.newaxis])

Code Snippet 3.4 – Broadcasting of the 3 arrays x, y, r. With this 3 for-loops can be avoided
improving speed and readability of the code.

The same scoring function as before is used, but this time it is a function of all three
parameters η(x, y, r):

η(x, y, r) = (x− dx)
2 + (y− dy)

2 − r2 (3.3)

where dx and dy are the coordinates of data points. Again,

w(η) =
1√
2πσ

exp
(
−η2

2σ2

)
. (3.4)

Complexity

The complexity of this algorithm is of order O(m× n× u). As in the case of the 1D and
2D Hough transform, the accuracy depends on the binning. For the 3D Hough transform
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while True:
weights = np.zeros(\

(R_DIMENSION , DIMENSION , DIMENSION))

for x0,y0 in data[’allPoints’]:
s = 0.001
eta = (x−x0)∗∗2 + (y−y0)∗∗2 − r∗∗2
weights += 1./( sqrt( 2 ∗ sconst.pi ) ∗ s )∗\

np.exp( −( eta ∗∗ 2 ) / \
( 2 ∗ s ∗∗ 2 ) )

index = np.argmax( weights )
rr,ii,jj = np.unravel_index( index,

(R_DIMENSION , DIMENSION , DIMENSION))
score = weights[rr][ii][jj]
if score < THRESHOLD:
break

Code Snippet 3.5 – The while loop works as long as the highest found score is higher than
THRESHOLD. If the score is lower than the threshold the loop breaks and the function returns
the results that have been found.

circle[’center’] = (xbins[ii], ybins[jj])
circle[’radius’] = rbins[rr]
circles.append(circle)

used_xy += [tup for tup in data[’allPoints’] if
abs( ( tup[0] − circle[’center’][0] ) ∗∗ 2 +

( tup[1] − circle[’center’][1] ) ∗∗ 2 −
circle[’radius’] ∗∗ 2 ) < 2 ∗ 0.001]

data[’allPoints’][:] =
[tup for tup in data[’allPoints’] if

abs( ( tup[0] − circle[’center’][0] ) ∗∗ 2 +
( tup[1] − circle[’center’][1] ) ∗∗ 2 −
circle[’radius’] ∗∗ 2 ) >= 2 ∗ 0.001]

Code Snippet 3.6 – In order to avoid finding the same ring over and over again, the algorithm
has to remove points that belong to a found ring. If a data point lies within two times the bin
width from a circle the algorithm considers that data point to be part of the corresponding
ring and removes that data point from the list.
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to match the resolution of the HPD of the LHCb RICH detector a binning of 400 bins in
each of the two center coordinate parameters makes sense if the detector dimensions are
1 m×1 m.

Optimisations

As for the 2D HT introducing a sub grid can be introduced for the x, y plane so only grid
points within a predefined distance of a data point are used for calculating the score.

3.2 Combinatorial triplet Hough transform

A circle is uniquely defined by 3 points and its radius and the coordinates of its center
can be calculated from the coordinates of these points. If there are 15 points lying on
the same circle there are 455 possible combinations of triplets according to the binomial
distribution, (

N
3

)
=

(
N!

k!(N − k)!

)
.

Calculating the center and radius for these 455 triplets should result in the same center
(x, y) and same radius r for all the triplets (effects of detector resolution and floating point
inaccuracy not considered).

Having one random background hit in addition to the 15 points on the circle increases the
number of triplets to 560. The triplets solely consisting of points on the circle still yield
the same center and radius but the combinations that include a background hit will give
different results and it is unlikely that two triplets that include the background point will
yield the same center and radius. Here is an overview of the algorithm studied in this
thesis.

1. Build all possible triplets of the data points.

2. For all triplets calculate the center and the radius of the potential circle.

3. Remove all triplets that yield a radius bigger than a pre-defined threshold.

4. Create a histogram with the distribution of r for the remaining triplets. Peaks in
this histogram hint at the presence of a circle.

5. Scan the radius histogram for peaks and look at the 2D histogram of (x, y) for all
triplets that belong to a given peak in the r distribution. If there is also a peak in
the (x, y) histogram, the set of the points forming the triplets lie on a circle with a
radius and center given by the positions of the peaks in the r and (x, y) histograms.

3.2.1 Generating the triplets

To generate the triplets, the python function itertools.combinations() from the itertools
module is used. The input for this function is an iterable, in our case a list of tuples (each
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Fig. 3.4 – The circumradius (R) and the circumcenter (P) of a circle defined by three points
(A, B, C).

tuple containing the x and y coordinate of a data point) which is used to create all possible
combinations of triplets (of said tuples).

3.2.2 Calculating the Circle given 3 points

Let (A, B, C) be a triplet of points in a 2D plane and a, b, c the lengths of the sides opposite
to the respective corner. The semiperimeter is defined as

s =
a + b + c

2
. (3.5)

The radius R of the circumcircle of the triangle ABC is:

R =
abc

4
√

s(a + b− s)(a + c− s)(b + c− s)
(3.6)

and the barycenteric coordinates of the circumcenter are:

λ1 = a2 · (b2 + c2 − a2) (3.7)

λ2 = b2 · (a2 + c2 − b2) (3.8)

λ3 = c2 · (a2 + b2 − c2) (3.9)

Multiplying a matrix consisting of the column vectors of A, B, C (Ax, Ay; Bx, By; Cx, Cy)
with a column vector of λ1, λ2, λ3 and dividing the resulting vector by the sum of the
barycentric coordinates (for normalization) yields the coordinate of the circumcenter of
the triangle ABC (

Ax Bx Cx
Ay By Cy

)
·

λ1
λ2
λ3

 =

(
P′x
P′y

)
(3.10)

(
P′x
P′y

)
λ1 + λ2 + λ3

=

(
Px
Py

)
= P (3.11)
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3.2.3 Ring finding

Once R and P are calculated these values are stored as a pair in a tuple. A list is formed
that holds all tuples (R, P) for all triplets.

