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Abstract. The presence of experimental noise may greatly reduce the accuracy of experimentally deter-
mined growth and roughness exponents, which characterize a growing self-affine interface. A separate
determination of the experimental noise enables a straightforward correction, which we demonstrate on
experiments on the roughening of magnetic flux profiles in the critical state of YBasCuzO7_, thin films.
After noise correction, we find that the magnetic field profile is characterized by a roughness exponent
a = 0.75(6). The growth exponent of the profiles is § = 0.7(1).

PACS. 05.65.+b Self-organized systems — 45.70.-n Granular systems

1 Introduction

Kinetic roughening of interfaces ideally produces self-
affine objects, which are characterized by power law scal-
ing exponents. Such roughening behavior is commonplace
in nature and can be seen in many diverse experimen-
tal systems, such as the growth of bacterial colonies [1],
fluid flow in porous media [2-4], the tearing [5] and burn-
ing [6-8] of paper, as well as in mountain ranges [9] and
granular piles [10,11]. Experimentally, however, there are
sometimes difficulties in obtaining reliable estimates of the
characteristic exponents. One major problem is the pres-
ence of noise in the experimental data. The noise domi-
nates on small length scales, destroying power law scaling
due to the introduction of an ‘intrinsic width’ [12-14]. In
experimental systems, where power law scaling is observed
over a limited number of decades, this intrinsic width in-
fluences the determination of the exponents [14]. For this
reason, ideally, one should correct for the noise. In this
paper we demonstrate that this is feasible for any system
where one can experimentally determine the noise prop-
erties. We apply our noise correction method to the study
of roughening of magnetic flux profiles in the critical state
of YBayCuzO7_, thin films.

The outline of this paper is as follows. In Section 2, the
experimental set-up is introduced, including a discussion
of the origins of noise together with an error propagation
analysis. The analysis methods used to characterize the
self-affine behavior are discussed in Section 3. We show
how noise changes the correlation functions which charac-
terize the power law scaling behavior. Relations are pre-
sented which enable the removal of the influence of noise.
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We validate this procedure in Section 4, applying it to
interfaces generated by a numerical random walk model,
where the power law scaling properties are well known an-
alytically. The results of the noise correction on the self-
affine analysis of our experimental magnetic flux profiles
are presented in Section 5. Section 6, summarizes the re-
sults and puts them into a broader perspective.

2 Experimental details

In the magneto-optical (MO) experiments presented here,
the local magnetic field immediately above the super-
conducting sample is measured. This is achieved by de-
tecting the polarization change in a Bi-doped Yttrium
Iron Garnet (YIG) film [15], with in-plane anisotropy
and which exhibits a large Faraday effect (typically
0.07 deg/mT). This “indicator” is mounted on top of the
sample, which is a YBasCusO7_, (YBCO) superconduct-
ing thin film on a NdGaOs substrate. The film was made
by Pulsed Laser Deposition (PLD) [16] and has a strip
geometry with an aspect ratio of 1:9, the long edge having
a dimension of 8.1 mm. The sample thickness is 80 nm.
Only the middle part of the strip is used in order to elim-
inate the effect of the corners on the shape of the flux
landscape.

The assembly consisting of sample and indicator is
mounted in a specially built cryogenic polarization mi-
croscope, which fits into the variable temperature insert
of an Oxford instruments 1 T magnet system. The ap-
plied magnetic field is perpendicular to the sample and
indicator surface. Experiments are performed at 4.2 K,
after zero field cooling (ZFC). The applied magnetic field
is increased from 0 mT to 17 mT in steps of 50 T, using
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a constant sweep rate of 1 mT/s in between steps. After
every field step, the flux distribution in the sample is re-
laxed for 10 seconds after which an image is acquired. The
pictures are taken with a charge-coupled device camera us-
ing an exposure time of 500 ms. The spatial resolution is
such that 1 pixel corresponds to 1.4 um. The experiment
was repeated five times (including the ZFC procedure) to
improve statistics.

