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Abstract Due to the occurence of punctuations or avalanches, flux penetration
in superconductors is not the smooth process that is described in many
textbooks. We investigate the relationship between spatial fluctuations
of the vortex density map and vortex avalanches. For the experiment,
we use a magneto-optical image lock-in amplifier. The optimization of
this apparatus, in particular with respect to noise reduction is discussed.
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1. Introduction
Flux penetration in superconductors is an inherently unstable pro-

cess, as is clear from the quenching of superconducting magnets. The
magneto-optical technique enables a detailed study of the instabilities in-
volved. It turns out that even the Bean state is not completely geometry-
determined, but often displays roughening behavior[1], where an initially
straight interface (e.g. between Meissner and Shubnikov phases) be-
comes increasingly ’wiggly’.
We use a specially developed magneto-optical image lock-in amplifier

to accurately measure the local magnetic field above thin film supercon-
ductors. If the local field Hz at position (x, y) in the sample is plotted
along the z−axis, the resulting 3-dimensional surface is not smooth, but
reminiscent of the somewhat irregular surface of a granular pile (such as
a heap of sand). From a roughness analysis[2] the growth exponent β
and roughness exponent α for that surface may be found.
A close look at the evolution of the surface Hz (x, y) reveals that its

change as a function of the applied field is not continuous, but that the
surface evolves by small and large sudden punctuations or avalanches.
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These avalanches are characterized by their size distribution function
(with exponent τ) and self-similar topology (with fractal dimensions dB

and D).
In the present work we determine the exponents and dimensions men-

tioned above for flux penetration in thin-film YBa2Cu3O7 superconduc-
tors and check experimentally scaling relations for self-organized criti-
cality (SOC)[3].
In section 2 we discuss the experimental apparatus in some detail in

view of the emphasis of this workshop. In particular we discuss the
effect of (shot)noise in the camera on the determination of the local
magnetic field as well as the effect of various possible imperfections in
the measurement procedure.
In section 3 the experimental procedure is discussed. In section 4 the

method of analysis is given and our results are presented. The paper
ends with a brief discussion of our findings.

2. Experimental apparatus
We study roughening and vortex avalanches in 80 nm thick YBa2Cu3O7

films deposited on NdGaO3 substrates by pulsed laser deposition[4].
Early results on the roughening behavior of the flux front were reported
by Surdeanu et al.[1].
To local vortex density in the type-II YBa2Cu3O7 superconductor is

determined from the z-component of the magnetic field,Hz, immediately
above the sample by a magneto-optical technique. We use the Faraday
effect in a sensitive garnet film with in-plane anisotropy, that is coated
with a mirror layer. The mirror is in direct contact with the YBa2Cu3O7

sample, while the substrates of sample and indicator face outwards. The
local Hz-field is determined from the angle of rotation in the garnet film
by a polarization microscope set-up.
To be able to measure at high magnetic fields and at arbitrary temper-

atures in the range 2− 300 K, we use a commercial Oxford instruments
magnet system with a specially designed microscope insert.
The insert, made of phosphor bronze, is shown in detail in figure 1.

The sample assembly (i.e. sample and indicator mounted together on a
dove-tail base plate) is placed in the dove-tail connection indicated in
the figure. To be able to view with the microscope various parts of the
sample, the holder has x and y motion. The cylindrical parts x, y screw
into the body b. If they are rotated, their lower conical parts push on
cantilevers c (only one is visible) that move the spring-loaded xy-table
XY in respectively the x and y direction. To reflect the Faraday-rotated
light exactly straight upwards into the microscope, the body b (which
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is spring-loaded against the plate r by the spring S and rests on the
ball B) can be tilted by the screws φ and ψ, which push against the
reference plate r. To reduce the undesirable contrast between different
domains in the indicator film, the magnetization vectors of the domains
must be oriented correctly with respect to the polarization vector of
the incident light. This can be done by rotating the dove-tailed sample
holder with respect to the xy-table using screw θ. This rotating part
and the xy-table are moving on 1 mm diameter sapphire ball-bearings.
For coarse focussing, the whole assembly shown in the right-hand part
of figure 1 can be moved in the z-direction, i.e. along the optical axis
of the microscope, by rotating the screw z, that is screwing in block f
and is fixed in a bearing with respect to the reference plate r. Block f
can be fixed with respect to the cryostat by spring loaded pins p, which
can be retracted for removal of the insert from the cryostat by a screw
not shown. The whole assembly of figure 1 is at the end of a 70 cm long
insert such that the sample is at the magnet centre-line position.
All controls and screws are connected to long thin rods (see figure