The next step is binning this data for R. For each bin in R, a list is created which contains
the P information for all (R, P) tuples with R in this bin. This allows the algorithm when
looking for a peak in the R histogram to access the values of P for this R value.

Ring finding threshold

The algorithm applies a simple threshold on the number of associated points to decide
whether a candidate is a ring or not. Assume just one ring with 10 points. From these 10
points, the algorithm creates 120 triplets

(
(10

3 )
)

. For each of these triplets, the radius and
the coordinates of the center are calculated. Since all triplets belong to the same ring the
radius histogram has one peak at the value of the ring radius and the center histogram
has one peak at the coordinates of the ring center. If the applied threshold is less or equal
than 120, this ring will be found. So essentially we can decide how many points per ring
are needed in order to be recognized as a ring and define the threshold as

(
Number of Points

3

)
= Threshold. (3.12)

This threshold is used for the radius and center finding of the algorithm.

Finding the radius

Once the radius histogram is filled, the algorithm looks for the index at which the maxi-
mum value of the histogram is stored. The algorithm then checks if the sum of the num-
ber of entries at this index and its the and right neighbours exceeds the radius threshold
()which is a tuning parameter). If this is the case, the algorithm creates a list of the (x, y)
coordinates for all tuples corresponding to this index and its left and right neighbours.

The code for extracting the radiuses with their center data is shown in Code Snippet 3.7.
Assuming bin index i contains the highest score of the histogram. The code then adds the
score from bin i− 1 and i + 1 to the maximum score and checks if the sum is bigger than
the threshold. If that’s the case the next step adds the center information stored in center
to a separate list. The function then returns a list of radiuses that exceed the threshold
and for each radius in the list there is a list of center data which is used to extract the
center of the ring.

As long as the found maximum is bigger then the threshold the algorithm keeps looking
for radiuses.
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edges # x e d g e s o f t h e h i s t o g r a m
center # c e n t e r d a t a
while True:
i = max(H)
n = NUMBER_OF_R_BINS
n_entries = sum(H[i−1 if i>0 else i:i+2

if i<n−1 else i+1])
if n_entries < RADIUS_THRESHOLD:

# t h e r e a r e l e s s t h a n THRESHOLD
# e n t r i e s i n 3 b i n s
break

radiuses.append(edges[i])
index_list = range(i−1 if i>0 else i,i+2

if i<n−1 else i+1)
for index in index_list:
if center[index]:
center_list += center[index]

H[index] = 0
center_data.append(center_list)

return radiuses , center_data

Code Snippet 3.7 – This code shows how the radius maxima are found and their respective
center data is extracted. n_entries is the sum of the score of the maximum bin and its left
and right neighbour. If the score exceeds the threshold the entries of these three bins are set
to 0 and the radius value together with the center data are returned.

Finding the center

Using this list of center coordinates P of a radius peak the algorithm now looks for a
peak in the (x, y) plane of the P histogram. If the sum of the number of entries in the peak
and its four directly adjacent bins exceeds the center threshold, the radius and center
coordinates are saved as a ring candidate. Code Snippet 3.8 shows the center extraction.

After this step the ring finding algorithm is done. The result for a typical event is shown
in Figure 3.5. A cleaning step is now performed to remove duplicates. The algorithm
compares all found circles and if the center coordinates and the radiuses of two circles
are within a certain range these circles are considered to be duplicates and the one with
the lower score is discarded. The range cuts were parameters that had to be tuned. If the
range was too small then some duplicates were not detected. If the cut was too large, true
rings were removed because they happend to be close to another ring. In Tables 4.6 and
4.7 the effects of different cuts can be seen.

3.2.4 Removing duplicates

The the main parameters for removing duplicates are used to decide whether a circle is a
duplicate or not:
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H # 2 d h i s t o g r a m w i t h t h e c e n t e r d a t a
xedges
yedges
centers = []
n = NUMBER_OF_S_BINS
while True:
i,j = max(H)
score = sum(H[i−1 if i>0 else i:i+2

if i<n else i+1,j]) +
sum(H[i, j−1 if j>0 else

j:j+2 if j+2 <= 3
else j+1]) − H[i,j]

if score < CENTER_THRESHOLD:
break

i_index = range(i−1 if i>0
else i,i+2 if i<n else i+1)

j_index = range(j−1 if j>0
else j,j+2 if j<n else j+1)

for ii in i_index:
H[ii][j] = 0

for jj in j_index:
H[i][jj] = 0

centers.append( {’center’ : (xedges[i], yedges[j]),
’nEntries’ : score } )

return centers

Code Snippet 3.8 – H is the center histogram. After finding the index for the maximum
value the values of the adjacent neighbours are also added to the score. If the score exceeds
the center threshold the algorithm stores them as a center for a circle candidate and sets the
used bins to 0.

• Distance between centers of pairs of rings

• Difference between radiuses of pairs of rings

Without cleaning up the algorithm finds a lot of duplicates. The reason for such dupli-
cates can be background hits or a hits from another ring close to the actual ring. The
triplets including one of these hits can shift the center or the radius of the ring they form
just a little bit away from the true ring. As shown in Figure 3.6 indicated with an arrow
there are peaks seperated by one bin and thus the algorithm finds these peaks seperately
since only the directly adjacent neighbours are considered. It is possible that there are
two rings with very similar radius but more often it is the same ring in addition with a
background hit that lies close to the ring.