Next, we discuss the origin of noise in the experimental
system and its propagation in the data. Using a newly de-
veloped MO image lock-in amplifier (MO-ILIA) [17], the
Faraday angle ¢, which is proportional to the local mag-
netic field, is measured directly. This technique is a consid-
erable improvement compared to conventional magneto-
optics due to the intrinsic linearity in field, the direct
measurement of the sign of the field, and the improved
sensitivity at small magnetic fields. In the MO-ILIA, a
Faraday angle image is calculated from the measured in-
tensities of three images (a, b, and c¢) taken at different an-
gles between polarizer and analyzer («, 0, —« with respect
to crossed position). For small ¢ and «, the intensities in
these images are given by

a=I(¢+a)+K (1)
b=I(¢)*+K (2)
c=I1¢p—a)*+K (3)

where K is an offset due to stray light, imperfect polarizers
and camera offset. I is the incident illumination intensity.
The Faraday angle ¢ is found from the images a, b, and ¢
using
@ a—c a—c

¢"2m+c72wN_zm1' (4)
This calculation is applied to each pixel separately. As
indicated in equation (4), the illumination intensity is
estimated using I = (a + ¢ — 2b)n/(2a2), where (..)y
denotes averaging over N consecutive images, which is
allowed since the illumination intensity is constant dur-
ing the whole experiment. If noise is present in the a, b,
and c images, this averaging significantly decreases the
noise in ¢.

Since the main source of noise in the acquired a, b,
and ¢ images is photon counting noise, we assume for the
following error propagation analysis that the noise in a,
b, and c is proportional to the square root of the image
intensity (e.g. da = \/a). A simple error propagation anal-
ysis shows that the noise amplitude d¢ in the calculated
Faraday angle ¢ is:

o=20¢
! 4\ ¢* K
@\/”(”w) o2t 7o (”

which for N — oo reduces to

a=5¢=:%§¢1+(§)2+%%. (6)
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Note that for later reference we define o as the strength
of the noise. For N = 100 the difference in §¢ calculated
by equation (6) or equation (5) is less than 1% for typical
experimental values of I, K, o, and ¢. As follows directly
from equation (6), reduction of the noise is possible by
increasing I. However, in practice I cannot be increased
at will since we use a 12 bit camera and the intensity of
the measured images a, b, and c is limited by the maxi-
mum camera illumination. We optimize the illumination
intensity of images a and ¢ such that the camera doesn’t
saturate for any measured ¢ value. This optimization pro-
cess maximizes I. Note that the first and third term in
equation (6) are independent of ¢, thus can be determined
if ¢ is zero as discussed later on.

3 Analysis methods

The experiment is carried out after ZFC for increasing ex-
ternal field values. As an example, the part of the sample
used for analysis is shown in Figure 1 at 15 mT external
field as a 3-dimensional image where height is proportional
to local magnetic field. The edge of the sample is the high
intensity ridge. One can clearly identify an overall surface
reminiscent of a granular pile. In order to obtain profiles
from the flux distribution in the sample we first determine
the position of the front of the penetrating flux (the white
line in Fig. 1). The front is defined as the position where
the local field equals three times the standard deviation
of the noise in the field free Meissner region. The flux pro-
file is defined starting at the front and going backwards,
128 pixels towards the sample edge in a direction perpen-
dicular to the sample edge. Thus the profiles are connected
to the fronts and mimic the behavior of a statistically sta-
tionary state, where the ‘mass of the pile’ is constant in
time.

To enable a more straightforward discussion of the in-
fluence of experimental noise, we write the profile B, (x,y)
in terms of the Faraday angle (we define v as the corre-
sponding proportionality constant). In addition, for the
roughening and growth analysis, we remove the aver-
age slope, which results in the definition of a slope-free
rescaled profile as b(x,y) = v (B.(z,y) — (B.(z,y,1))y.t)-
Here (B.(x,y,t))y,: is the average profile over a whole
experiment consisting of 128 images obtained at differ-
ent times t for different external fields. Since we want to
study the fluctuations in the slope-free profiles we remove
this average profile. In every image there are 200 profiles
(at 200 different y values). Since the y index only labels a
particular profile, we drop that index in the analysis be-
low. With five different experiments of 128 images each,
there are 5 x 128 x 200 ~ 107 profiles for the analysis.

