

2.2 Lensless imaging and synchrotron physics

Scattering Block Course 12.-13.02.2024

University of Zurich^{uz}

Prof. Philip Willmott

Lensless imaging – general considerations

Lensless imaging and SAXS

- Also "coherent x-ray diffractive imaging" CXDI
- Coherent illumination of sample
- Transverse (spatial) coherence

$$l_c^{(t)} = \frac{\lambda}{2\Delta\theta} = \frac{\lambda R}{2D}$$

- Lensless-imaging beamlines
 - Long source–sample distance (R)
 - Small source size (D)
 - Highly collimated beam (θ)
 - Transverse coherence length ~ 200 1000 μm
 - Minimize optical elements that disrupt wavefront
- DLSRs: increase in coherent flux ~ $10^3 10^4$!!

Lensless imaging and SAXS

- Diffraction pattern
 - Noncrystalline samples
 - In forward-scattering direction only
 - Crystalline objects
 - Convolution of diffraction pattern due to periodicity and 'shape function' defining boundary of object
 - ⇒ regular array of replicas of same pattern
 - Bragg-CXDI

Lensless imaging vs SAXS

Ensemble of n identical spheres

$$I = \sum_{n} |\mathcal{F}(\text{sphere})|^{2}$$
$$= n |\mathcal{F}(\text{sphere})|^{2}$$

$$I = |\mathcal{F}(\text{ensemble of } n \text{ spheres})|^2$$

Interference between scattering from individual scatterers

Speckle

Progression of speckle pattern for increasing ensemble of identical spheres with constant average areal density

Speckle

Lensless imaging and DLSRs

- Signal strength $\propto 1/Q^4 \simeq 1/\theta^4$
- 10⁴ increase in coherent flux ⇒ x 10 increase in resolution ~ nm or smaller
- Sample manipulation accuracy becomes impossible
 - Becomes less competitive with e.g., electron imaging
- Exploit higher flux otherwise
 - Faster scanning
 - Higher photon energies
 - Less integrated dose
 - Larger penetration depths

Nyquist frequency

Creative Commons: https://en.wikipedia.org/wiki/Aliasing#/media/File:FFT aliasing 600.gif

 Sampling frequency ≥ 2 x highest frequency contained in the signal

 $f_s \ge 2f_c$

 For a given *f_s*, the maximum frequency you can accurately represent without aliasing is the Nyquist frequency. The Nyquist frequency equals one-half the sampling frequency

$$f_N = fs/2$$

"Aliasing": when

$$f_s < 2f_c$$

Oversampling

Measuring spatial frequency

 $f_s > f_N$

Redundancy

- Additional information/constraints beyond raw scattering data
 - Sparsity of real-space object such as atomicity
 - Physical extent of object
 - "Shrink-wrap"
 - Positivity of scattering (electron) density
 - Symmetry considerations
 - Consistency in overlapping illuminated regions (e.g., in ptychography)

• ...

Narrows down possible solutions

Coherent x-ray diffractive imaging

Coherent x-ray diffractive imaging

Animations courtesy I. Mochi, Swiss Light Source

CXDI (or CDI)

Also 'lensless imaging'

Diffraction pattern

Noncrystalline sample

In forward-scattering direction only

Crystalline objects

Regular array of replicas of same pattern

Bragg-CXDI

 Oversampling determined by size of coherently illuminated sample

Smaller samples ⇒ larger features

 Phase problem resolved typically via phaseretrieval algorithms

Gerchberg-Saxton (error reduction)

Hybrid input-output (Fienup)

Difference-map

• ...

See V. Elser https://opg.optica.org/josaa/abstract.cfm?URI=josaa-20-1-40

Coherent x-ray diffractive imaging

See also H.N. Chapman and K.A. Nugent https://www.nature.com/articles/nphoton.2010.240 XRD

- Samples have translational symmetry
- Record far-field scattering (diffraction) pattern
- Regain real-space structure through IFT
 - Phase problem
- Unit cells $\lesssim 200 \text{ Å}$
- Resolution $\lesssim Å$
- CXDI
 - Same principle as XRD
 - Samples can be crystalline or noncrystalline
 - Scattering pattern: "speckle"
 - Sizes up to ~ μm
 - Requires sample < coherence volume of SR
 - Big improvements with DLSRs!!
 - Resolution down to ~ 10 nm

- CXDI in forward-scattering direction
 - Used for noncrystalline samples
 - Sample bathed in coherent x-rays
 - Limits sample size
 - Requires rotation of sample at least by 180°, or even 360° if close to an absorption edge (scattering pattern loses its centrosymmetry – this doubling of information contributes to redundancy)