To decide whether or not a circle is a duplicate it is compared to all other found candidates
and the distance of their centers and difference of their radiuses is compared.
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Fig. 3.5 – The result of the combinatorial triplet Hough transform before cleaning up dupli-
cates. The blue and purple circles are basically the same ring.

|c1 − c2| < DUPLICATE_MAX_CENTER_DISTANCE

|r1 − r2| < DUPLICATE_MAX_RADIUS_DISTANCE
(3.13)

where c1 and c2 are the center coordinates and r1 and r2 the radiuses of the circles.

However if there is no other circle within the threshold distances the circle is unique and
will be added to a result list which at the end will be returned with all unique circles.

If the cut is too loose, there is a chance that a true ring gets discarded as a duplicate if its
center and radius happens to be close to those of another ring.
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Fig. 3.6 – Two almost adjacent bins with a high score. Apart from the very clear peak of two
bins next to each other at r ≈ 0.125 with a score of 7000 and 6000 respectively, there are 3
smaller peaks separated around r ≈ 0.11−−0.12. The highest score is clearly visible. After
the algorithm found this maximum and sets the bins to 0 the algorithm picks then the next
maximas and its neighbours. But since there are several peaks separated by one bin means
they are treated seperately and this introduces a duplicate.

3.2.5 Combinatorics

The main drawback of this method is that the combinatorics increase with the number N
of data points as (N

3 ). For example, for 200 data points the number of triplets is

(
200
3

)
= 1′313′400

and for 300 data points it is (
300
3

)
= 4′455′100.

The execution time of the algorithm is roughly of the order of O(N3) which can be easily
seen when taking the upper bound of (N

3 ) ≤
N3

3! (see figure 3.7).
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res = []
sorted_results = sorted( results, key=lambda k:

k[’nEntries’], reverse=True)
while len(sorted_results):
circle = sorted_results.pop()
unique = True
for dic in sorted_results:
if (np.linalg.norm(np.array(circle[’center’]) −

np.array(dic[’center’]))) <
DUPLICATE_MAC_xENTER_DISTANCE and\

(abs(circle[’radius’] − dic[’radius’]) <
DUPLICATE_MAX_RADIUS_DISTANCE):

unique = False
break

if unique:
res.append(circle)

return res

Code Snippet 3.9 – Pseudo code for removing possible duplicates from the circles found
by the algorithm. First results are sorted by their number of entries in the histogram so the
least relevant comes first. If for a given circle another circle exists with the same center
and radius (within the cuts) then the circle is considered a duplicate and will be removed.
DUPLICATE_MAX_CENTER_DISTANCE and DUPLICATE_MAX_RADIUS_DISTANCE are parameters
that can be tuned
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Fig. 3.7 – Scaling of the algorithm. Binomial growth (N
3 ) compared with the approximation

N3

3! , where N is the number of data points.
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Optimisation

The algorithm needs a threshold on the minimum height of the peak in the (x, y) and r
histograms in order to decide if a candidate is a circle or not. The threshold is defined as
the binomial coefficient (T

3). If a ring has T points then there are (T
3) possible triplets and

the circle will be considered as a candidate. If a ring has less than T points then it will
never be consiered as a candidate.

In fact, not only processing the number of triplets created is a speed bump for the execu-
tion time but the time it takes to create the triplets scales with N3

3! as well. Reducing the
number of triplets created will speed up the algorithm considerably.

This leads to the idea of splitting the original data set randomly into two lists. For each
of these lists, all possible combinations of triplets are created separately and the two lists
of triplets are then merged in one single list for further processing. In Figure 3.8 the
difference in combinatorics between (N

3 ) and 2 · (
N
2
3 ) can be seen.

The problem with this approach is the possible loss of efficiency, since the algorithm
uses thresholds that define how many entries a bin in the (x, y) and the r histograms
must have in order to be accepted as a candidate circle. These thresholds should be high
enough such that triplets that contain noise points do not contribute significantly to the
circle candidates but low enough that real circles with a low number of points can still be
found.

For now we assume that we require a ring to have 10 hits which seems reasonable when
looking at Figure 2.7 and considering the low probability that 10 random points form a
circle. The question is what is probability of splitting points that belong to a specific circle
in such way that at least one list yields enough triplets to reach these thresholds.

100 200 300 400 500
0

0.5

1

1.5

2
·107

Number of Data Points

N
um

be
r

of
C

om
bi

na
ti

on
s

(N
3 )

2(N/2
3 )

Fig. 3.8 – Number of combinations with (N
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In Figure 3.9 it can be seen that even if we split the lists there is a more than 50% chance
that we lose no information for rings that have at least 13 points.
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Fig. 3.9 – The probability when splitting randomly a list of N points into two that one of the
two sublists contains more than 10 points.

Bin size dependency

In the conventional Hough transform the weight function is calculated with respect to
the bin centers of the accumulator space. The larger the binning in the accumulator space
is, the less accurate the calculations become. The number of bins is the main factor for the
execution time of the algorithm. An advantage of this combinatorial approach lies in the
fact that the parameters can be calculated accurately up to floating point precision and a
histogram is only needed to group the results. A fine binning only marginally affects the
execution time of the algorithm since the only operation done in the histogram is finding
the maxima and this is only done a few times (stops when the found maximum is lower
than the ring finding threshold).
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3.2.6 Possible optimisation: average radius of random circles in a unit
square

An interesting property of calculating the radius of circle candidates for triplets of ran-
dom points that are distributed uniformely in the unit square is that they follow obey a
certain distribution.