Since the profiles are clearly not smooth, a self-affine
analysis is performed in terms of a roughness exponent «
and a growth exponent 3. The roughness of an interface
is classically [14] quantified by its width w(L, t) defined as

w(L,t) = ((b(x, t) — (b, t))2)*)"/?, (7)

where (.);, is a spatial average over z in a window of
length L on the interface. The outer brackets denote an
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Fig. 1. A 3-dimensional plot of a magneto-optical image of
the vortex landscape in an YBazCusO7_, thin film at an ap-
plied field of 15 mT (height is proportional to local magnetic
field). Indicated in black is the profile as defined by moving
away from the front (white contour) towards the sample edge
for 128 pixels. The edge of the sample is clearly visible as the
high intensity ridge.

ensemble average (i.e. over y, the 5 experiments and the
128 images per experiment). For a self-affine interface, the
width grows with time as a power law: w(t) o t7 until the
correlation length becomes comparable to the system size
and saturation occurs; 3 is called the growth exponent.
The saturation value wsq; grows with the window size L
as a power law: wg,+ o< LY, where « is the roughness expo-
nent. In the experiments presented here, a measured mag-
netic field profile B, (z) is not only due to the magnetic
field of the sample but also due to a noise contribution 7
with width o as given by equation (5), thus:

b(x) = h(z) +n(z). (8)

Here h(z) is the true slope-free profile and b(z) is the
measured noisy slope-free profile. Due to the presence of
noise we do not find directly the true width if we apply
equation (7) to the measured interface. If the noise is not
correlated to the height, the measured width of an inter-
face wy contains a noise contribution according to:
wi = wi + o>, 9)
Hence the true width wy can be calculated from the
measured width wy using the experimentally determined
o, which is often called [14] the intrinsic width. In general,
however, the width of the interface yields not the most
accurate determination of the exponents. An alternative
is the two-point correlation function C(z,t), which scales
as the width for a self-affine interface [14]. The correlation
function is defined by

Clat) = (((b(E,7) — bz + &1 +1)D)er) 2.

Here spatial or temporal averaging is denoted by (..)¢ -.
Its power law scaling behavior is such that C(z,0) o< ¢
and C(0,t) x t?. Due to averaging over many data points,
especially at small scales, the exponents a and (8 can be
determined more accurately. At large length or long time

(10)
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Fig. 2. A typical example of the random walk trajectory used
as an ideal self-affine interface. The length of the simulation
is 256 pixels. In total 50000 such random walks were analyzed.

scales C'(z, t) is averaged only over a few points, decreasing
its accuracy.

As mentioned above, C(z,0) and C(0,t) are calculated
from the ensemble average over 10° profiles.

For noisy data, a correction similar to that of the width
is easily derived for the two-point correlation function.
Inserting equation (8) into equation (10), gives

Cf = OF + 202, (11)
which again allows to calculate the true correlation func-
tion C} from the correlation function Cj as calculated
from noisy data, once o is known. Note that o represents
the noise average along the profile. Thus with experimen-
tal knowledge of the noise we may again find the true
correlation function. We will now validate the ideas pre-
sented above using a random walk simulation.

4 Validation of the noise removal method
using simulated data

It is well known that a one-dimensional random walk h(t)
produces a self-affine curve as a function of time with
width w(h(t)) o t95. To compare the methods of noise
correction discussed in the previous section, we apply
these to a number of random walk profiles (50000) com-
parable to the number of magnetic field profiles measured
in our MO experiments. An example of such an ‘interface’
can be seen in Figure 2. The two-point correlation function
of these random walks is shown in Figure 3. The exponent
given by the slope of the double-logarithmic plot in Fig-
ure 3 is 0.50(1) over more than 2 orders of magnitude in
excellent agreement with the analytical result.