Bragg CXDI – a perfectly regular starry firmament

Perfect large crystal x Nanosized volume = Nanocrystal

Bragg CXDI – a perfectly regular starry firmament

$\mathcal{F}(A \times B) = \mathcal{F}(A) \otimes \mathcal{F}(B)$

Bragg CXDI – a perfectly regular starry firmament

Diffraction pattern of large crystal 🚫 Shape function

Diffraction pattern of nanocrystal

Bragg CXDI

Rotation angles ~ few degrees

Applications of Bragg CXDI

- Phase information arises from strains within the crystal
 - ⇒ Bragg CDI yields high resolution 3-D images of strain from within a nanocrystal in direction of Q
- Bragg diffraction away from (000) direction
 - ⇒ scattering object does not need to be physically isolated
 - Nonperiodic substrates or those with different lattice constants will be invisible to the diffraction process
 - ⇒ use Bragg CXDI to study the impact of an interface with the nanocrystal
- Several different Bragg spots (different Qs)
 - \Rightarrow 3-D strain tensor within nanocrystal

M.A. Pfeifer et al., Nature 442, 63-66 (2006) https://www.nature.com/articles/nature04867

Ptychography

Role of ptychography

- Bridge resolution gap between full-field tomographies and XRD/electron microscopy
- Scanning aspect allows high resolution down to few nm on extended samples with macroscopic dimensions limited only by IT considerations (and absorption lengths, not normally a problem for HXR)
- Spatial resolution determined by
 - Largest scattering angle
 - Stability of sample movements
 - NOT by size of illumination or step size

The perfect marriage

CXDI vs ptychography

Sample flooded with coherent radiation:

 $l_c^{(t)} > a$

- Speckle and oversampling determined by sample size a
- Redundancy provided by
 - Positive electron density
 - Approximate maximum/minimum electron densities
 - Overall sample size (if known)

CXDI vs ptychography

- Extended sample
 - Larger than $l_c^{(t)}$
 - Part of sample illuminated with coherent radiation
- Speckle and oversampling determined by illumination size $l_c^{(t)}$
- Raster sample with step sizes < $l_c^{(t)}$
 - Marriage of CXDI and STXM
- Redundancy (real-space constraint) provided by
 - Overlap between adjacent recordings – solutions must be the same in real-space

Experimental considerations in ptychography

- HXR: ~ 0.5 2 Å
- SXR: near absorption edges e.g., magnetic materials
 - L-edges 600 900 eV
- Size of illumination ~ μm
- Depth of field* T ~ $5(\Delta x)^2/\lambda$
 - $\Delta x = desired resolution$
 - \Rightarrow T ~ 1 10 μ m for HXR and 10-nm resn.
- Optimal areal overlap[†] between adjacent illuminations ~ 60 – 80%
- Nested iteration to determine (imperfect) incident wavefront[‡]
- DLSRs: increase in coherent flux ~ 10³!!

*M. Holler *et al.*, Sci. Rep. **4** 3857 (2014)
[†]O. Bunk *et al.*, Ultramicroscopy **108** 481 (2008)
[‡]P. Thibault *et al.*, Ultramicroscopy **109** 338 (2009)

Experimental considerations in ptychography

Overlap =
$$\frac{2}{\pi} \arccos\left(\frac{\Delta}{2}\right) - \frac{\Delta}{2\pi}\sqrt{1 - (\Delta/2)^2}$$

- HXR: ~ 0.5 2 Å
- SXR: near absorption edges e.g., magnetic materials
 - L-edges 600 900 eV
- Size of illumination ~ μm
- Depth of field* T ~ $5(\Delta x)^2/\lambda$
 - $\Delta x = desired resolution$
 - \Rightarrow T ~ 1 10 μ m for HXR and 10-nm resn.
- Optimal areal overlap[†] between adjacent illuminations ~ 60 80%
- Nested iteration to determine (imperfect) incident wavefront[‡]
- DLSRs: increase in coherent flux ~ 10³!!

*M. Holler *et al.*, Sci. Rep. **4** 3857 (2014)
[†]O. Bunk *et al.*, Ultramicroscopy **108** 481 (2008)
[‡]P. Thibault *et al.*, Ultramicroscopy **109** 338 (2009)

Experimental considerations in ptychography

- HXR: ~ 0.5 2 Å
- SXR: near absorption edges e.g., magnetic materials
 - L-edges 600 900 eV
- Size of illumination ~ μm
- Depth of field* T ~ $5(\Delta x)^2/\lambda$
 - $\Delta x = desired resolution$
 - \Rightarrow T ~ 1 10 μ m for HXR and 10-nm resn.
- Optimal areal overlap[†] between adjacent illuminations ~ 60 80%
- Nested iteration to determine (imperfect) incident wavefront[‡]
- DLSRs: increase in coherent flux ~ 10³!!