To prove this the average area X of a triangle formed by three points randomly chosen
from the unit square1. Let A = (Ax, Ay), B = (Bx, By), C = (Cx, Cy) be the vertices of
the random triangle T. We consider the case where Ay > By > Cy which takes 1

6 of the
total “volume” of the unit square. Fix Ay, By, Cy for the moment and we can write

By = (1− t)Ay + t · Cy, 0 ≤ t ≤ 1.

The side AC of T intersects the horizontal level y = By at the point S = (s, By) with

s = s(Ax, Cx, t) = (1− t)Ax + t · Cx (3.14)

The area X of T is then given by

X =
1
2
|Bx − s| · (Cy − Ay)

We start integrate with respect to the six variables. The innermost integral is with respect
to Bx and gives

X1 :=
∫ 1

0
XdBx =

1
2
(Cy − Ay)

(∫ s

0
(s− Bx)dBx +

∫ 1

s
(Bx − s)dBx

)
=

1
4
(Cy − Ay)(1 + 2s + 2s2).

Next we integrate over By:

X2 :=
∫ Cy

Ay

X1dBy =
1
4
(Cy − Ay)

2
∫ 1

0
(1− 2s + 2s2)dt, (3.15)

whereby s is given by Equation 3.14, and does not depend on Ay and Cy. It follows that
the intregration factorizes into

X3 :=
1
4

∫ 1

0

∫ 1

Ay

(Cy − Ay)
2 dCy dAy ×

∫ 1

0

∫ 1

0

∫ 1

0
(1− 2s + 2s2) dt dCx dAx

This gives

X3 =
1
4
· 1

12
· 11

18
=

11
6 · 144

Generalizing the assumption at the beginning Ay < By < Cy, multiplying this result by 6
and obtain X = 11

144 .

1This proof is taken from has to be calculated[14]
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From [15] it follows that the average area of a triangle in a unit circle is 3
2π . Dividing this

by the area of the unit circle gives the expected fraction of the area covered by a triangle
in an arbitrary circle

Expected area of a triangle in a unit circle
Area of the unit circle

=
3

2π

πr2︸︷︷︸
r=1

=
3

2π2

Finally the average area of a random circle in the unit square can then be obtained by
dividing the average area of a triangle from the unit square by the expected area covered
by a triangle in an arbitrary circle:

11
144
3

2π2

=
11π2

216

Finally this area should be equal to πR2 where R is the average radius of a random circle
in the unit cube

Rπ2 =
11π2

216

R =

√
11π

216
= 0.399986

Generating a data sample of randomly distributed points in the unit suqare and plotting
the distribution of the radius calculated for this data set shows that there is indeed a peak
around R ≈ 0.4 as Figure 3.10 shows.

The idea behind this is to generate a data sample with only background hits and prepare
the radius histogram. It could then be used to subtract from a real radius histogram to
reduce the number of bins that have to be searched since most of the background should
be gone. However, this has yet to be studied properly.
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Fig. 3.10 – Radius distribution for uniformly generated background. Each data set contains
only randomly generated background hits. The expected value of R ≈ 0.4 is quite well
represented for differently sized data sets
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4 Results

In this section results for the conventional 1D, 2D and 3D Hough transform and for the
combinatorial triplet Hough transform are presented. The 1D, 2D and 3D Hough trans-
form were not pursued in depth. They are presented here as they offer a way of under-
standing how each extra dimension expands the algorithm and shows the problems that
occur with each added dimension.

For the 1D, 2D and 3D Hough transform only a small set of events consisting of:

• 1 ring and 600 background hits

• 2 rings and 0 background hits

• 5 rings and 30 background hits

• 6 rings and 200 background hits (results only shown for 2D and 3D)

was Used . The number of points per ring and the distribution of the radiuses do not
reflect the data obtained in LHCb.

For these conventional Hough transforms following data sets were tested

The number of points per ring ranges from 17–31 and the background hits are uniformly
distributed in the unit square. The event with 1 ring and 600 background hits is meant
to test how robust the algorithm is with a lot of background hits. The second test case
is meant to test if the algorithm can handle two ring objects, the third is a mix between
several rings and background and the last event is a special case where two rings lie have
similar radiuses and are close to each other, potentially creating problems for the 2D and
3D algorithms where the center coordinates are unkonwn. In Figure 4.1 the real circles
plotted from simulation parameters are shown for each of the events.

4.1 1D Hough transform results

The radius scores for the first three test events are shown in Figures 4.3 and 4.4. The
radius score is a 1D plot of the weight function defined in Equation 3.2. The location of
the highest score gives the value of the radius. Figure 4.2 shows the resulting circles in the
(x, y) plane, using the known ring centers and the radiuses extracted by the algorithm.
The numerical values of the highest and second highest score for each event are shown
in Table 4.1. The highest and second highest score are well seperated in each case, the
algorithm has no problems to find any of the circles even with background. The fourth
event was also tested for the 1D Hough transform but the results are not shown because
they did not add anything that is not already covered with the first 3 events.
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(A) 1 ring, 600 background hits.
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(B) 2 rings, 0 background hits
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(C) 5 rings, 30 background hits
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(D) 6 rings, 200 background hits

Fig. 4.1 – These are the test events as generated by the simulation.
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(A) 1 ring, 600 background hits.
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(B) 2 rings, 0 background hits
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(C) 5 rings, 30 background hits

Fig. 4.2 – Circles found by the 1D Hough transform.

Tab. 4.1 – Highest and second highest radius scores for the three events. There is always a
big difference between the highest score which determines the circle and the second highest
score which is due to noise.