To test our method, we first add Gaussian noise with
zero mean and width ¢ to the random walks. In Fig-
ure 4, the correlation functions are shown for the same
simulations as Figure 3, however with 25% noise added
(0/v256 = 25%). The uncorrected correlation function
(open circles) shows a clear flattening-off at small time
scales. Even at long time scales the exponent of 0.5 is
never reached, indicating the real need for removal of the
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Fig. 3. The two-point correlation function C(0,t) (filled cir-
cles) averaged over all simulated random walks. The exponent
of the simulation (0.50(1)) is in nice agreement with the ana-
lytical result (0.5), indicated by the line.

influence of the noise. After a simple averaging over five
adjacent points, the correlation function given by the filled
squares is obtained. Clearly, at scales smaller than the av-
eraging time, the exponent is too high, due to correlations
introduced by the averaging. At longer time scales an ex-
ponent of ~0.43(3) is obtained, which underestimates the
true value. Using equation (11) to correct for the noise, we
obtain the filled circles. Note the perfect agreement with
the noise free correlation function plotted as a thin line.
The exponent obtained by fitting the data in the inter-
val t € [1,11] is 0.50(2), which reproduces very nicely the
ideal result. Note, however, that an underestimation of the
noise by 1% leads to an exponent of 0.46, indicating that
good knowledge of the strength of the noise is essential for
the correction to work.

5 Analysis of experimental magnetic field
profiles

Now that we have shown that even very substantial noise
can be corrected for by the present method, we apply it
to the magnetic field profiles in YBasCusgO7_, thin films.
However, to correct for the noise we first have to determine
the noise in our experiments itself. Therefore we now first
discuss how to determine the noise.

As follows directly from the second term in equa-
tion (6) the noise strength increases with ¢ and thus along
the profile. In the following we will show that this ¢ depen-
dence of ¢ is small. Therefore we discuss 2 cases: Firstly,
we determine the noise at zero external field. Secondly, we
discuss the case where there is an applied external field,
such that a ¢-gradient is present in the images.

The noise 04~¢ may be determined directly from the
experimental ¢ images at zero applied field. To compen-
sate for any irregularities in the indicator layer, the dif-
ference of two (consecutive) images at zero applied field
is taken and divided by v/2 to give an image for ¢ = 0
which only contains noise. The standard deviation of such
an image gives og~o = 9.00 x 10~% rad, which is also what
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Fig. 4. Two-point correlation functions of the random walks
with and without added noise. Indicated by the open circles
are the results for the noisy random walks Caatq(0,t). A deter-
mination of the exponent gives a too low value, a = 0.30(5), in
the “linear” region. The result Cnn(0,t) for adjacent averag-
ing (see text) is shown with filled squares. Here, the averaging
introduces correlations and a too high exponent at small time
scales. Furthermore the exponent obtained at longer times is
too low, a = 0.43(3). The filled circles show Ceor(0,1), i.e.
with the known noise removed from the correlation function
according to equation (11). Here the analytic result is recov-
ered, « = 0.50(2). Note also that these data reproduce the
noise free result, indicated by the thin line.

is obtained from equation (6) using experimental values
for I, K and «. Furthermore, the correlation function of
the noise itself Chpoise(2,0), turns out to be independent
of x with a value of ov/2, thus allowing the use of equa-
tion (11), with o a constant.

However, if there is an applied magnetic field and pro-
files are present we encounter the problem that the noise o
increases with ¢ and thus along the profile. Fortunately
this does not mean that the noise increases with time in
the experiment, since the profiles are connected to the
front and thus the local ¢ values on the profiles are roughly
constant during the whole experiment. Moreover, in order
to eliminate a position dependence of the noise we use the
noise averaged over the profile for the noise correction pro-
cedure. This is justified by the fact that the ¢-dependent
contribution to the noise is small (see below). Thus we
determine the noise from the standard deviation o of the
difference of values in the region covered by the profiles
between two consecutive images divided by /2. In this
manner we find averaged over all differences between con-
secutive images o = 9.24(27) x 10~ rad. This shows that
the ¢ dependence of ¢ is small.