*M. Holler *et al.*, Sci. Rep. **4** 3857 (2014)
[†]O. Bunk *et al.*, Ultramicroscopy **108** 481 (2008)
[‡]P. Thibault *et al.*, Ultramicroscopy **109** 338 (2009)

Sample manipulation

- Sample illumination accuracy better than desired spatial resolution
 - Optics (FZP, OSA, pinhole, etc) fixed
 - Sample controlled movements
 - Both x- and y-directions
- Interferometric control using lasers
- Avoid long-term drift
 - Especially problematic in cryogenically cooled samples
- In case of ptychographic tomography (PXCT, see next video) rotation control also required
 - Axis wobble

*M. Holler et al., Sci. Rep. 4 3857 (2014)

Ptychographic tomography

- PXCT combines
 - Ptychography
 - Tomography
- 3D reconstruction with ~ few 10s nm resolution
 - Ptychographic 2D reconstructions at different projection angles
 - Tomographic 3D reconstruction from ptychographic reconstructions
- Density variations < 1% possible

Ptychographic laminography

- Used for extended samples in two dimensions (flat objects)
 - Sample rotation axis *r* tilted relative to *x-y* plane perpendicular to incident radiation (tomography)
 - Also scan sample laterally (ptychography)

 Offset angle means some of reciprocal space cannot be accessed

PyXL

Example – nondestructive study of chip architecture

- PyXL @ 6.2 keV
- Tilt angle off vertical $\theta = 61^{\circ}$
- Integrated circuit chip with 16-nm fin fieldeffect transistor technology
- Size of radiation on sample T = 4 μ m
- Number N of angular projections between 0 and 360° = 2872
- Theoretical resolution

$$\Delta r = \pi rac{T}{N} an heta$$
 = 7.6 nm

Actual resolution 19 nm

From scalar to vector to tensor

- "Standard" CXDI, ptychography, laminography yield scalar properties for each voxel
 - e.g., electron density
- Progress to directional properties in each voxel
 - Magnetic direction
 - Piezoelectricity
 - ...
- Tensor properties within a voxel also possible
 - Full 3D spatial distribution of given property within voxel

Vector PXCT – nanomagnetism

- 3D study of nanoscale magnetic materials
 - Basic research
 - Spintronics
 - Storage
 - Energy-harvesting industry
- Transmission electron microscopy
 - Limited to depths < 10 nm
- SXR microscopy
 - Limited to depths < 20 nm
- HXR transmission to many microns
 - GdCo₂
 - L-edge of Gd @ ca. 7.2 keV

Vector PXCT – magnetism

- GdCo₂ pillar, 5 μm diameter
 - Rotate and scan x- and y-directions
- Circular polarized x-rays sensitive to component of magnetization in the propagation direction
- Rotating the sample therefore changes the absorption coefficient
 - ⇒ domain contrast
 - In contrast to standard absorption in lensless imaging

Vector PXCT – magnetism

C. Donnelly et al., Nature 547 328 (2017)

- "Magnetic vortices" form when electron spins swirl in a circle within a plane
 - At the centre of the circle, swirl becomes tighter and tighter – "Bloch point"
 - Eventually magnetization at the core tilts out of the plane
 - Prior to this work, magnetic vortices widely studied in 2D systems, but remained only a theoretical prediction in 3D
- Vortices shown to be surprisingly stable to both temperature and externally applied magnetic fields
 - Stability thought to be provided by pinning to domain walls

Scanning SAXS tensor tomography

SSTT

- In each voxel (x, y, z) study a tensor property
 - Physical size
 - Intensity distribution
- Requires six degrees of freedom

SAXS tensor tomography

- $I(\theta,\phi,x_s,y_s,x_d,y_d)$
 - Tensor property
- Within a given voxel @ (x,y,z)
 - I(Q,θ,φ)
- Detector sees integrated signal of all voxel contributions along direction of propagation
 - Separate using tomographic methods

SAXS tensor tomography

Image: Inigo.quilez Creative Commons

- Any distribution I(θ, φ) can be described as a linear combination of spherical harmonics Y^m
- Angular distribution of intensity of given Q-value(s) associated with certain SAXS features
 - e.g., 65-nm signal of mineralized parts of collagen fibrils

Voxel

SAXS tensor tomography – example: down to the bone

- Biology
 - Principle of hierarchical ordering
 - Maximize functionality
 - Strength
 - Robustness
 - Minimize weight and energy cost
 - Bone
 - Multiple length scales
 - Collagen molecules (nm)
 - Microfibrils
 - Fibrils
 - Lamellae
 - Osteons (mm)

SAXS tensor tomography – example

- Human trabecular (spongy) bone
- Pencil beam ϕ = 25 μ m
- Concentrate on 65-nm feature of mineralized collagen microfibrils
- > 10⁶ SAXS patterns
 - Reconstruct 3D reciprocal-space map for each voxel
 - Model using spherical harmonics
 - Provides representation of nanoscale structure distribution
 - From reconstruction
 - Main ultrastructure orientation depicted by orientation of the cylinder
 - Degree of orientation the orientation of the cylinder illustrated by
 - Colour: indicating the ratio of anisotropic scattering to total scattering
 - Length of the cylinders: total scattering intensity

SAXS tensor tomography – example