2c) that run to the insert main body (figure 2b) where two 45◦ rotary
joints (knees) are used to connect to commercial rotary feedthroughs
thus allowing to make all adjustments from the outside while the sample
assembly is at low temperature. The whole magnet system is shown in

Figure 1. Detail of the insert showing the mechanism allowing x, y, z and θ, φ, ψ
adjustments. For explanation see text.
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figure 2a. The camera, indicated by C, is immediately above the main
body of the insert.
In conventional magneto-optics, the local magnetic field is visualized

by polarization microscopy as an image intensity I related to the Fara-
day angle φ by Malus law I = L sin2 φ, where L is the intensity of the
illumination source. This method has several disadvantages: (i) one
cannot determine the sign of φ (and hence of Hz since φ ∼ Hz) (ii) for
φ close to zero the sensitivity is very low and (iii) one needs to know
L as a function of position in the sample. To some extent the first two
problems are alleviated by the well-known trick to slightly uncross the
polarizer and analyzer. We have developed[5] an extension of that idea,
which we call magneto-optic image lock-in amplifier (MO-ILIA). The
main idea is to modulate the relative orientation of polarizer and ana-
lyzer. If the deviation from crossed position is α, then the intensity after
the analyzer is given by I = K + L sin2 (φ+ α) , where we have added
an offset-intensity K, which may be due to stray-light, imperfect extinc-
tion ratio of the polarizers or camera read-out offset. For small angles α
and φ (in practice always true) the outcoming intensity may be approx-
imated by I = K +L (φ+ α)2. By measuring intensities {I+, I0, I−} for
three different values α = {+α0, 0,−α0} , the unknowns φ, K and L are

Figure 2. (a) Overall view of the cryostat with magnet and the insert. The camera
position is indicated by C. (b) Main body of the insert (without top cover) showing
the 45◦ joints and rotary feedtroughs. (c) Lower part of the insert containing the
mechanism shown in figure 1.
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determined. In particular:

φ =
I+ − I−
4α0L

(1)

L =
I+ + I− − 2I0

2α2
0

(2)

The calculation of φ and L is carried out for each pixel in the image
separately, either by special hardware in real-time at video rate[5] or at
slower speed by software. The great advantage is a reliable determina-
tion of φ (including its sign) and hence of Hz irrespective of stray-light,
uneven illumination etc. The price to pay is an increase in noise in
the measurement of φ. Due to the term (I+ − I−) in eq. 1, the abso-
lute amount of noise will increase by about a factor

√
2. If K is large

(e.g. due to poor extinction ratio of the polarizers), the relative noise
is increased very much due to the shot-noise nature of light intensities
(noise ∼ √

I). In that case the intensities I+ and I− are large and hence
the noise

√
I± in these images is also large, while the intensity modula-

tion (I+ − I−) due to the rotation in the sample is small, leading to a
large relative noise

√
2I±/ (I+ − I−). Clearly, even with our modulation

scheme, low K and good polarizers are essential. Potentially another
source of noise is L, which enters in the denominator of eq. 1. This
is especially worrying since L can become close to zero in the presence
of noise. For this reason, one may prefer[6] to use only φ ∼ (I+ − I−)
hence omitting the normalization for uniform illumination. However, we
prefer to include the normalization[5]. Since the sample illumination is
mainly uneven in space and varies only very slowly in time (due to lamp
ageing e.g.), it is justified to reduce the noise caused by L to negligi-
ble amount by averaging L in time. Typically, the running-averaging
Lav = kLin + (1− k)Lav is calculated over N = 100 images (k = 0.01),
while taking care that before real data are taken the running average is
steady. The convergence at the start of the experiment can be greatly
sped up by the following recursion, based on the recursive least squares
algorithm [7]:

kn+1 =
kn

e−1/N + kn
(3)

that starts with k0 = 1 and then slowly converges to k∞ = 1 − e−1/N

(e.g. for N = 100 to k � 0.01).
Noise is also increased by imperfect crossing of the polarizer and an-

alyzer. A crossing-error angle δ is equivalent to an extra rotation in the
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sample and may be incorporated in the formulae above by the replace-
ment φ → φ+δ. Due to the resulting larger intensities I (if α and φ and
δ are in the same direction), the noise