A typical example of the fluctuations, b(x), of a mea-
sured slope-free profile is shown in Figure 5. In Figure 6
the corresponding spatial correlation functions for all pro-
files are shown, both uncorrected and noise-corrected us-
ing equation (11) and the value of o determined above. As
can be seen, in the uncorrected case (open circles) there is
no clear power law behavior and the exponent « is severely
underestimated. In the noise-corrected data (full circles),
power law behavior is obtained allowing an accurate deter-
mination of & = 0.75(6) from a weighted fit in the interval
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Fig. 5. A typical example of the height fluctuations of a slope-
free magnetic field profile as determined from a MO image
such as Figure 1. In total more than 10° of these profiles were
analyzed.
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Fig. 6. The spatial behavior of the two-point correlation
function for the magnetic field profiles. The open circles
show Claiq(z,0), calculated from the uncorrected noisy data
and yielding a roughness exponent of a = 0.40(5). The filled
circles show Ceor(z,0) calculated from equation (11). Clearly,
power law scaling is obtained yielding an exponent of a@ =
0.75(6), indicated by the black line. The shaded area indicates
the error margin in the correction scheme corresponding to
1 standard deviation in the noise.

x/Tpiger € [1,11]. The influence of the error in the noise
determination on Ce,.(x,0) is shown by the shaded area.

For the temporal analysis extra care must be taken
since the profiles are connected to the fronts. The noise in
the images generates a statistical error with width § in the
determination of the front position. Since we fix the pro-
files to the front, profiles at different times are connected
to different fronts and the temporal correlation function
has an extra error (noise contribution) due to the uncer-
tainty in the front position. Since the slope of the profiles
projects the noise in the profile height in the z-direction,
we estimate § from o divided by the averaged local slope s
at the front, hence 6 = o/s. This implies that in stead
of the true C(0,t), one effectively calculates Ctqc(0,t) =
V/C2(0,t) +2C2(5,0). Here, C(6,0) is determined from
the noise corrected spatial correlation function. Thus for
the intrinsic width correction of C(0,t), the noise o in

equation (11) must be replaced by /o2 + C2(4,0). With

C(0,t) [mrad]

T
100
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Fig. 7. The temporal behavior of the two-point correla-
tion function for the magnetic field profiles. The open circles
show Cyqta(0,t), calculated from the uncorrected noisy data
and yielding a growth exponent 5 = 0.30(5). The filled circles
show Cior (0, t) calculated from equation (11) using an effective
noise value of 10.9(4) x 107* rad. Clearly, power law scaling
is obtained yielding an exponent of 8 = 0.7(1), indicated by
the black line. The shaded area indicates the error margin in
the correction scheme corresponding to 1 standard deviation
in the noise.

C(8,0) = 5.7x 10~ rad, this yields an effective noise value
of 10.9(4) x 10~* rad in C(0,1).

In Figure 7, the time correlation functions are shown
uncorrected (open circles) and corrected (filled circles).
It can be seen that without correcting for the noise, the
determination of the exponent underestimates the true
value. As can be seen, in the noise-corrected data power
law behavior is observed with an exponent of 5 = 0.7(1)
from a weighted fit in the interval ¢ € [1,17]. The influ-
ence of the error in the noise determination on C.,,(0,t)
is shown by the shaded area.

Note that in both space and time, the corrected data
still have a small upturn at small scales which may be
due to a slight underestimation of the experimental noise.
However, as indicated by the shaded area, the deviation
is smaller than the error bars. Also the possible effect on
« and 0 is well within the errorbars of these exponents.
Note also that the curves shown in Figures 6 and 7 were
corrected using the experimental o and thus o is not a
fitting parameter to equation (11).