Event Highest score 2nd highest score

1 circle 600 background hits 8’546 3’798

2 circle 0 background hits 7’904 828
6’373 857

5 circle 30 background hits 7’519 1’401
9’085 1’476
6’758 1’341
7’381 848
7’410 1’498
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Fig. 4.3 – Radius scores for 1 ring and 600 background hits (top) and 2 rings with 0 background
hits (bottom). For the event with only 1 ring and 600 backgrounds hits the scores from
background hits for a given radius are higher than in the other events with less noise but the
correct radius has still a distinct peak.
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Fig. 4.4 – Radius scores for the 1D Hough transform for the 5 rings with 0 background.
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Tab. 4.2 – 2D Radius scores for the different events.

Event Highest score 2nd highest score

1 circle 600 background hits 8’720 5’778

2 circles 0 background hits 7’904 2’154
6’373 2’275

5 circles 30 background hits 7’488 4’489
9’095 3’717
6’892 2’387
6’498 2’373
6’721 1’953

6 circles 200 background hits 11’869 5’583
10’466 8’687
8’762 5’790
6’872 5’203

10’155 3’595
4’764 3’759

4.2 2D Hough transform

The 2D Hough transform uses again the weight function defined in Equation 3.2 to search
for peaks with high score in the (x, y) plane for known ring radiuses. Instead of a 1D his-
togram it is now a two dimensional histogram in which the highscore has to be found.
Figure 4.8 shows how a slice out of this plane looks like (similar to the 1D radius his-
togram).

The same events as for the 1D Hough transform were investigated. Additionally the
results for the event with 6 rings and 200 background hits are shown.

In Figures 4.5 and 4.6 the circles found by the algorithm are shown and in Table 4.2 the
highest and second highest score for each event are shown.

4.2.1 1 ring, 600 background hits

The ring was found by the algorithm. The highest and second highest score are well
separated.

4.2.2 2 circles, 0 background hits

Both rings are found in this event. Two cirlces pose no problem unless the two rings
have the same radius. If that is the case the algorithm will find the same circle twice
unless there is a mechanism that avoids this. Assume the two rings have radius r and
the algorithm calculates the weight matrix for the possible center coordinates. There will
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(A) 1 ring, 600 background hits.
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(B) 2 rings, 0 background hits
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(C) 5 rings, 30 background hits

Fig. 4.5 – Circles found by the 2D Hough transform.
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Fig. 4.6 – The rings generated by the simulation (left) and the rings found by the algorithm
(right). The blue colored circle found by the algorithm is incorrect.
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be two peaks, one for each ring. One peak will have a higher score and the algorithm
extracts the coordinates of the peak. After that the algorithm searches the center for the
second circle but since both circles have the same radius it will have the same scores
again and find the first circle once more. Introducing a mechanism that removes points
that were assigned to a circle solves this problem.

Fig. 4.7 – Center score for the 2D Hough transform for 2 rings with 0 background.
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Fig. 4.8 – Horizontal slices (fixed cy) around the maximum values out of the 2D histogram
for the event with 2 circles and no background.

4.2.3 5 rings, 30 background hits

The algorithm had no problems finding all the circles. In Figure 4.9 the score histograms
are shown.

4.2.4 6 circles, 200 background hits

As briefly discussed in the overview the algorithm does make mistakes as this event
shows. 6 circles were generated with 200 background hits. The interesting part is not that
amount of circles or the amount of background hits are the problem but the properties of

49



4.2. 2D Hough transform CHAPTER 4. RESULTS

Fig. 4.9 – Scores in the (cx, cy) plane found by the 2D Hough transform for the event with 5
rings and 30 background hits.
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the circles (center coordinate and radius). In this example there is a misidentification of a
circle with points of another.

The reason for the wrong detection of the cirle is quite simple. Two of the circles have
very similar radiuses. The algorithm looks first for the blue circle (because that happens
to be the way the centers are arranged in the list) and since so many points of the magenta
circle lie so close together it is easy for the blue circle (who has a similar radius) to get a
high score with these points, a higher score than it would get with its proper points. If
the magenta points were more evenly distributed on the circle or if there were more blue
points this probably would not happen but that is something that cannot be controlled.

Theoretically it is also possible that the magenta circle gets fitted to the blue points but
since there are still enough magenta points left after the removal of the points assigned to
the blue circle they still have the highest score with their own points and the blue circle
goes unnoticed.

Also, if the magenta circle would be checked before blue then the algorithm would find
the proper circles as well. So it actually can depend on the order in which the circles are
searched.

A possible way to fix this particular problem seemed tuning the parameter of the weight
function namely reducing the standard deviation.

w(η) =
1√
2πσ

exp
(
−η2

2σ2

)
Having a higher σ means that a point that is a bit off of the circle still contributes a con-
siderable value to the total score. The smaller the σ is the sharper the peak. However if
the peak is too sharp then the algorithm might discard possible results because they are
just a bit off the circle and since the peak is so narrow they do not contribute at all to the
total score.

Tests with this event have shown that varying the σ parameter was not the leading factor
in finding the circle. Even with the smaller σ the algorithm often failed to find the right
circles. However, changing the order of the radiuses in which they appear in the list
caused the algorithm to find the right circles without changing the σ.
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Fig. 4.10 – Scores in the (cx, cy) plane found by the algorithm for 6 circles with 200 background
hits.
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Fig. 4.11 – On the left side the wrong result obtained by the 2D Hough transform and the
correct one on the right side
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4.3 3D Hough transform Results

The 3D Hough transform has to deal with 3 unknown parameters: (x, y, r), and the fact
that the number of rings is unknown. As explained in Section 3.1.3, a threshold is needed
to decide when the algorithm should stop finding a circle. This value depends heavily
on the value of the parameter σ of the weight function. Here the σ was set to 0.001 and
the threshold was set to 3500. This threshold was determined by looking at the scores of
different circles with varying number of points per circle. After testing the algorithm for
different events and comparing their scores this threshold found all the circles. Plots of
the found circle for the four tested events are shown in Figure 4.12.