√
I increases, while the sample

rotation is unmodified.
For the modulation of the angle α, we use a glass (Schott SF 59) rod

with a large Faraday effect in a copper solenoid magnet optimized for
field homogeneity and connected to electronics that enables switching
the current in a few ms (in the video blanking time). We choose this
glass because of its low absorption compared to garnet films. If intensity
is not at stake, the much more compact construction of Indenbom[6] may
be preferable.
If the modulation is done manually, there is always a risk of using a

slightly asymmetric modulation α = {+α0 + ε, 0,−α0} instead of α =
{+α0, 0,−α0}, resulting in a calculated φcalc given by

φcalc = φ+
φε

2α0
+

ε

2

which leads to a change in φ by a factor (1 + ε/2α0), which for typical
values should be smaller than 10%, and to an offset ε

2 , which is particu-
larly significant at positions in the image where the rotation angle φ is
close to zero.
To finish this discussion of the effects of noise with a quantitative

statement, we calculate the effect of shot-noise in the images for the
case of perfect symmetric modulation of α. If the calculation in eq. 2
is done with averaging over N images, then a simple error propagation
analysis[8] yields a noise amplitude δφ in the calculated Faraday angle
φ given by:

δφ =
1√
8L

√
1 +

K

Lα2
0

+
(
1 +

4
N

+
12
N

K

Lα2
0

)
φ2

α2
0

+
12
N

φ4

α4
0

(4)

For N −→ ∞ this reduces to

δφ =
1√
8L

√
1 +

K

Lα2
0

+
(

φ

α0

)2

(5)

For N = 100 the difference in δφ calculated by eq. 5 or eq. 4 is less
than 1%. Clearly the noise can be greatly reduced by increasing the
illumination intensity L. Unfortunately, L cannot be increased at will,
since the well-capacity of the CCD-camera limits the maximum number
of photons that can be registered. The optimum is obtained by setting
the illumination intensity L before the start of the experiment as high
as possible but such that the saturation intensity of the camera Imax
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is just not reached for any local magnetic field and for any modulation
angle α to be used during the experiment. Since I = K + L (α+ φ)2,
this implies that one chooses the illumination intensity L such that

L (α0 + |φmax|)2 = Imax −K = C (6)

where we introduce for brevity the new constant C. Under this optimal
condition, the noise is given by

δφ =
1√
8C

√√√√(α0 + φ)4

α2
0

K

C
+ (α0 + φ)2 +

φ2 (α0 + φ)2

α2
0

(7)

from which one easily calculates that the maximum of the signal to noise
ratio S/N = φ/δφ is obtained for α0 = φmax.

3. Experimental procedure
After a cool down in zero field (ZFC), an external magnetic field is

applied perpendicular to the sample surface. We measure the local Hz-
field directly above the sample with the MO-ILIA as described above.
Since each vortex carries one flux quantum Φ0 = h

2e and since at the
surface the vortices are perpendicular to the surface, the field Hz is a
direct measure of the vortex density. A typical plot of this vortex density
as a function of position in the sample is shown in figure 3; the spatial
resolution is such that 1 pixel corresponds to 1.4 µm.
The similarity of the figure with a heap of sand is striking. In five

experiments[9] at 4.2 K, each time after ZFC, the magnetic field is in-
creased from 0 mT to 17 mT with a sweep rate of 1 mT/s in 50 µT
steps. At every step, the sample is relaxed for 10 seconds after which an
image is acquired. Below we analyze the roughness of the 2-dimension
surfaces of these ’piles’ and find the avalanches that create the surface
roughness. Then we relate the statistical properties of the avalanches to
those of the surface.