6 Discussion

In conclusion, noise in experimental systems may ham-
per an accurate determination of the self-affine proper-
ties of interfaces such as the growth and roughness ex-
ponents. In order to correct the correlation functions for
the presence of noise in the experimental data an accu-
rate determination of the noise strength is necessary. We
describe and test a noise removal procedure on an artifi-
cial random walk model with added noise and show that
the analytic value of the exponent can be recovered. Fur-
thermore, we investigate the self-affine properties of the
magnetic field profiles in YBasCu3O7_, thin films. We
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show that without correction, the presence of noise leads
to an underestimation of both the growth and roughness
exponent. Measuring the experimental noise and correct-
ing the correlation functions for its presence, we find for
the magnetic flux profiles o = 0.75(6) for the roughness
exponent and § = 0.7(1) for the growth exponent. Note
that these values are different from results reported ear-
lier [18], where no noise correction was applied.

Thus magnetic vortices in superconductors fall well
into the category of roughening systems with quenched
disorder, such as fluid flow in porous media [2,3], moun-
tain ranges [9], wet granular piles [9], and bacterial colony
growth [1]. All these systems show roughness exponents
of a ~ 0.8. In systems where the growth exponent was
determined as well, it is also in the same range as that
determined here, varying from § = 0.65 (fluid flow [4]) to
B = 0.85 (wet granular piles [9]).

We would like to thank Jan Rector for the samples. This work
was supported by FOM (Stichting voor Fundamenteel Onder-
zoek der Materie), which is financially supported by NWO
(Nederlandse Organisatie voor Wetenschappelijk Onderzoek).

References

1. T. Vicsek, M. Cserz8, V.K. Horvath, Physica A 167, 315
(1990)

2. S. He, G.L.M.K.S. Kahanda, P. Wong, Phys. Rev. Lett.
69, 3731 (1992)

10.
11.
12.
13.
14.

15.

16.

17.

18.

M.A. Rubio, C.A. Edwards, A. Dougherty, J.P. Gollub,
Phys. Rev. Lett. 63, 1685 (1989)

V.K. Horvéath, F. Family, T. Vicsek, J. Phys. A 24, 25
(1991)

J. Kertész, V.K. Horvath, F. Weber, Fractals 1, 67 (1992)
J. Zhang, Y.-C. Zhang, P. Alstrgm, M.T. Levinsen,
Physica A 189, 383 (1992)

M. Myllys, J. Maunuksela, M.J. Alava, T. Ala-Nissila,
J. Timonen, Phys. Rev. Lett. 84, 1946 (2000)

M. Myllys, J. Maunuksela, M. Alava, T. Ala-Nissila,
J. Merikoski, J. Timonen, Phys. Rev. E 64, 36101 (2001)
A. Czirdk, E. Somfai, T. Vicsek, Phys. Rev. Lett. 71, 2154
(1993)

A. Malthe-Sgrenssen, J. Feder, K. Christensen, V. Frette,
T. Jgssang, Phys. Rev. Lett. 83, 764 (1999)

C.M. Aegerter, R. Giinther, R.J. Wijngaarden, Phys. Rev.
E 67, 51306 (2003)

E. Moro, Phys. Rev. Lett. 87, 238303 (2001)

J. Kertész, D.E. Wolf, J. Phys. A 21, 747 (1988)

A.-L. Barabési, H.E. Stanley, Fractal Concepts in Surface
Growth (Cambridge University Press, 1995)

L.A. Dorosinskii, M.V. Indenbom, V.I. Nikitenko,
Y.A. Ossipyan, A.A. Polyanskii, V.K. Vlasko-Vlaskov,
Physica C 203, 149 (1992)

J.M. Huijbregtse, B. Dam, J.H. Rector, R. Griessen, J.
Appl. Phys. 86, 6528 (1999)

R.J. Wijngaarden, K. Heeck, M. Welling, R. Limburg,
M. Pannetier, K. van Zetten, V.L.G. Roorda, A.R.
Voorwinden, Rev. Sci. Instrum. 72, 2661 (2001)

M.S. Welling, C.M. Aegerter, R.J. Wijngaarden,
Europhys. Lett. 61, 473 (2003)