4.3.1 3D: Overview of the results

The 3D Hough transform algorithm solves three of the four events correctly. The event
that failed was that with 1 circle and 600 background hits where the signal to noise ratio
was too small for the algorithm to isolate the correct solution. In Table 4.3 the scores for
the 10 highest scores are shown. The threshold was set to 3500. The obvious fix seems
to set the threshold to a higher value (e.g. 6300) so the algorithm would not pick up any
fake rings. However, with a threshold that high legit rings from other events would get
lost. For a fixed threshold there will always be a case where rings get lost or fake rings get
picked up. Quantitative study would require to process a larger amount of events which
is not done here since the focus in this thesis is on the triplet approach. On the other hand
the 3D Hough transform managed to solve the 6 circles with 200 background hits despite
having less information. This is probably due to the fact that the 3D Hough transform
finds the circles sorted by score and does not depend on the order in which circles are
searched (remember, in the 2D case the radius is given and depending on which radius
is given first we can solve it correctly or not).

Tab. 4.3 – The ten highest scores found by the 3D Hough transform for the event with 1 ring
and 600 background hits.

8’122 6’256 5’672 5’654
5’373 5’290 5’047 5’000
4’727 4’647
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(A) 1 ring, 600 background hits.
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(B) 2 rings, 0 background hits

0.4 0.2 0.0 0.2 0.4
x [m]

0.4

0.2

0.0

0.2

0.4

y 
[m

]

(C) 5 rings, 30 background hits
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(D) 6 rings, 200 background hits

Fig. 4.12 – Circles found by the 3D Hough transform.
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Tab. 4.4 – Highest scores and the first fake score for the 3D Hough transform.

Scores fo the true rings Highest fake ring score

1 circle 600 background hits
8’122

6’265

2 circles 0 background hits
7’332
5’601

No fakes found

5 circles 30 background hits
8’170
6’979
6’477
4’416
3’536

2’712

6 circles 200 background hits
10’269
9’050
8’505
8’258
5’836
3’944

3’485
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Tab. 4.5 – Efficiency and ghost rate for different thresholds (radius and center cuts are fixed
at 0.006). The ghost fraction explodes when the ring finding threshold is too low.

Threshold ε Missed γ Fakes

20 99.99% 7 183.22% 91573
35 99.98% 9 131.50% 65723
56 99.97% 16 9.07% 4533
84 99.92% 41 2.13% 1067
165 99.57% 214 0.13% 66
220 99.18% 410 0.05% 27
286 98.43% 784 0.01% 4

4.4 Combinatorial triplet Hough transform

This method was tested against a set of 10’000 events generated in a Monte-Carlo sim-
ulation with parameters (number of rings, number of points per ring, number of noise
points) tuned to reproduce distributions measured in LHCb. The whole set was tested
several times, with different thresholds for the radius and center histograms. Each of
these runs used the method of splitting the data point list into two lists and building
triplets from the sublists as discussed in 3.2.5. The results show that this choice yielded
an efficiency above 98%. The performance was evaluated with an analysis script to mea-
sure the efficiency ε and ghost rate γ.

The efficiency is defined as

ε = 1− m
T

(4.1)

where m is the number of circles that were not found by the algorithm and T is the true
number of rings from summed over all events. The ghost rate is defined as

γ =
f
T

(4.2)

where f is the number of fake circles that were found by the algorithm but have no match
in the test data and T again the total number of circles.

4.4.1 Ring finding threshold

In Table 4.5 the different efficiencies for the algorithm for different values of the threshold
can be seen. Intuitively one expects the ghost rate to increase at low threshold since it is
more likely for random combinations of triplets to pass the threshold. With increasing
threshold the efficiency will drop when legit rings fall below the threshold.

4.4.2 Cuts for removing duplicates

Additional circles can get lost because they get identified as duplicate when they are
in fact just another distinct circle in the vicinity of another circle. Duplicate circles that
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Fig. 4.13 – Reversed cumulative distribution of the points per circle. The plot shows the ratio
of circles with more than N points over the total number of circles

are typically created with a major fraction of points of a circle and for example a single
background hit that is just far enough off that the radius and center histogram show it
as a distinct circle. In Code Snippet 3.9 the duplicate removal is shown. First all ring
candidates are sorted ascending by number of entries they had in the center histogram.
The first circle is then popped from the list and is compared to all the remaining circles
in the list. If the circle is within the threshold distance (see Equations in 3.13) the circle is
flagged as not unique and the comparison for the rest of the circles stop.

4.4.3 Comparing algorithm with the data

The parameters to evaluated the performance of the algorithm are:

• Distance between the center of a calculated ring and the corresponding true ring

• Difference between calculated radius and the true radius of a ring

They are used to decide whether or not the algorithm has found a circle. The recon-
structed radius and center coordinates are compared with the true test in the test data. If
a circle is within these bounds the circle will be considered as found. In a real application
however, these parameters are useless because a priori there is no knowledge about the
true circles.

Cut variation for a fixed ring finding threshold

In Tables 4.6 and 4.7 different cut parameters were tested and compared for the efficiency
and ghost rate.

Tables 4.8 show all combinations of cuts for both radius and center ranging from 0.003 to
0.0012 in steps of 0.003 for different ring finding thresholds.
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Tab. 4.6 – Efficiency and ghost rate for a fixed radius cut (0.003) and ring finding threshold
(120) with varying center cut. The tighter the center cut is the more duplicate circles remain
after the clean up.

