Today's Lecture: Heat Capacity

1. Einsteins Model for heat capacity

2. Debye's Model for heat capacity

3. How to measure heat capacity

4. Thermal conductivity

Heat Capacity: Diamond (as of 1906)

Today's Lecture: Heat Capacity

1. Einsteins Model for heat capacity

2. Debye's Model for heat capacity

3. How to measure heat capacity

4. Thermal conductivity

Heat Capacity: Argon

Figure 9 Low temperature heat capacity of solid argon, plotted against T^3 . In this temperature region the experimental results are in excellent agreement with the Debye T^3 law with $\theta = 92.0$ K. (Courtesy of L. Finegold and N. E. Phillips.)

PHYSICAL REVIEW

VOLUME 177, NUMBER 3

15 JANUARY 1969

Low-Temperature Heat Capacities of Solid Argon and Krypton*

LEONARD FINEGOLD[†] AND NORMAN E. PHILLIPS Inorganic Materials Research Division of the Lawrence Radiation Laboratory and Department of Chemistry, University of California, Berkeley, California 94720 (Received 3 August 1968)

Debye Temperatures

Li 344 0.85	Be 1440 2.00]	TABLE 1 Debye Temperature and Thermal Conductivity														.27	C 2230 1.29	N	0		F	Ne 75
Na	Mg	1														A		Si	Р	s		CI	Ar
158 1.41	400 1.56		Low temperature limit of θ , in Kelvin Thermal conductivity at 300 K, in W cm ⁻¹ K ⁻¹														28 37	545 1.48					92
к	Ca	Sc	Т		v	Cr		Mn	Fe	c	0	Ni	C	u	Zn	G	a	Ge	As	Se		Br	Kr
91 1.02	230	360. 0.16	0. 420 16 0.22		380 0.31	63	30 41 0.94 0.4		47	0 4 80 1	445 4 1.00 0		- 343 4.01		327 1.1	6 0.	41	374 282 0.60 0.5		2 90 50 0.02			72
Rb	Sr	Y	Zı	·	Nb	M	•	Тс	Ru	R	h	Pd	A	g	Cd	In		Sn =	Sb	Te		I	Xe
56 0.58	147	280 0.17	29 0.	23	275 0.54	45	0 38	0.51	60 1.	0 41	80 .50	274 0.72	22	25 29	209 0.9	7 0.	82	200 0.67	211 0.2	15 24 0.	i3 02	1020	64
Cs	Ва	La ß	н	f	Та	w		Re	05	i Ir		Pt	A	u l	Hg	Т		РЬ	Bi	Po	,	At	Rn
38 0.36	110	142 0.14	252 0.23		240 0.58	40	0 74	430 0.48		0 420 38 1.47		240 0.72	240 16 0.72 3.		71.9	9 78 0	78.5 0.46		119 0.0	8			
Fr	Ra	Ac														_	_	_		_	_	_	
			T	Ce		Pr	Nd	F	Pm	Sm	Eu	Ge 20 0.	Gd	ть		Dy	Ho	E		Tm	Yb	L	Lu
				0.1	1	0.12	0.1	16		0.13			200 0.11	0.	11	210 0.11	0.16	5 0	14	0.17	120 0.3	5	210 0.16
				Th	Τ	Pa	U	1	Np	Pu	Ar	n	Cm	Bk		Cf	Es	F	m	Md	No	T	Lr
				163 0.5	3		207	28 0	0.06	0.07													

* Most of the # values were supplied by N. Pearlman; references are given the A.I.P. Handbook. 3rd ed, the thermal conductivity values are from R. W. Powell and Y. S. Touloukian, Science 181, 999 (1973).

Heat Capacity for different elements

Today's Lecture: Heat Capacity

1. Einsteins Model for heat capacity

2. Debye's Model for heat capacity

3. How to measure heat capacity

4. Thermal conductivity

Heat Capacity: Experimental setup

Figure 1-1. Thermal Connections to Sample and Sample Platform in PPMS Heat Capacity Option

Thermal Conductivity: NaF

FIG. 1. Thermal conductivity versus temperature for pure NaF crystals. Curve A, NaF sample, this paper; curve B, NaF sample, Ref. 1; curve C, typical singly grown NaF (smaller cross section).