4. Analysis and discussion
A rough interface, like the one shown in figure 3, can be characterized

by the properties of its root-mean-squared width w. In the initial state
of formation of the surface, this width grows with time t as a power
law: w ∼ tβ where β is called the growth exponent. In later stages, this
growth is limited at a value wsat by the system size L, where wsat ∼ Lα

is found. A more accurate determination of the exponents is obtained
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by using instead of w the two point correlation function:

C(%x, t) =
(
〈(b(%ξ, τ)− b(%x+ %ξ, t+ τ))2〉�ξ,τ

)1/2
(8)

which has[2] similar scaling behavior: C(|%x| , 0) ∝ |%x|α and C(0, t) ∝ tβ.
Plots of C(|%x| , 0) and C(0, t) for the five experiments[8] show nice power
law scaling behavior. From these plots we find α = 0.79(10) and β =
0.60(10). The roughness exponent α is large and close to that found
for certain mountain ranges[10], pointing to a large influence of static
disorder (pin centers) in the superconductor on the flux penetration
process.
If two interfaces (such as shown in figure 3) at consecutive fields are

subtracted, the difference is partially due to the change in externally
applied magnetic field and partially due to fluctuations caused by the
flux penetration process. To study the latter, we subtract the change in
external field from the difference between two consecutive images. The
resulting image ∆ is a map of redistributions of flux due to avalanches.
If the penetration process was completely homogeneous, ∆ would be
indentical to zero everywhere. By contrast, in our experiment ∆ is
negative where an avalanche has removed vortices and positive where an
avalanches has deposited vortices. The sum over the whole image of the
absolute value of all values in ∆ hence yields twice the total flux in an
avalanche. Clearly, from ∆ one may also determine the avalanche shape,
its volume fractal dimension D and its surface fractal dimension dB (i.e.

Figure 3. Local magnetic field Hz (vertical) as a function of position in the sample
(horizontal plane) at 15 mT external field after zero field cooling at 4.2 K. The edge
of the sample is at the position of the top of the ridge.
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for the projection of the avalanche shape on a plane corresponding to
the pile average surface).
In figure 4, the probabilities P (s, L) for finding an avalanche of size s

in a sample of linear size L are plotted. In reality we do not use differ-
ent sample sizes L; instead, we analyze subsets of our sample with size
L. Note that the straight line in figure 4 indicates that the probability
P (s, L) scales with the avalanche size as a power law: P (s, L) ∼ s−τ ,
which is a hall-mark for self-organized criticality (SOC)[3]. The devia-
tions at large avalanche size are due to the fact that an avalanche cannot
span more than the whole system. Hence the relation P (s, L) ∼ s−τ

has a system size dependent cut-off as clearly seen in the figure. It
is remarkable that this cut-off can be used[11] to make a more strin-
gent test for SOC: it is required by SOC theory that the cut-off size
scales as LD (so-called finite-size scaling). In the inset of figure 4, the
results are rescaled horizontally with a factor LD and vertically with
sτ to take out the power law. Both D and τ were used as fitting pa-
rameters. Clearly a nice collapse of data for the various system sizes is
obtained, giving more strength to the idea that our system is SOC. Us-
ing the results from the roughness analysis described above, even more
tests for SOC can be made: it is predicted[11],[12] that D = dB +α and

Figure 4. Probablility distribution P (s, L) for avalaches of size s in a system of
linear dimension L. The cut-off is due to avalanches reaching the system size. The
inset shows the results of finite size scaling with D = 1.89(3) and τ = 1.29(2). Note
the nice data collapse.
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that α/β = D (2− τ). Using these relations and our experimental values
D = 1.89(3), dB = 1.18(5) and τ = 1.29(2), we find α = 0.71(6) and β =
0.53(6) while from the roughness analysis above we have α = 0.79(10)
and β = 0.60(10). Clearly, within experimental accuracy, the SOC rela-
tions D = dB + α and α/β = D (2− τ) are satisfied. Although further
experimental tests (if possible with higher accuracy) are certainly desir-
able, we conclude in view of (i) the experimental verification of these
scaling relations (ii) the power law distribution of avalanche sizes and
(iii) the finite size scaling, that there is rather strong experimental evi-
dence for SOC in the vortex matter of our sample.
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[10] A. Czirók, E. Somfai, and T. Vicsek, Phys. Rev. Lett. 71, 2154 (1993).

[11] M. Paczuski, S. Maslov and P. Bak, Phys. Rev. E 53, 414 (1996)

[12] C. M. Aegerter, R. Günther, and R. J. Wijngaarden, Phys. Rev. E 67, 051306
(2003)