C cut ε Missed γ Fakes

0.003 99.19% 405 0.17% 86
0.006 99.19% 407 0.12% 62
0.009 99.18% 409 0.12% 60
0.012 99.17% 415 0.12% 60

Tab. 4.7 – Reducing ghost rate for a fixed center cut (0.003) with varying center cut. The
tighter the center cut is the more duplicate circles fail being detected by the removeDuplicate
code shown above

R cut ε Missed γ Fakes

0.003 99.19% 405 0.17% 86
0.006 99.19% 405 0.15% 77
0.009 99.19% 405 0.15% 77
0.012 99.19% 405 0.15% 76

Tab. 4.8 – Results for all the cut combinations for radius and center cuts

Threshold = 35 (7 points for a circle)

R cut C cut ε Missed γ Fakes

0.003 0.003 99.99% 4 178.96% 89444
0.003 0.006 99.99% 6 151.62% 75777
0.003 0.009 99.98% 8 144.59% 72264
0.003 0.012 99.97% 13 140.88% 70408
0.006 0.003 99.99% 4 174.01% 86968
0.006 0.006 99.98% 9 131.50% 65723
0.006 0.009 99.96% 19 118.91% 59432
0.006 0.012 99.94% 28 113.54% 56745
0.009 0.003 99.99% 4 173.53% 86729
0.009 0.006 99.98% 12 130.54% 65244
0.009 0.009 99.95% 25 112.21% 56079
0.009 0.012 99.93% 36 103.50% 51727
0.012 0.003 99.99% 4 173.30% 86612
0.012 0.006 99.97% 15 130.26% 65103
0.012 0.009 99.94% 32 111.64% 55795
0.012 0.012 99.91% 47 99.85% 49902

Threshold = 56 (8 points for a circle)

R cut C cut ε Missed γ Fakes

0.003 0.003 99.98% 11 20.54% 10264
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0.003 0.006 99.97% 13 14.52% 7255
0.003 0.009 99.97% 15 13.59% 6792
0.003 0.012 99.96% 21 13.24% 6616
0.006 0.003 99.98% 11 19.23% 9611
0.006 0.006 99.97% 16 9.07% 4533
0.006 0.009 99.95% 26 7.29% 3641
0.006 0.012 99.93% 35 6.82% 3409
0.009 0.003 99.98% 11 19.14% 9568
0.009 0.006 99.96% 19 8.91% 4454
0.009 0.009 99.94% 32 5.90% 2950
0.009 0.012 99.91% 43 4.94% 2467
0.012 0.003 99.98% 11 19.10% 9544
0.012 0.006 99.96% 22 8.87% 4432
0.012 0.009 99.92% 39 5.81% 2906
0.012 0.012 99.89% 54 4.29% 2143

Threshold = 84 (9 points for a circle)

R cut C cut ε Missed γ Fakes

0.003 0.003 99.93% 36 5.82% 2911
0.003 0.006 99.92% 38 4.00% 1999
0.003 0.009 99.92% 40 3.80% 1900
0.003 0.012 99.91% 46 3.72% 1861
0.006 0.003 99.93% 36 5.37% 2682
0.006 0.006 99.92% 41 2.13% 1067
0.006 0.009 99.90% 51 1.66% 830
0.006 0.012 99.88% 60 1.57% 787
0.009 0.003 99.93% 36 5.34% 2671
0.009 0.006 99.91% 44 2.09% 1044
0.009 0.009 99.89% 57 1.27% 636
0.009 0.012 99.86% 68 1.07% 534
0.012 0.003 99.93% 36 5.33% 2665
0.012 0.006 99.91% 47 2.08% 1040
0.012 0.009 99.87% 64 1.25% 626
0.012 0.012 99.84% 79 0.88% 439

Threshold = 165 (11 points for a circle)

R cut C cut ε Missed γ Fakes

0.003 0.003 99.58% 209 0.48% 238
0.003 0.006 99.58% 211 0.32% 162
0.003 0.009 99.57% 213 0.31% 156
0.003 0.012 99.56% 219 0.31% 155
0.006 0.003 99.58% 209 0.42% 209
0.006 0.006 99.57% 214 0.13% 66
0.006 0.009 99.55% 224 0.10% 50
0.006 0.012 99.53% 233 0.10% 49
0.009 0.003 99.58% 209 0.42% 209
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0.009 0.006 99.57% 217 0.13% 64
0.009 0.009 99.54% 230 0.07% 34
0.009 0.012 99.52% 241 0.05% 26
0.012 0.003 99.58% 209 0.42% 208
0.012 0.006 99.56% 220 0.13% 64
0.012 0.009 99.53% 237 0.07% 34
0.012 0.012 99.50% 252 0.04% 18

Threshold = 220 (12 points for a circle)

R cut C cut ε Missed γ Fakes

0.003 0.003 99.19% 405 0.17% 86
0.003 0.006 99.19% 407 0.12% 62
0.003 0.009 99.18% 409 0.12% 60
0.003 0.012 99.17% 415 0.12% 60
0.006 0.003 99.19% 405 0.15% 77
0.006 0.006 99.18% 410 0.05% 27
0.006 0.009 99.16% 420 0.04% 21
0.006 0.012 99.14% 429 0.04% 21
0.009 0.003 99.19% 405 0.15% 77
0.009 0.006 99.17% 413 0.05% 25
0.009 0.009 99.15% 426 0.02% 11
0.009 0.012 99.13% 437 0.02% 9
0.012 0.003 99.19% 405 0.15% 76
0.012 0.006 99.17% 416 0.05% 25
0.012 0.009 99.13% 433 0.02% 11
0.012 0.012 99.10% 448 0.01% 6

Threshold = 286 (13 points for a circle)

