Exercise 1: Unstable mesons

A quantum state composed composed of a superposition of two flavour eigenstates $\left|B^{0}\right\rangle$ and $\left|\overline{B^{0}}\right\rangle$ at time t can be written as:

$$
|\psi(t)\rangle=a(t)\left|B^{0}\right\rangle+b(t)\left|\bar{B}^{0}\right\rangle
$$

Show that the current of probability associated to the evolution of this state is conserved if the hamiltonian \mathcal{H} is self adjoint.

Exercise 2: Oscillating neutral mesons
Assume that the hamiltonian of the system \mathcal{H} is non diagonal in this basis

$$
\mathcal{H}=\left[\begin{array}{cc}
M & M_{12} \\
M_{12}^{*} & M
\end{array}\right]+\frac{i}{2}\left[\begin{array}{cc}
\Gamma & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma
\end{array}\right]
$$

Show that they eigenvalues associated to the basis that diagonalizes the hamiltonian are given by

$$
E_{H, L}=\left(M \pm \frac{\Delta M}{2}\right)-\frac{i}{2}\left(\Gamma \mp \frac{\Delta \Gamma}{2}\right)
$$

Where

$$
\begin{aligned}
\Delta M & =2 \operatorname{Re} \sqrt{\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)\left(M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}\right)} \\
\Delta \Gamma & =4 \operatorname{Im} \sqrt{\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)\left(M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}\right)}
\end{aligned}
$$

Exercise 3: Time evolution of the flavour eigenstates
a) The mass eigenstates can be written as a linear superposition of the flavour eigenstates as

$$
\left|B_{L}\right\rangle=p\left|B^{0}\right\rangle+q\left|B^{0}\right\rangle \quad\left|B_{H}\right\rangle=p\left|B^{0}\right\rangle-q\left|B^{0}\right\rangle
$$

With $p, q \in \mathbb{C}$ and $|q|^{2}+|p|^{2}=1$

Using the fact that the mass hamiltonian is is diagonal in this new basis, derive the time evolution of the flavour eigenstates $\left|B^{0}(t)\right\rangle$ and $\left|\bar{B}^{0}(t)\right\rangle$
b) Use the time dependence of the flavour eigenbasis derived in point a) to write the probabilities of survival and oscillation of the neutral mesons

$$
\begin{array}{ll}
P\left(B^{0}, t=0 \rightarrow B^{0}, t=t\right)=\left|\left\langle B^{0} \mid B^{0}(t)\right\rangle\right|^{2} & P\left(B^{0}, t=0 \rightarrow \bar{B}^{0}, t=t\right)=\left|\left\langle\bar{B}^{0} \mid B^{0}(t)\right\rangle\right|^{2} \\
P\left(\bar{B}^{0}, t=0 \rightarrow \bar{B}^{0}, t=t\right)=\left|\left\langle\bar{B}^{0} \mid \bar{B}^{0}(t)\right\rangle\right|^{2} & P\left(\bar{B}^{0}, t=0 \rightarrow \bar{B}^{0}, t=t\right)=\left|\left\langle\bar{B}^{0} \mid \bar{B}^{0}(t)\right\rangle\right|^{2}
\end{array}
$$

Exercise 4: The $B_{d}-\bar{B}_{d}$ system
A time-dependent oscillation asymmetry can be defined as

$$
A(t)=\frac{N\left(B^{0}, t=0 \rightarrow B^{0}, t=t\right)-N\left(B^{0}, t=0 \rightarrow \bar{B}^{0}, t=t\right)}{\left(B^{0}, t=0 \rightarrow B^{0}, t=t\right)+N\left(B^{0}, t=0 \rightarrow \bar{B}^{0}, t=t\right)}
$$

If we consider the $B_{d}-\bar{B}_{d}$ system it is characterised by $\Delta \Gamma \sim 0$ and in good approximation $|p / q| \sim 1$ Show that the time dependent asymmetry becomes

$$
A(t)=\cos (\Delta M t)
$$

In this limit