R cut C cut ε Missed γ Fakes

0.003 0.003 98.44% 779 0.05% 25
0.003 0.006 98.44% 781 0.03% 17
0.003 0.009 98.43% 783 0.03% 16
0.003 0.012 98.42% 789 0.03% 16
0.006 0.003 98.44% 779 0.04% 21
0.006 0.006 98.43% 784 0.01% 4
0.006 0.009 98.41% 794 0.01% 3
0.006 0.012 98.39% 803 0.01% 3
0.009 0.003 98.44% 779 0.04% 21
0.009 0.006 98.43% 787 0.01% 4
0.009 0.009 98.40% 800 0.00% 2
0.009 0.012 98.38% 811 0.00% 2
0.012 0.003 98.44% 779 0.04% 21
0.012 0.006 98.42% 790 0.01% 4
0.012 0.009 98.39% 807 0.00% 2
0.012 0.012 98.36% 822 0.00% 2
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Fig. 4.14 – Runtimes of four different runs with differend ring finding thresholds.

These results show that the most important parameter for changing the ghost rate is the
ring finding threshold. If this threshold is too low, too many fake rings are found from
random point combination that happen to lie close to a circle.

The main reason for missed rings is again the ring finding threshold since it limits the
number of rings being found. Since the algorithm uses two split lists, the number of
missed circles is even slightly higher due to the fact that sometimes the points of a circle
can be split just in a way that the two lists do not contain enough points individually to
create an accepted circle (see subsection 3.2.3).

4.4.4 Excecution time

The execution time of the whole algorithm depends strongly on the number of data
points. The runtime ranges from several seconds to several minutes as shown in Fig-
ure 4.14. The algorithm was run on the farm-ui cluster of the University of Zurich. The
worknodes are not identical. This could explain why there is branching in the runtime
when some nodes are slightly quicker than the other. The fit in the plot is 1.8e−5 N3

6 where
N is the number of data points to show the dependency of the runtime on the points. The
constant factor was determined by trial and error but is for all the plots the same.
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5 Conclusions

This thesis studied different Hough transforms for ring detection in the LHCb detector.
In a first approach a 1D Hough transform was used and then extended to two and three
dimensions. As a fourth approach a new method based on triplets of hits was developped
for the ring detection.

First of all it should be noted that especially the one, two and three dimensional Hough
transforms were only superficially studied. Their study served more of an introduction
into the Hough transform by adding extra dimensions for each case. The statements
regarding these methods should always be considered with this in mind.

The 1D Hough transform assumes the number of rings and ring centers are known and
searches for maximas in the r distribution for each rings. It is a very stable method having
no trouble to find different rings in different kinds of set ups. Even high background
does not seem to impede the efficiency of the method. It is also a faster than all the other
approaches since it only has to search a one dimensional histogram.

The 2D Hough transform assumes the number of rings and radiuses are known and
searches for maxima in the (x, y) distribution for each ring. It shows a good performance
as well but it suffers from lower speed due to the increased complexity namely searching
2 dimension for the parameters instead of just one. Another problem is also the misiden-
tification of rings based on the order in which they are searched for and possibly also the
sensitivity of the weight function used to weigh the centers for a given data points and
radius.

The 3D Hough transform does not make any assumptions on the number of rings or ring
parameters. The main weakness of this method is the score threshold which tells the
algorithm when to stop looking for a ring (the 1D and 2D transform did not have this
problem since due to the information given it was known, how many rings there were).
If the threshold is too low, too many fake rings can be formed by random combinations of
(background) hits. - if it’s too high a valid ring might get lost. The difficulty in defining a
score threshold is that it is based on the scoring function 3.2. Depending on the σ chosen
the scoring function can behave quite differently. A problem related to that is that the
3D Hough transform strongly depends on the bin size of the parameter space. The bins
should not be large big or the algorithm becomes inaccurate because the scoring function
uses inaccurate values. If the bins are too small, the algorithm takes forever due to the
O(N3) complexity. But the disadvantage can also have advantages because now the
algorithm does not depend anymore on the order of which it looks for rings - it always
picks the strongest candidates first and every subsequent candidate has a lower score
until the score is so low that it’s unlikely that it is a ring.

Finally the main part of this thesis discusses the combinatorial triplet Hough transform.
It is based on the fact that 3 points define a ring. Given 3 points in a 2D space it is possi-
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ble to calculate the center and radius of the ring on which these 3 points lie. Given a list
of points a creating a list of all possible triplets can be used to find possible rings. The
algorithm works very well and maintains a high efficiency with all tested parameters but
suffers as the 3D Hough transform from a high runtime (up to several minutes). How-
ever given the high accuracy of the algorithm in determining the ring parameters makes
this approach still very interesting and may offer potential for future investigations. The
parameter with the largest impact is the ring finding threshold which defines how many
points need to lie on a ring in order to qualify as a circle candidate. Choosing this thresh-
old too low many fake circles appear and the ghost rate skyrockets. Setting this threshold
too high means an inherent loss of efficiency from which the algorithm can never recover
since circles with a point count lower than the threshold will never be considered as a
candidate.

5.1 Outlook

As a next step the possibility of parallelising the algorithm should be considered. Once
the two triplet lists are generated the radius and centers for these triplets can be calculated
independently. Other options for optimisation would be improving the code. Some steps
have already been done. For example instead of using the np.linalg.norm function of
the numpy module (which has a high overhead see [16]) a simple norm function has been
implemented. There was not enough time to test the speed improvement systematically
but a profiling of one event showed an improvement of the speed from 188 s to 95 s. In
general, the method where radius and center of triplets get calculated would be a good
start to optimise the code since that’s the place where the algorithm spends most of its
time (shown by profiling the python script but not shown in this thesis).
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